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UNIT 6C

Organizing Data: Trees and Graphs
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Trees

• A tree is a hierarchical data structure.

– Every tree has a node called the root.

– Each node can have 1 or more nodes as children.

– A node that has no children is called a leaf.

• A common tree in computing is a binary tree.

– A binary tree consists of nodes that have at most 2 
children.

– A complete binary tree has the maximum number of 
nodes on each of its levels.

• Applications: data compression, file storage, game 
trees
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Binary Tree
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The root has the data value 84.

There are 4 leaves in this binary tree: 13, 37, 50, 98.

This binary tree is not complete.
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Binary Trees: Implementation

• One common implementation of binary trees uses 

nodes like a linked list does.

– Instead of having a “next” pointer, each node has a 

“left” pointer and a “right” pointer. 

• We could also use an array.
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Binary Search Tree (BST)

• A binary search tree (BST) is a binary tree 

such that 

– All nodes to the left of any node have data 

values less than that node

– All nodes to the right of any node have data 

values greater than that node
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Inserting into a BST

• For each data value that you wish to insert 

into the binary search tree:

– Start at the root and compare the new data 

value with the root. 

– If it is less, move down left. If it is greater, 

move down right. 

– Repeat on the child of the root until you end 

up in a position that has no node. 

– Insert a new node at this empty position.
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Example

• Insert: 84, 41, 96, 24, 37, 50, 13, 98
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Using a BST

• How would you search for an element in a 

BST?

15110 Principles of Computing, 

Carnegie Mellon University - CORTINA
9

84

41 96

24

37

50

13

98

Max-Heaps

• A max-heap is a binary tree such that 

– The largest data value is in the root

– For every node in the max-heap, its children 

contain smaller data.

– The max-heap is an almost-complete binary tree.

• An almost-complete binary tree is a binary 

tree such that every level of the tree has the 

maximum number of nodes possible except possibly 

the last level, where its nodes are attached as far left 

as possible.
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These are not heaps! Why?
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Adding data to a Max-Heap
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Insert new data into next

available tree position

so the tree remains

(almost) complete.

Exchange data with its

parent(s) (if necessary)

until the tree is restored 

to a heap.

1. insert here

2.

3.
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Building a Max-Heap

• To build a max-heap, just insert each element 

one at a time into the heap using the previous 

algorithm.
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Removing Data from a Max-Heap
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Remove root (maximum value)

and replace it with "last" node

of the lowest level.

Exchange data with its 

larger child (if necessary) 

until the tree is restored 

to a heap.
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BSTs vs. Max-Heaps

• Which tree is designed for easier searching?

• Which tree is designed for retrieving the 

maximum value quickly?

• A heap is guaranteed to be “balanced”

(complete or almost-complete). 

What about a BST? 
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BSTs vs Max-Heaps

• BST with n elements

– Insert and Search:

• worst case O(log n) if tree is “balanced”

• worst case O(n) in general since tree could have one 

node per level

• Max-Heap with n elements

– Insert and Remove-Max

• worst case O(log n) since tree is always “balanced”

– Find-Max

• worst case O(1) since max is always at the root
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Graphs
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Graphs

• A graph is a data structure that consists of a set of 

vertices and a set of edges connecting pairs of the 

vertices.

– A graph doesn’t have a root, per se.

– A vertex can be connected to any number of other vertices 

using edges.

– An edge may be bidirectional or directed (one-way).

– An edge may have a weight on it that indicates a cost for 

traveling over that edge in the graph.

• Applications: computer networks, transportation 

systems, social relationships

15110 Principles of Computing, 

Carnegie Mellon University - CORTINA
19

Undirected and Directed Graphs
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Graphs in Ruby
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An Undirected Weighted Graph
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Original Graph
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A Minimal Spanning Tree
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The minimum total cost to connect all vertices using edges from 

the original graph without using cycles. (minimum total cost = 34)
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Original Graph
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Shortest Paths from Pittsburgh
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The total costs of the shortest path from Pittsburgh to every other 

location using only edges from the original graph.
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Graph Algorithms

• There are algorithms to compute the minimal spanning 

tree of a graph and the shortest paths for a graph.

– We will see these later on in the semester.

• There are algorithms for other graph operations:

– If a graph represents a set of pipes and the number represent 

the maximum flow through each pipe, then we can determine 

the maximum amount of water that can flow through the 

pipes assuming one vertex is a “source” (water coming into 

the system) and one vertex is a “sink” (water leaving the 

system)

– Many more graph algorithms... very useful to solve real life 

problems.
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