
3/30/2012

1

UNIT 9B
Randomness in Computation:

Games with Random Numbers

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
1

Simulating a Die

• We want to have a random number between 1 and 6.

• Algorithm: Range of
Number:

– Generate a pseudo random number
using a PRNG with a very large m. [0, m-1]

– Take the result from the previous
step and modulo by 6. [0, 5]

– Add 1 to the result from the
previous step. [1, 6]

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
2

3/30/2012

2

Using RubyLabs

>> include RandomLab

=> Object

>> p = PRNG.new(81, 337, 1000)

=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

>> rolls = []

=> []

>> 10.times { rolls << (p.advance % 6 + 1) }

=> 10

>> rolls

=> [5, 2, 1, 4, 3, 6, 1, 4, 5, 6]

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
3

Seeding a PRNG

• If we run the same code again, we will get the same

sequence since we’re seeding with the same integer

each time.

• To generate a new seed each time:

>> p = PRNG.new(81, 337, 1000)

=> #<RandomLab::PRNG a: 81 c: 337 m: 1000>

>> p.seed(Time.now.to_i % 1000)

=> 574

• When would you want to start with the same seed

each time?

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
4

3/30/2012

3

Simulating a Deck of Cards

• A deck of cards is made up of 52 cards, where each

card has a suit and a rank:

– Suits: Spades (♠), Hearts (♥), Diamonds (♦),

Clubs (♣)

– Ranks: 2, 3, 4, 5,

6, 7, 8, 9, 10,

J (Jack), Q (Queen),

K (King), A (Ace)

• A standard deck of cards has 1 of each combination of

suit and rank.

5
15110 Principles of Computing, Carnegie

Mellon University - CORTINA

Cards in RubyLabs

• RubyLabs has an object called a Card that

represents a standard playing card.
>> include RandomLab

=> Object

>> c = Card.new

=> KS

>> c = Card.new

=> 10C

>> c = Card.new

=> 9H

Use of cards requires

us to include RandomLab

also.

6
15110 Principles of Computing, Carnegie

Mellon University - CORTINA

3/30/2012

4

Cards in RubyLabs (cont’d)

• We can determine the rank or suit of a card:

>> c = Card.new

=> 2S

>> c.rank

=> :two

>> c.suit

=> :spades
The values for rank and suit

are special constants that start
with a colon (e.g. :king, :spades).

These are not strings (no quotes).

7
15110 Principles of Computing, Carnegie

Mellon University - CORTINA

Cards in RubyLabs (cont’d)

• We can get a specific card using an index to

the new function:

>> c = Card.new(4)

=> 10S

Cards are indexed as follows:

A♠ K♠ ... 2♠ A♥ K♥... 2♥ A♦ K♦ ... 2♦ A♣ K♣ ... 2♣

0 1 12 13 14 25 26 27 38 39 40 51

8
15110 Principles of Computing, Carnegie

Mellon University - CORTINA

3/30/2012

5

Deck of Cards

• We can create a deck of cards also!

>> d = new_deck

=> [AS, KS, QS, JS, 10S, 9S, 8S, 7S,

6S, 5S, 4S, 3S, 2S, AH, KH, QH, JH,

10H, 9H, 8H, 7H, 6H, 5H, 4H, 3H, 2H,

AD, KD, QD, JD, 10D, 9D, 8D, 7D, 6D,

5D, 4D, 3D, 2D, AC, KC, QC, JC, 10C,

9C, 8C, 7C, 6C, 5C, 4C, 3C, 2C]

– Note that the cards are in the same order as the

indexes given in the previous slide.

9
15110 Principles of Computing, Carnegie

Mellon University - CORTINA

Dealing Random Cards

• Suppose we have a card game like Poker

where we want to be dealt a “hand” of

5 random cards from the deck.

• What is wrong with the following code?

hand = []

5.times { hand << Card.new }

10
15110 Principles of Computing, Carnegie

Mellon University - CORTINA

3/30/2012

6

Shuffling the Deck

• We should shuffle a deck and then create a hand from

the first 5 cards in the deck.

• There are many ways to shuffle a deck of cards.

• One algorithm:

– Exchange (swap) the first card with a random card.

– Exchange the second card with a random card

except the first card.

