
1

UNIT 8C
Computer Organization:

The Machine’s Language

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
1

von Neumann Architecture

• Most computers follow the fetch-decode-

execute cycle introduced by John von

Neumann.

– Fetch next instruction from memory.

– Decode instruction and get any data it needs

(possibly from memory).

– Execute instruction with data and store results

(possibly into memory).

– Repeat.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

2

Programming a Machine

• All instructions for a program are stored in computer

memory in binary, just like data.

• A program is needed that translates human readable

instructions (e.g. in Ruby) into binary instructions

(“machine language”).

– An interpreter is a program that translates one instruction

at a time into machine language to be executed by the

computer.

– A compiler is a program that translates an entire program

into machine language which is then executed by the

computer.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
3

MARS
Memory Array Redcode Simulator

• A simulated computer system that we can use

to explore how to run instructions at the

machine level.

– To use this in Ruby, we need to run

include MARSLab

• We can program this virtual machine in

assembly language (a human readable form of

machine language) called Redcode.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
4

3

MARS details

• Memory is simulated by an array of “words”.

• Each word is either an instruction or a data

value.

• Instructions are executed in sequence one at a

time unless we execute an instruction that

causes the virtual machine to “jump” to a

location somewhere else in memory for the

next instruction.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

Simple MARS Program (simple.txt)

x DAT #4

y DAT #7

simple ADD x, y ; add x to y

DAT #0 ; 0 is ‘halt’

end simple

DAT specifies a data value. Data values can also be

instructions (e.g. “halt”)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
6

labels opcodes operands

4

Running the Program in irb (cont’d)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

> include MARSLab

=> Object

> m = make_test_machine(“simple.txt”)

=> #<MiniMARS mem = [DAT #0 #4,...] pc = [*2]>

> m.dump

0000: DAT #0 #4

0001: DAT #0 #7

0002: ADD -2 -1

0003: DAT #0 #0

=> nil
add the data 2 words back to

the data 1 word back

Program starts

at address 2 in

“memory”

x DAT #4

y DAT #7

simple ADD x, y

DAT #0

“memory”addresses

Running the Program in irb (cont’d)

> m.step

=> ADD -2 -1

> m.dump

0000: DAT #0 #4

0001: DAT #0 #11

0002: ADD -2 -1

0003: DAT #0 #0

=> nil

> m.status

Run: continue PC: [*3]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

x DAT #4

y DAT #7

simple ADD x, y

DAT #0

y has been updated

PC = Program Counter

The PC indicates where

the next instruction is

located (e.g. address 3).

5

Running the Program in irb (cont’d)

> m.step

=> DAT #0 #0

> m.dump

0000: DAT #0 #4

0001: DAT #0 #11

0002: ADD -2 -1

0003: DAT #0 #0

=> nil

> m.status

Run: halt

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

x DAT #4

y DAT #7

simple ADD x, y

DAT #0

nothing has changed

The MARS simulator

executed an instruction

with opcode 0 (halt)

and has halted.

Looping Example

Multiply x * y.

Algorithm: Add x to an accumulator y times.

Example: Compute 5 * 9:

x DAT #5

y DAT #9

acc DAT #0

mult ADD x, acc ; add x to acc

SUB #1, y ; subtract 1 from y

JMN mult, y ; jump to label mult

; if y is not zero

end mult

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

6

Running the Program in irb

> include MARSLab

=> Object

> m = make_test_machine(“mult.txt”)

=> #<MiniMARS mem = [DAT #0 #5,...] pc = [*3]>

> m.run

=> 28

> m.dump(0,2)

0000: DAT #0 #5

0001: DAT #0 #0

0002: DAT #0 #45

=> nil
15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

number of instructions executed

dump (display) the

words from “memory”

in this range only

Example: Fahrenheit to Celsius

cels = (fahr – 32) * 5 / 9

fahr DAT #82 ; fahrenheit value

cels DAT #0 ; store result here

ftmp DAT #0 ; save fahr-32 here

acc DAT #0 ; accumulate answer

count DAT #5 ; counter for mult.

(program continues on next page)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

7

Example: Fahrenheit to Celsius

start MOV fahr, ftmp

SUB #32, ftmp

mult ADD ftmp, acc

SUB #1, count

JMN mult, count

div SUB #9, acc

SLT #0, acc

DAT #0 ; halt

ADD #1, cels

JMP div

end start

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

set ftmp = fahr - 32

add ftmp to acc

5 times

(count starts off at 5)

divide acc by 9:

subtract 9 from acc

and add 1 to cels to

see how many times

9 divides into acc
skip next

instruction

if 0 is less

than acc always jump to

label div

