
1

UNIT 6C

Organizing Data: Trees and Graphs

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
1

Trees

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

2

Trees

• A tree is a hierarchical data structure.

– Every tree has a node called the root.

– Each node can have 1 or more nodes as children.

– A node that has no children is called a leaf.

• A common tree in computing is a binary tree.

– A binary tree consists of nodes that have at most 2
children.

– A complete binary tree has the maximum number of
nodes on each of its levels.

• Applications: data compression, file storage, game
trees

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
3

Binary Tree

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
4

84

41 96

24

37

50

13

98

The root has the data value 84.

There are 4 leaves in this binary tree: 13, 37, 50, 98.

This binary tree is not complete.

3

Binary Trees: Implementation

• One common implementation of binary trees uses

nodes like a linked list does.

– Instead of having a “next” pointer, each node has a

“left” pointer and a “right” pointer.

• We could also use an array.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

45

31 70

45

19 38 86

31 70 19 38 86Level 1

Level 2

Level 3

Level 1 Level 2 Level 3

Binary Search Tree (BST)

• A binary search tree (BST) is a binary tree

such that

– All nodes to the left of any node have data

values less than that node

– All nodes to the right of any node have data

values greater than that node

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
6

4

Inserting into a BST

• For each data value that you wish to insert

into the binary search tree:

– Start at the root and compare the new data

value with the root.

– If it is less, move down left. If it is greater,

move down right.

– Repeat on the child of the root until you end

up in a position that has no node.

– Insert a new node at this empty position.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

Example

• Insert: 84, 41, 96, 24, 37, 50, 13, 98

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

84

41 96

24

37

50

13

98

5

Using a BST

• How would you search for an element in a

BST?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

84

41 96

24

37

50

13

98

Max-Heaps

• A max-heap is a binary tree such that

– The largest data value is in the root

– For every node in the max-heap, its children

contain smaller data.

– The max-heap is an almost-complete binary tree.

• An almost-complete binary tree is a binary

tree such that every level of the tree has the

maximum number of nodes possible except possibly

the last level, where its nodes are attached as far left

as possible.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

6

These are not heaps! Why?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

84

41 56

24

7

10

13

38

68

53 26

72 30

Adding data to a Max-Heap

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

10

6210

62

84

41 56

713

381324

62

10

41

Insert new data into next

available tree position

so the tree remains

(almost) complete.

Exchange data with its

parent(s) (if necessary)

until the tree is restored

to a heap.

1. insert here

2.

3.

7

Building a Max-Heap

• To build a max-heap, just insert each element

one at a time into the heap using the previous

algorithm.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

Removing Data from a Max-Heap

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
14

10

84

62 56

713

381324

Remove root (maximum value)

and replace it with "last" node

of the lowest level.

Exchange data with its

larger child (if necessary)

until the tree is restored

to a heap.

41

10

10

62

41

10

1. move last node to root

2.

3.

8

BSTs vs. Max-Heaps

• Which tree is designed for easier searching?

• Which tree is designed for retrieving the

maximum value quickly?

• A heap is guaranteed to be “balanced”

(complete or almost-complete).

What about a BST?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
15

BSTs vs Max-Heaps

• BST with n elements

– Insert and Search:

• worst case O(log n) if tree is “balanced”

• worst case O(n) in general since tree could have one

node per level

• Max-Heap with n elements

– Insert and Remove-Max

• worst case O(log n) since tree is always “balanced”

– Find-Max

• worst case O(1) since max is always at the root

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
16

9

Graphs

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
17

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
18

10

Graphs

• A graph is a data structure that consists of a set of

vertices and a set of edges connecting pairs of the

vertices.

– A graph doesn’t have a root, per se.

– A vertex can be connected to any number of other vertices

using edges.

– An edge may be bidirectional or directed (one-way).

– An edge may have a weight on it that indicates a cost for

traveling over that edge in the graph.

• Applications: computer networks, transportation

systems, social relationships

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

Undirected and Directed Graphs

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
20

1

0

3

2
6

4

5
3

7

0 1 2 3

0 0 6 7 5

1 6 0 4 ∞

2 7 4 0 3

3 5 ∞ 3 0

0 1 2 3

0 0 6 7 5

1 ∞ 0 4 ∞

2 2 ∞ 0 3

3 ∞ ∞ 9 0

1

0

3

2
6

4

5
3

7

2

9

from

to

from

to

11

Graphs in Ruby

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
21

1

0

3

2
6

4

5
3

7

0 1 2 3

0 0 6 7 5

1 6 0 4 ∞

2 7 4 0 3

3 5 ∞ 3 0

inf = 1.0/0.0

graph =

[[0, 6, 7, 5],

[6, 0, 4, inf],

[7, 4, 0, 3],

[5, inf, 3, 0]]

from

to

An Undirected Weighted Graph

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
22

0 1 2 3 4 5 6

0 0 10 ∞ 8 7 ∞ ∞

1 10 0 12 7 ∞ ∞ ∞

2 ∞ 12 0 6 ∞ 7 5

3 8 7 6 0 9 4 ∞

4 7 ∞ ∞ 9 0 ∞ 11

5 ∞ ∞ 7 4 ∞ 0 3

6 ∞ ∞ 5 ∞ 11 3 0

0

1

3

2

6

4

5

12

6

4
5

98

10

7 11

3

7

7

0 1 2 3 4 5 6
Pitt. Erie Will. S.C. Harr. Scr. Phil.

vertices edges

from

to

12

Original Graph

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
23

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.

12

6
4

5
9

8
10

7 11

3

7

7

A Minimal Spanning Tree

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
24

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.
4

5
8

7

3

7

The minimum total cost to connect all vertices using edges from

the original graph without using cycles. (minimum total cost = 34)

13

Original Graph

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
25

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.

12

6
4

5
9

8
10

7 11

3

7

7

Shortest Paths from Pittsburgh

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
26

Pitt

Erie

S.C.

Will.

Phil.

Harr.

Scr.
6

4

8
10

7

3

10
14

8

12

15
7

The total costs of the shortest path from Pittsburgh to every other

location using only edges from the original graph.

14

Graph Algorithms

• There are algorithms to compute the minimal spanning

tree of a graph and the shortest paths for a graph.

– We will see these later on in the semester.

• There are algorithms for other graph operations:

– If a graph represents a set of pipes and the number represent

the maximum flow through each pipe, then we can determine

the maximum amount of water that can flow through the

pipes assuming one vertex is a “source” (water coming into

the system) and one vertex is a “sink” (water leaving the

system)

– Many more graph algorithms... very useful to solve real life

problems.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
27

