Lesson: Ifs

Grammar rule for method calls:

filename . methodname ();

Evaluation rule for method calls:

looks in file for that method declaration

runs code inside that method

1 of 25



Java Grammar Rules

FILE: public class FILENAME
{

METHOD-DECLARATION

METHOD-DECLARATION

METHOD-DECLARATION
}

METHOD-DECLARATION: public static void METHODNAME ()
{
STATEMENT
STATEMENT

STATEMENT
}

P S

STATEMENT: FILENAME . METHODNAME ();

The key to solving problems in this course:

DON'T THINK IN Javaj

2 of 25



The key to solving a complex problem is to

1. break a complex problem into bite-sized pieces,
2. give names to those pieces, and

3. think in terms of those names.

In computer science,
this is our most important
problem-solving strategy!

For example, when we wrote

public static void turnRight()

{
Robot.turnLeft();
Robot.turnLeft();
Robot.turnLeft();
}

we were giving a name ("turnRight") to a sequence of
instructions, and now we can think in terms of
that name.

3 0of 25



This idea of naming the pieces of a problem

and then thinking in terms of those pieces

is SO important in computer science

that computer scientists have even given a name

to this idea!

It's called ABSTRACTION.

When we name something,
we say we're "defining an abstraction.”

4 of 25



STATEMENTS

We find statements in the body of a method.
So far, all our statements are method calls, such as:

Robot.move();
Lesson.turnRight();

A statement is a command.
It tells the computer to do something.

STATEMENTS

We execute a statement to change the computer's state
(e.g. which way the robot is facing).

We say that the robot's position or direction changes
as a "side effect" of executing the statement.

5 of 25



clearRectangle, revisited ...

Our code can clear But not this rectangle:
this rectangle:

But we'd like to write programs that work in
a variety of situations, instead of hard-wiring
them to handle one particular situation.

What conditions do you wish you could test for?

whether it's on light or dark

clear in front or blocked in front

6 of 25



Testing robot conditions:

Robot.onDark()

Robot.frontIsClear()

Each condition returns true/false

EXPRESSIONS

Some expressions:

Robot.onDark()
Robot.frontIsClear()

(Notice: no semicolons)

An expression is something that can give us a value.

The computer evaluates an expression to find its value.

7 of 25



VALUES

We only know 2 values so far:
true

false

These are called "boolean" values
(as opposed to numbers, words, etc.)

In DrJava's interactions pane,

—

you can execute a statement
Robot.move();
or you can evaluate an expression

Robot.onDark()

How can we use expressions in our program?

8 of 25



Introducing the "if" statement:

if (Robot.frontIsClear())

{
Robot.move();
}
else
{
Robot.turnLeft();
}

In general, the grammatical rule is:

if ( )
boolean expression
{
STATEMENT
STATEMENT
STATEMENT
}
else
{
STATEMENT
STATEMENT
STATEMENT

9 of 25



The evaluation rule for ifs:
1. Find the value of the boolean expression.

2. If the value is true,
execute the first block of statements.
Otherwise, if the value is false,
execute the second block of statements.

Y

Robot.move();

Robot.move(); - T T

if (Robot.frontIsClear()) /// Robot. frontIsClear()\\

{ true false
Robot.move();

}

else obot move () ; Robot. turnLeft(),

{ 't _/
Robot.turnLeft(); N g
} o —
~r

Robot.makeDark();

Robot.makeDark();

10 of 25



Now we have 2 kinds of statements:

FILENAME . METHODNAME ();

if (BOOLEXP)

{
STATEMENTSs

}

else

{
STATEMENTSs

}

//before: clear in front
//after: robot moved one square, which is now light
public static void clearNextSquare()
{

Robot.move();

if (Robot.onDark())

{

Robot.makeLight();

}

else

{

}

We wrote this to fix clearRectangle
to handle squares that were already
light.

11 of 25



//before: clear in front
//after: robot moved one square, which is now light
public static void clearNextSquare()

{
Robot.move();
if (Robot.onDark())
{
Robot.makeLight();
}
}

We can omit the "else" part if there's
nothing to do when the condition is
false.

When you decide to write an "if" in your code,
always write out:

This way, you won't forget to decide what your program
should do if the condition is false.

If you decide there's nothing for the else to do,
then go ahead and remove it.

12 of 25



From now on, when I ask you to write a program to
solve a problem, your program will need to handle
a variety of possible cases.

I will often show you a specific example,
but your code should handle any such situation.

//turn around if there's a wall in front
public static void turnAroundIfWall()
{

if (Robot.frontIsClear())

{

}

else

{

Lesson.turnAround(); kind of ugly
}

if ( ! Robot.frontIsClear())
{

Lesson.turnAround();

}

13 of 25



//before turn around if there's a wall in front
public static void turnAroundIfWall()

{
if ( ! Robot.frontIsClear())

{

Lesson.turnAround();

}

else

{
}

Note the exclamation point.
This is the NOT operator.

