ittt
OIS

UNIT 7B

Data Representation: Compression

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Fixed-Width Encoding

In a fixed-width encoding scheme, each
character is given a binary code with the
same number of bits.

Example:
Standard ASCll is a fixed width encoding

scheme, where each character is encoded with

7 bits.
This gives us 27 = 128 different codes for

characters.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Fixed-Width Encoding

Given a character set with n characters, what is the
minimum number of bits needed for a fixed-width
encoding of these characters?

Since a fixed width of k bits gives us n unique codes to
use for characters, where n = 2k,

So given n characters, the number of bits needed is
given by k = [log,n] . (We use the ceiling function since
log,n may not be an integer.)

Example: To encode just the alphabet A-Z using a fixed-
width encoding, we would need [log,26] = 5 bits:

e.g. A=>00000, B =>00001, C=>00010, ...,Z=>11001.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Using Fixed-Width Encoding

If we have a fixed-width encoding scheme using
n bits for a character set and we want to
transmit or store a file with m characters, we
would need mn bits to store the entire file.

Can we do better?

If we assign fewer bits to more frequent characters,
and more bits to less frequent characters, then the
overall length of the message might be shorter.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Huffman Coding

* We can use an encoding scheme named
after David A. Huffman to compress our
text without losing any information.

* Based on the idea
that some characters

occur more

frequently -

than others. B e =i 25 3.7
* Huffman codes are JN_T:S:.aam”“ ’ /

not fixed-width. I |

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Huffman Coding: the process

1. Assign character codes
a. Obtain character frequencies
b. Use frequencies to build a Huffman tree

c. Use tree to assign variable-length codes to
characters (store them in a table)

2. Use table to encode (compress) ASCII source
file to variable-length codes

3. Use tree to decode (decompress) to ASCII

15110 Principles of Computing,
Carnegie Mellon University

.. Y

The Hawaiian Alphabet =
* The Hawaiian alphabet ' 0.068
. A 0.262
consists of 13 characters. E 0.072
— ' is the okina which H 0.045
sometimes occurs between I 0.084
vowels (e.g. KAMA’ AINA) k. 0.106
L 0.044
* The table to the right M 0.032
shows each character along ”o‘ 2232
with its relative frequency P 0. 030
in Hawaiian words. U 0.059
W 0.009

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

The Huffman Tree

* We use a tree structure to develop the unique
binary code for each letter.

 Start with each letter/frequency as its own node:

‘ [L
0.068 0.084 0.044
N o P w
0083/ \0.106/ \0.03Q 0.009

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

The Huffman Tree

* Combine lowest two frequency nodes into a tree
with a new parent with the sum of their
frequencies.

‘ |
0.068 0.084
N 0 L
0.083 0.106, 0.044,

15110 Principles of Computing, 9
Carnegie Mellon University - CORTINA

The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies.

‘ [
0.068 0.084
N 0 L
0083/ \0.106/ \0.044

15110 Principles of Computing, 10
Carnegie Mellon University - CORTINA

The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

The Huffman Tree

* Combine lowest two frequency nodes (including the
new node we just created) into a tree with a new
parent with the sum of their frequencies...

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

0.106,

& 0.068

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

G@

0.106

@ 0.068

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

®
@) o) () () (o)
L ‘ N |
0.044 0.068 0.083 0.084,
* Repeat until you & @

have one tree with

; : w P
all nodes linked in.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

@,
@

0 1 0
GIIOENOERE
0 0.106 0 0 1 0
L ‘ N |
e 0000
0
* Label all left @ @
branches with O 0
and all right
branches with 1 & Y

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 20

10

BOW
@
0 1 0 1
0 @ 1 0 1 @ 0 1
ot () () (o) (o)
0 — 0 0 1 0
L ‘ N [
0.044 0.068 0.083 0.084
0
* The binary code for & @
each character is 0
obtained by following
the path from the root

to the character.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 21

O
S
0 1 0
0
(o)) ()) (oae)
0.106
0 0 0 1 0
L ‘ N I
0.044, 0.068 0.083 0.084,
0
Examples: @ @
H => 0001 0
A=>10 W p
P=>110011 0.009 0.030,

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 22

11

Fixed Width vs. Huffman Coding

! 0000 ! 0111
A 0001 A 10
E 0010 E 1101 ALOHA
H 0011 H 0001
I o100 I 1111 Fixed Width:
K 101 001
010 5 00010110100100110001
L 0110 L 0000 _
M 0111 M 11000 20 bits
N 1000 N 1110
o 1001 0 010 Huffman Code:
P to1o 110011 300000010000110
U 1011 U 0110 15 bits
W 1100 W 110010

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 2

Decoding

* |In a fixed-width code, the boundaries
between letters are fixed in advance:
0001 0110 1001 0011 o001

* With a variable-length code, the boundaries
are determined by the letters themselves.

— No letter’ s code can be a prefix of another letter.

— Example: since A is “10”, no other letter’ s code
can begin with “10”. All the remaining codes

ki

begin with “00”, “01”, or “11”.

15110 Principles of Computing,

Carnegie Mellon University 24

12

100000010000110 Decoding

* To find the character use the bits to determine path from root

15110 Principles of Computing, 25
Carnegie Mellon University

Programming the Huffman Tree

* Let’s write Python code to produce a Huffman
tree for a given alphabet.