– Exchange the third card with a random card except

the first two cards.

– ... Repeat until all cards have been swapped.

11
15110 Principles of Computing, Carnegie

Mellon University - CORTINA

Building the Function

• For the first card (at index 0) in deck d, how do we

generate a random index for a card to swap?

r = rand(d.length)

• How do we swap the first card with the randomly-

selected card?

temp = d[0]

d[0] = d[r]

d[r] = temp

or we can use parallel assignment in Ruby...

d[0], d[r] = d[r], d[0]

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
12

3/30/2012

7

Building the Function (cont’d)

• For the second card (at index 1) in deck d, how do we

generate a random index for any card except the first

card?

r = rand(d.length-1) + 1

• How do we swap the first card with the randomly-

selected card?

temp = d[1]

d[1] = d[r]

d[r] = temp

or we can use parallel assignment in Ruby...

d[1], d[r] = d[r], d[1]
15110 Principles of Computing, Carnegie

Mellon University - CORTINA
13

Building the Function (cont’d)

• For the third card (at index 2) in deck d, how do we

generate a random index for any card except the first

two cards?

r = rand(d.length-2) + 2

• How do we swap the first card with the randomly-

selected card?

temp = d[2]

d[2] = d[r]

d[r] = temp

or we can use parallel assignment in Ruby...

d[2], d[r] = d[r], d[2]

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
14

3/30/2012

8

In general...

• For the card at index i in deck d, how do we generate

a random index for a card to swap?

r = rand(d.length-i) + i

• How do we swap the first card with the randomly-

selected card?

temp = d[i]

d[i] = d[r]

d[r] = temp

or we can use parallel assignment in Ruby...

d[i], d[r] = d[r], d[i]

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
15

Shuffling the entire deck and dealing five cards...

def permute!(d)

for i in 0..d.length-2 do

r = rand(d.length-i) + i

d[i], d[r] = d[r], d[i]

end

return d

end

>> hand = permute!(new_deck).first(5)

=> [3H, AD, 3S, 3D, 7D]

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
16

3/30/2012

9

Poker: Detecting a Flush

• In poker, a flush is a hand where all of the cards have

the same suit.

• One possible algorithm:

If all of the cards have a suit of spades, return true.

If all of the cards have a suit of hearts, return true.

If all of the cards have a suit of diamonds, return true.

If all of the cards have a suit of clubs, return true.

If none of the above tests returns true, return false.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
17

Poker: Detecting a Flush (cont’d)

def all_spades?(hand)

for i in 0..hand.length-1 do

return false if hand[i].suit != :spades

end

return true

end

all_hearts?, all_diamonds? and all_clubs?

are written similarly.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
18

3/30/2012

10

Poker: Detecting a Flush (cont’d)

def flush?(hand)

return true if all_spades?(hand)

return true if all_hearts?(hand)

return true if all_diamonds?(hand)

return true if all_clubs?(hand)

return false

end

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
19

Simple dice game

• A player has two die. On each roll, if the player

does not roll “doubles” (same value on each

die), then the player wins the sum of the die

values. Otherwise, the player earns a “strike”.

The game ends once the player has three

strikes.

• Write a function that returns the amount the

player wins in a simulated simple dice game.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
20

3/30/2012

11

Rolling a die

def roll()

return rand(6) + 1

end

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
21

One round of the game

die1 = roll()

die2 = roll()

if die1 == die2 then

strikes = strikes + 1

else

sum = sum + die1 + die2

end

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
22

3/30/2012

12

Putting it together

def simple_game()

strikes = 0

sum = 0

while (strikes < 3) do

die1 = roll()

die2 = roll()

if die1 == die2 then

strikes = strikes + 1

else

sum = sum + die1 + die2

end

end

return sum

end
15110 Principles of Computing, Carnegie

Mellon University - CORTINA
23

What is the average winnings for 1000

players of this game?

>> games = []

=> []

>> 1000.times { games << simple_game() }

=> 1000

>> games

=> [61, 86, 127, 140, ... , 114, 292]

>> total = 0

=> 0

>> games.each { |score| total += score }

=> [61, 86, 127, 140, ... , 114, 292]

>> total/1000.0

=> 106.731

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
24

