ittt
OIS

UNIT 9A

Randomness in Computation:
Random Number Generators

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Randomness in Computing

* Determinism -- in all algorithms and programs we
have seen so far, given an input and a sequence of
steps, we get a unique answer. The result is
predictable.

* However, some computations need steps that have
unpredictable outcomes

— Games, cryptography, modeling and simulation, selecting samples
from large data sets

¢ We use the word “randomness” for unpredictability,
having no pattern

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Defining Randomness

* Philosophical question
* Are there any events that are really random?

* Does randomness represent lack of knowledge of the
exact conditions that would lead to a certain outcome?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Obtaining Random Sequences

» Definition we adopt: A sequence is random if,
for any value in the sequence, the next value
in the sequence is totally independent of the
current value.

* If we need random values in a computation,
how can we obtain them?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Obtaining Random Sequences

* Precomputed random sequences. For example, A Million
Random Digits with 100,00 Normal Deviates (1955): A 400
page reference book by the RAND corporation

— 2500 random digits on each page
— Generated from random electronic pulses

* True Random Number Generators (TRNG)

— Extract randomness from physical phenomena such as atmospheric
noise, times for radioactive decay

* Pseudo-random Number Generators (PRNG)
— Use a formula to generate numbers in a deterministic way but the

numbers appear to be random

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Random numbers in Python

* To generate random numbers in Python, we can use the
randint function from the random module.

* Therandint(a,b) returnsaninteger nsuch that

asn<hb.

>>> from random import randint
>>> randint(0,15110)

12838

>>> randint(0,15110)

5920

>>> randint(0,15110)

12723

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Is randint truly random?

* The function randint uses some algorithm
to determine the next integer to return.

* If we knew what the algorithm was, then the
numbers generated would not be truly
random.

* We call randint a pseudo-random number
generator (PRNG) since it generates numbers
that appear random but are not truly random.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Creating a PRNG

* Consider a pseudo-random number generator
prngl that takes an argument specifying the length
of a random number sequence and returns a list with
that many “random” numbers.
>>> prngl(9)

[0, 7, 2, 9, 4, 11, 6, 1, 8]

* Does this sequence look random to you?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Creating a PRNG

* Let’ srun prngl again:
>>> prngl(15)

(o, 7, 2, 9, 4, 11, 6, 1, 8, 3,
10, 5, 0, 7, 2]

* Now does this sequence look random to you?

* What do you think the 16" number in the
sequence is?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Looking at prngl

def prngl(n):
seq = [0] # seed (starting value)
for i in range(l, n):

o

seqg.append((seq[-1] + 7) % 12)

\

return seq

>>> prngl(1l5)
(e, 7, 2, 9, 4, 11, 6, 1, 8, 3,
10, 5, 0, 7, 2]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Another PRNG

def prng2(n):
seq = [0] # seed (starting value)
for i in range(l, n):
seqg.append((seq[-1] + 8) % 12)
return seq

>>> prng2(15)
(o, 8, 4, 0, 8, 4, 0, 8, 4, 0,

* Does this sequence appear random to you?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

PRNG Period

* Let’ s define the PRNG period as the number of
values in a pseudo-random number generator
sequence before the sequence repeats.

[OI 7’ 2’ 9’ 4’ lll 6’ ll 8I 3’
10, 5, 0, 7, 2]
period =12

next number = (last number + 7) mod 12
(o, 8, 4, o, 8, 4, 0, 8, 4, 0,

8, 4, 0, 8, 4]

period = 3

next number = (last number + 8) mod 12

15110 Principles of Computing, 12
Carnegie Mellon University - CORTINA

Linear Congruential Generator (LCG)

* A more general version of the PRNG used in these examples is
called a linear congruential generator.

* Given the current value x; of PRNG using the linear
congruential generator method, we can compute the next
value in the sequence, x;,,, using the formula
Xi,1 = (a X; + ¢) modulo m where a, c, and m are pre-
determined constants.

—prngl: a=1,c=7,m=12
— prng2: a=1,¢c=8m=12

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Picking the constants a, c, m

* If we choose a large value for m, and appropriate
values for a and c that work with this m, then we can
generate a very long sequence before numbers begin
to repeat.

— Ideally, we could generate a sequence with a
maximum period of m.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Picking the constants a, c, m

* The LCG will have a period of m for all seed values if
and only if:

— cand m are relatively prime (i.e. the only positive integer
that divides both cand mis 1)

— a-1is divisible by all prime factors of m
— if mis a multiple of 4, then a-1 is also a multiple of 4
* Example:prngl(a=1,c=7, m=12)
— Factorsofc:1,7 Factorsofm:1,2,3,4,6,12
— 0 is divisible by all prime factors of 12 - true
— if 12 is a multiple of 4, then O is also a multiple of 4 - true

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 15

Example

Xi,1 = (@ x;+ ¢) modulo m
Xo=4 a=5 c=3 m=38

¢ Compute Xy, X,, ..., for this LCG formula.

* What is the period of this generator?

— If the period is maximum, does it satisfy the three
properties for maximal LCM?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

LCMs in the Real World

* glibc (used by the c compiler gcc):
a=1103515245, c = 12345, m = 2%?

* Numerical Recipes (popular book on numerical
methods and analysis):
a =1664525, c= 1013904223, m = 232

e Random class in Java:
a=25214903917,c=11, m=2%®

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Using PythonlLabs for Random
Numbers

>>> from PythonLabs.RandomLab import *

>>> p = PRNG(1l, 7, 12)

>>> p

<PythonLabs.RandomLab.PRNG a: 1 c: 7 m: 12>
>> p.seed(0)

0 \

>>> p.advance()

A seed is a number used to initialize a
pseudorandom number generator. Its choice

7 is critical in some applications.
>>> p.advance()

2

>> p.state()

2

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Seed

ing a PRNG

>>> from PythonLabs.RandomLab import *

>>> from time import time

>>> p = PRNG(1, 7, 12)
>> p.seed(int(time()))
1382377699

>>> p.advance()

You can use integer part of the current
system time to seed a pseudorandom
number generator

2

>>> p.advance()
9

>> p.state()

9

15110 Principles of Computing,

Carnegie

Mellon University - CORTINA

Python’ s random module

e Python uses the Mersenne Twister as the core

generator. It produces 53-bit precision floats

and has a period of 2**19937-1.

e Almost all module functions depend on the
basic function random (), which generates a
random float uniformly in the semi-open

range [0.0, 1.0).

Source: http://docs.python.org

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

20

10

>>>

Some Python functions from the
random module

random.random () # random float 0.0 <= x < 1.0

0.9607807406878415

>>> random.uniform(1l,10) #
5.4645226971373555

>>> random.randrange (10) #
7

>>> random.randrange (0,101,2) #

42

>>> random.choice ("abcdefghij")

ot

>>> items = [1,2,3,4,5,6]

>>> random.shuffle (items)

[3, 2, 5, 6, 4, 1]

>>> random.sample ([1,2,3,4,5,6],
[4, 1, 5]

random float 1.0 <= x < 10.0

random int 0 <= x < 9

random even int 0 <= x < 101

random char from string

3) # 3 samples without replacement

15110 Principles of Computing, 21
Carnegie Mellon University - CORTINA

11