Read as "if not robot front is clear"

//before turn around if there's a wall in front
public static void turnAroundIfWall()

{
if ( ! Robot.frontIsClear())
{
Lesson.turnAround();
}
}

Since the else did nothing, we can remove it.

14 of 25



The NOT operator: !

If the value of
Robot.onDark()

is true,

then the value of
!Robot.onDark()

is false .

If the value of
Robot.onDark()

is false,

then the value of
!Robot.onDark()

is true .

Now we have 3 kinds of boolean expressions:

BOOLEXP

H Robot.onDark()
s Robot.frontIsClear()
H ! BOOLEXP

15 of 25



Simplifying ifs...

if (Robot.onDark()) if ( ! Robot.onDark())

{
o {
} Robot.move(): Robot.makeDark();
else }
{
Robot. ;
Robot.makeDark(); obot.move()
Robot.move();
}

Do these two code segments behave the same? No!

if (Robot.frontIsClear()) if (Robot.frontIsClear())
{ {
Robot.move(); Robot.move();
} }
else
if ( ! Robot.frontIsClear()) {
{ Robot.turnLeft();
Robot.turnLeft(); }
}

If robot is one space away

from a wall, the code on the

right will just advance one
;1\\ space, but the code on the left

will advance one space and then

turn left.

16 of 25



Very important:

Think about whether you're testing for

2 alternatives (if/else) or

2 independent conditions (if/if)

You're less likely to make this mistake
if you always start by writing an "else".

true and false are also expressions!

We can evaluate them in DrJava's interactions pane.

What do you think the value of true is?

true

17 of 25



What does this code do?

if (true)
{
Robot.move(); moves
}
What does this code do?
if (false)
{ does nothing

Robot.move();

}

The carpetRooms problem:

12345678
X.X...X.X...X.X.X

EQ.......Q...Q...

8 possible "rooms". Want to "carpet" (darken) each

room with 2 walls: X.X

1 23456 78
X:X...X:X...X:X:X

.....Q...Q...Q..E

(Rooms 1, 4, 7, and 8
have been carpeted.)

18 of 25



public static void carpetRooms()
{

carpetRoom( ) ;

carpetRoom();

carpetRoom( ) ;

carpetRoom();

carpetRoom( ) ;

carpetRoom();

carpetRoom( ) ;

carpetRoom();

What do you notice about this method?

no file names

A Shortcut:

. ():

file name method name

\

Can omit if method is in this file.

Must still think about which file the method is in,
before deciding to leave off the file name.

19 of 25



//before: below left edge of possible room, facing east.
//after: below right edge of possible room, facing east.

//

if room, center square has been darkened.

public static void carpetRoom()

{

Robot.move(); Robot.turnLeft();

Robot.move(); Robot.turnLeft();

if (Robot.frontIsClear())

{ Robot.turnLeft(); }

else

{
turnAround();
if (!Robot.frontIsClear()) { Robot.makeDark(); }
turnRight();

}

Robot.move(); Robot.turnLeft(); Robot.move();

We were thinking in Javal!
How would we have thought about it in English?

l. enter room
2. 1if surrounded by walls, make dark
3. exit room

20 of 25



public static void enterRoom()
{
Robot.move();
Robot.turnLeft();
Robot.move();

public static void exitRoom()

{
backUp();
turnRight();

public static void carpetRoom()

{

enterRoom( ) ;

if ( surrounded by walls )

{
}

How do we do this?

exitRoom();

21 of 25



Boolean Methods (methods that return true/false)

Only 2 boolean methods are provided in Robot.java:
onDark
frontIsClear

But we can make our own!

Let's define frontIsBlocked in DrJava ...

public static boolean frontIsBlocked()

{
if (Robot.frontIsClear())
{
return false;
}
else
{
return true;
}
}

22 of 25



The return statement:

Grammatical Rule:

return -
boolean expression

Evaluation Rule:

1. Find value of boolean expression.
2. Return that value IMMEDIATELY.

"void" means "doesn't return a value"

You call a void method only for its side effects.

You call a boolean method for its return value.

A good boolean method should not have side effects.

23 of 25



Java Grammar Rules

FILE:

public class FILENAME { METHODs }

METHOD: public static TYPE METHODNAME () { STMTs }

TYPE:

STMT:

void
boolean

call to void method
FILENAME . METHODNAME ();

if ( BOOLEXP ) { STMTs } else { STMTs }

return BOOLEXP ; only in boolean methods

Even prettier:

public static boolean frontIsBlocked()

{
}

return !Robot.frontIsClear();

24 of 25



Naming methods:

Pick command/action verbs for void methods.

"move" "turnLeft"

Pick conditions for boolean methods,
that sound like they could be true or false.

"onDark" "frontIsClear"

public static boolean leftIsBlocked()

{
Robot.turnLeft();
if (Robot.frontIsClear())
{
turnRight();
return false;
}
else
{ should turn back to
turnRight(); original direction before
return true; returning, to avoid
} surprising side effects
}

25 of 25