* At each step we need to find the two nodes
with the lowest frequency scores.

* This will be easy if nodes are kept in a list that
is sorted by score value.

* Solution: use a priority queue.

15110 Principles of Computing, 2%
Carnegie Mellon University

13

Priority Queues

NOTE: For this unit, we use PythonlLabs (on the
linux server) and we need to include the
following line in the code:

from PythonLabs.BitLab import PriorityQueue, Node,
assign_codes, encode, decode

15110 Principles of Computing, 27
Carnegie Mellon University

Priority Queue: a data structure

. A priority queue (PQ) is like a list that is automatically kept
sorted.
>>> pq = PriorityQueue ()
>>> pq
[]

. PQ methods: insert and pop

15110 Principles of Computing, 28
Carnegie Mellon University

14

Priority Queue: insert

To add an element into the priority queue in its correct
position, we use the insert method:

>>> pq.insert ("peach”)
>>> pqg.insert("apple”)
>>> pqg.insert("banana”)
>>> pq

[apple, banana, peach]

15110 Principles of Computing,
Carnegie Mellon University

29

Priority Queue: pop

To get the first (highest priority) element of the queue,
use the pop method, which removes it as well:

>>> fruitl = pqg.pop()
>>> fruitl

'apple'’

>>> pq

[banana, peach]

>>> fruit2 = pqg.pop()
>>> fruit2

banana

>>> pq

[peach]

15110 Principles of Computing,
Carnegie Mellon University

30

15

Using a PQ to build the tree

* Make a PQ of Nodes. Frequency = priority

W P L ‘ N
0.009/\0.030, 0.044 0.068 0.083

To get the two lowest frequency nodes, pop

twice
w P
0.009 0.030,
0.044 0.068 0.083 PQ after pops

15110 Principles of Computing, 31
Carnegie Mellon University

Making Tree Nodes

. Store the character and frequency data into a nested list:
table = [["'", 0.068], ["A", 0.262],
["E", 0.072], ["H", 0.045], ["I", 0.084],
["K", 0.106], ["L", 0.044], ["M", 0.032],
["N", 0.083], ["O", 0.106], ["P", 0.030],
["U", 0.059], ["w", 0.009]]
. Making one of the tree nodes:
char = table[2][0] # "E"
freq = table[2][1] # 0.072
node = Node.new(char, freq)

[“E", 0.072] ‘

15110 Principles of Computing, 32
Carnegie Mellon University

16

Building a PQ of Single Nodes

def make_pq(table): Remember: each item

pPg = PriorityQueue /() in the table is a
for item in table-: 2-element list with
a character and a

char = item[0]
item[1]
Node (char, freq)

frequency.

freq

node
Pg.insert (node)
return pq

15110 Principles of Computing,

Carnegie Mellon University 33

Building our Priority Queue

>>> pq = make pqg(table)

pPq One tree node
- |

[(W: 0.009), (P: 0.030),

(M: 0.032), (L: 0.044),
(H: 0.045), (U: 0.059),
(': 0.068), (E: 0.072),
(N: 0.083), (I: 0.084),
(K: 0.106), (0: 0.106),
(A: 0.262)]

Priority queue

showing the 13 nodes
in sorted order based on
frequency.

15110 Principles of Computing,

Carnegie Mellon University 84

17

Building a Huffman Tree

def build tree(pq) :
while len(pq) > 1:
pPq.pop ()
Pgq.pop ()
pq.inserq(Node(nodel, node2)ﬂ
return pq[0]

nodel

node2

Creates a new node
with node1 as its left child
and node2 as its right child

(Unlike book version we already created the pq)

15110 Principles of Computing,
Carnegie Mellon University

35

Building our Huffman Tree

This is just our Huffman

tree = build tree (pqg) tree expressed using
= (1.000 - recursively nested
(0.428 .— | parenthetical components:
(0.195 (root (left)
(0.089 (L: 0.044) (H: 0.045 (right))
(K: 0.106))
(0.233

(0: 0.106)
(0.127 (U: 0.059) (': 0.068))))
(0.572
(A: 0.262)
(0.310
(0.143
(0.071 (M: 0.032)
(0.039 (W: 0.009) (P: 0.030)))
(E: 0.072))
(0.167 (N: 0.083) (I: 0.084)))))

15110 Principles of Computing,
Carnegie Mellon University

36

18

0 @ 1
S
0 1 0 1
0 @ 1 0 1 @ 0 1
0
BIGIOENOIRS
0.106

0 0 0 1 0

L ‘ N [
0.044 0.068 0.083/ \0.084

0

Examples: & @
H => 0001 0
A=>10 Y, p
P=>110011 0.009 0.030,

15110 Principles of Computing,

Carnegie Mellon University 37

Assigning Codes, Encoding & Decoding

from BitLab

takes a Huffman tree and
returns a hash table that
>>> ht["W"] maps each letter to its

110010 binary code
>>> ht ["A"] P —

= Note the [] syntax.
10 This returns the code
associated with the

>>> msg = encode ("ALOHA", tree) character from the

100000010000110 X\ hash table.
>>> decode (msg, tree)<« from BitLab

"ALOHA" encode and decode functions

>>> ht = assign_ codes (tree)

15110 Principles of Computing,

Carnegie Mellon University 38

19

