UNIT 11A
Visualizing Data: Graphics in Python

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Drawing using PythonlLabs

The PythonLabs.Canvas is based on Python's
interface to Tcl/Tk, a cross-platform graphics
library.
To use this, you should be logged in directly into the
Andrew machines or logged in remotely (using ssh) with
an X client running (we have installed a pre-release
version of PythonLabs on Andrew machines)
Start with:

from PythonLabs.Canvas import Canvas

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

7/28/14

Coordinate System

* When drawing on a canvas, the location of the
origin is at the TOP LEFT, not bottom left.

— X increases left to right
— vy increases top to bottom
e Coordinates are based on

PIXELS, not other units
like inches or millimeters.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Coordinate System

>>> window = Canvas ()
>>> window.init (200,250, "MyDisplay")

X/ MyDisplay
Do not name your window /' !
using spaces! Note the 250
(0,0) .
example above! pixels
200 pixels

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

7/28/14

Drawing Rectangles

Rectangle (x0, yO0, x1, y1,
optional params)

* Draw a rectangle from top left (x,,y,) to
bottom right (x,,y,) in units of pixels.

* Optional parameters:
fill="color" (default: none)
outline="color" (default: "BLACK")
color can also be specified in hex as "#HRRGGBB"

width=numpixels (default: 1)

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Available Color Names

http://www.cs.cmu.edu/~tcortina/15110m14/colorchart.png
AQUAMARINE _ORCHID
I

PALE GREEN

MEDIUM GOLDENROD TAN.
THISTLE
 TURQUOISE

MEDIUM SPRING GREEN
MEDIUM TURQUOISE WHEAT
MEDIUM VIOLET RED. WHITE

GOLDENROD VELLOW

GREEN
GREEN YELLOW

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

7/28/14

>>>
>>>
>>>
>>>
>>>
>>>

window.
window.

window.

window

window.

window.

Drawing Rectangles

Rectangle (10,10, 30,20)
Rectangle (30,20,100,50,£111="BLUE")
Rectangle (100,50,120,100, £1i11="#DAA520")

Rectangle (150,150,180,180,width=3)
Rectangle (20,190,190,230,fil11="#FFFF00",width=0)

(

(

(
.Rectangle(120,100,150,150,0outline="RED")

(

(

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Drawing Rectangles

X/ MyDisplay

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

7/28/14

Circles

Circle (x0, y0, radius, optional params)
* Draw a Circle with center at coordinate
(X, Yo) and the given radius in pixels.

>>> window.Circle (40, 50, 20, fill="#FFOOFF")

Note how the window acts like a painter's canvas.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Circles

X! MyDisplay

15110 Principles of Computing, Carnegie

Mellon University - CORTINA 10

7/28/14

Polygons

Polygon (point list, optional params)

* Draw a Polygon with vertices taken from the list

of points as follows:
[Xor Yor X1s Y1+« Xn1s Yinal-

>>> window.Polygon ([10, 20, 100, 20,
55, 701, fill="GREEN")

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Polygons

X/ MyDisplay

Lg

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

12

7/28/14

Closing the Canvas

* Don't click the X (red) button to delete the
window.

* Instead, when you're done, you can do this:
>>> window.close ()

e The Canvas is automatically deleted when
Python3 exits, so you should run Python3 with
the -i (interactive) switch to prevent Python3
from exiting until you have seen your
graphical output.

15110 Principles of Computing, Carnegie 13
Mellon University - CORTINA ?

Example

In graphicsdemo.py, write a Python function

demo () that creates a window of size 360 by 360 and
draws a grid of 8 by 8 squares, each of size 40 by 40
pixels, and colored a random color of red, green or blue
for each square.

The random number generator is seeded with the number
15110 to generate the same sequence of pseudorandom
numbers each time the function is called.

15110 Principles of Computing, Carnegie 14
Mellon University - CORTINA

7/28/14

Coordinates for the Squares

col 0 1 2 3 4 5 6 7

row 0 40 80 120 160 200 240 280 320 x (in pixels)
0
0
40
1
80 (40*col,40%row)
2
120
3
160 each
4 square
200
5
] 240 (40*(col+1),40*(row+1))
280
7 Be careful! The x coordinate
320 is controlled by col, not row.
The y coordinate is controlled
y by row, not col.
(in pixels) 15110 Principles of Computing, Carnegie

15
Mellon University - CORTINA 7

Programming Example

from PythonLabs.Canvas import Canvas

from random import randint, seed

def demo () :
Canvas.init (360,360, "Demo")
colors = ["red", "green", "blue"]
seed (15110)
for row in range(0,8):
for col in range(0,8):
randcolor = colors[randint (0,2)]
Canvas.Rectangle (40*col, 40*row,
40* (col+1l), 40* (row+l), fill=randcolor)

return None

15110 Principles of Computing, Carnegie

Mellon University - CORTINA 16

7/28/14

Results

python3 -i graphicsdemo.py
>>> demo () X/ Demo
>>>

Note that the size of the window
is about 40 pixels wider than 8*40,
due to an implementation issue in
PythonLabs.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

17

7/28/14

