
3/31/2012

1

UNIT 10A
Concurrency: Multitasking & Deadlock

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
1

Concurrency

• Concurrency is the process of performing

more than one process at a time.

• Computing has many ways to implement

concurrency:

– parallel processing

– pipelining

– multitasking

– distributed computing

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
2

3/31/2012

2

Recall Moore’s Law

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
3

Source: Wikimedia Commons http://tinyurl.com/3d7qf3m

Clock Speed Is No Longer Increasing

• 1 MHz is 1,000,000 cycles/second

• Each cycle is like "step" operation in MARS

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
4

Source: Bob Warfield http://tinyurl.com/3pt6we9

3/31/2012

3

Moore’s Law

• MARS single pc

(program counter)

indicates next

instruction

• multi-core

executing

simultaneously

at multiple pc’s

• prediction: thousands

of cores

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
5

Source: Wikimedia Commons http://tinyurl.com/3d7qf3m

New Processors are Multi-Cores

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
6

3/31/2012

4

Multitasking & Operating Systems

• Multitasking - The coordination of several

computational processes on one processor

or several cores.

• An operating system (OS) is the system software

responsible for the direct control and management

of hardware and basic system operations.

• An OS provides a foundation upon which to run

application software such as word processing

programs, web browsers, etc.
from Wikipedia

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
7

Operating System “Flavors”

• UNIX

– System V, BSD, Linux

– Proprietary: Solaris, Mac OS X

• Windows

– Windows XP

– Windows Vista

– Windows 7

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
8

3/31/2012

5

Single-core Multitasking

• Each (un-blocked) application runs for a very short time

on the computer's processor and then another process

runs, then another...

• This is done at such a fast rate that it appears to the

computer user that all applications are running at the

same time.

– How do actors appear to move in a motion picture?

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
9

Critical Section

• A critical section is a section of computer

code that must only be executed by one

process or thread at a time.

• Examples:

– A printer queue receiving a file to be printed

– Code to set a seat as reserved

– Web server that generates and returns a web

page showing current registration in course

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
10

3/31/2012

6

A Critical Section

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
11

Cars may not make turns

through this intersection.

They may only proceed

straight ahead. When a car

stops at this intersection, it

can proceed straight

ahead if there is no car to its

left and no car to its right.

Otherwise it must wait

some random amount of

seconds and then check

again to see if it's safe

to proceed. If not, it waits

again, and so on.

Shared Computing Resources

• memory

• tape drives

• disk drives

• printers

• communication ports

• input devices (keyboard, mouse)

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
12

3/31/2012

7

Deadlock

• Deadlock is the condition when two or more

processes are all waiting for some shared

resource that other processes of the group

hold, causing all processes to wait forever

without proceeding.

• How can deadlock occur at the intersection

with the 4-way stop?

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
13

Dining Philosopher’s Problem

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
14

Aristotle Plato

Socrates

Homer

3/31/2012

8

The Dining Philosopher’s

• Each philosopher thinks for a while, then picks up his

left fork, then picks up his right fork, then eats, then

puts down his left fork, then puts down his right fork,

thinks for a while...

– We assume here that each philosopher thinks and eats for

random times, and a philosopher cannot be interrupted

while he picks up or puts down a single fork.

• Each fork models a "resource" on a computer

controlled by an OS.

• Original problem proposed by Edsgar Dijkstra.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
15

Dining Philosopher’s Problem

• There are N philosophers.

• Philosopher i does the following:

1. THINK

2. Pick up fork i.

3. Pick up fork (i+1) modulo N.

4. EAT

5. Put down fork i.

6. Put down fork (i+1) modulo N.

7. Go to step 1.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
16

Fork 0 Fork 1

Fork 2Fork 3

0

1

2

3

NOTE: (i+1) modulo N = i+1 , if 0 < i < N-1

(i+1) modulo N = 0, if i = N-1

N=4

3/31/2012

9

Dining Philosopher’s Problem

• There are N philosophers.

• Philosopher i does the following:

1. THINK

2. Pick up fork i.

3. Pick up fork (i+1) modulo N.

4. EAT

5. Put down fork i.

6. Put down fork (i+1) modulo N.

7. Go to step 1.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
17

Fork 0 Fork 1

Fork 2Fork 3

0

1

2

3

How can deadlock occur here?

N=4

Removing Deadlock

• Philosopher i performs the following:

1. THINK

2. If i is not equal to N-1:
a. Pick up fork i
b . Pick up fork i+1

3. If i equals N-1:

a. Pick up fork 0
b . Pick up fork N-1

4. EAT

5. If i is not equal to N-1:
a. Put down fork i
b . Put down fork i+1

6. If i equals N-1:

a. Put down fork 0
b . Put down fork N-1

7. Goto step 1
15110 Principles of Computing, Carnegie

Mellon University - CORTINA
18

Fork 0 Fork 1

Fork 2Fork 3

0

1

2

3

N=4

3/31/2012

10

Semaphores

• A (binary) semaphore S is a shared variable that

holds an integer that is initialized to 1.

• We can use a semaphore to protect a critical section

so that only one process accesses this section at a

given time:

non-critical program code

Request S

CRITICAL SECTION

Release S

non-critical program code

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
19

Initially, semaphore S is 1. The
first process to request S sets S
to 0, blocking other processes
from proceeding once they get to
their request operations. Once
the first process finishes running
the critical section, it releases S,
causing S to increase to 1,
allowing another process to
proceed into the critical section.

Other Types of Concurrency

• Parallel processing

• Concurrent networks

• Pipelining

• Distributed processing

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
20

