LESSON: Variables

public static boolean frontIsDark()

{
Robot.move();
if (Robot.onDark())
{
backUp(); .
return true; Duplicate code!
}
else
{
backUp();
return false;
}
}

What should happen when we copy/paste?

Alarms should go off in our head,
signaling that there must be a better way!

1 of 15

public static boolean frontIsDark()

{ Robot.move();
<Somehow test Robot.onDark()
and remember the answer>
backUp();
return <that answer from before>;
}

How do we tell Java to remember a value?

Introducing variables ...

WHAT IS A VARIABLE?

A variable is a name for a place in memory,
where we can store a value.

WHEN SHOULD I USE A VARIABLE?

Use a variable whenever you want Java
to remember a value.

20of 15

Example:

boolean x;
X = true;
System.out.println(x); +true

boolean y;

y = X3
System.out.println(x); true
System.out.println(y); +true

X = Ix;
System.out.println(x); false
System.out.println(y); +rue

DECLARATION STATEMENTS

For Example: boolean x ;

What It Does
Declares that x will someday store a boolean value.

You cannot store a value in a variable until that
variable has been declared.

This helps the compiler catch typos in your code.

In General:

-~

type variable

30f 15

ASSIGNMENT STATEMENTS
For Example: Xx = ly;
Pronounced: x "gets the value of" not y.

In general: =
variable expression

~e

What It Does
Finds the value of the expression on the right.
Assigns that value to the variable on the left.
This is not = from math class!
We are not testing if the left and right are equal.

We are not setting one side equal to the other.
= is not symmetrical.

PRINT STATEMENTS

For Example: System.out.println(x && !y);

In general: System.out.println();
expression

What It Does
Prints the value of the expression to the console.
This is a statement.
It does not return a value.

A value is printed as a side effect of executing
a print statement.

4of 15

7 Kinds Of Statements

FILENAME . METHODNAME ();
if (BOOLEXP) { STMTS } else { STMTS }
return EXP ;

while (BOOLEXP) { STMTS }

TYPE VARIABLE ;

VARIABLE = EXP ;

System.out.println(EXP)

So far,

everything Java remembers
has been visible to us:
where the robot is,

which way its facing,
which squares are dark.

But when you execute an

assignment statement,

Java remembers something

that isn't visible to us. o

Therefore, when we trace
our code, we'll need to
write down the values of

variables. 7

Java

50f 15

THE LIFE OF A VARIABLE

boolean x;

X = true;
System.out.println(x);

X = Ix;

We DECLARE x.

Java

O

L
-

THE LIFE OF A VARIABLE

boolean x;

System.out.println(x);

X = Ix;

We INITIALIZE x.

Java

0l

L
-

6 of 15

THE LIFE OF A VARIABLE

boolean x;
X = true;

System.out.println(i];

-

We can now use x as an EXPRESSION.

Java

L
-

THE LIFE OF A VARIABLE

boolean x;
X = true;

System.out.println(x);

(x = !x;)

}

And even change x.

Java

0l

L
-

7 of 15

THE LIFE OF A VARIABLE

boolean x;
X = true;
System.out.println(x);

X = Ix;

[

x DIES at the closing brace.

o

Java

L

public static boolean frontIsDark()
{
Robot.move();
boolean dark;
dark = Robot.onDark();
backUp();
return dark;

8of 15

//after: robot has moved to the wall and has returned

// to its original location/direction
public static void goToWallAndBack()

{

}

What does Java need to remember
as the robot performs this task?

int x;

<uninitialized>

This is how you declare ©
a variable when you want

Java to remember an

integer.

9of 15

X = 3;
int y;
y = X;

x=x+1;m\

What will this do? o
int x;
X = 3;
int y;
y = X;
X =x + 1;
o

x "gets the value of" x + 1
First, find the value of x + 1

Then, assign that value to x

10 of 15

//after: robot has moved to the wall and has returned

// to its original location/direction
public static void goToWallAndBack()
{

int distFromStart;
distFromStart = 0;
while (Robot.frontIsClear())

{

Robot.move();

distFromStart = distFromStart + 1;
}
while (distFromStart > 0)
{

backUp();

distFromStart = distFromStart - 1;
}

//returns: distance to nearest wall
//after: robot has moved to the wall and has returned

// to its original location/direction
public static int distanceToWall()

{

}

This method returns an integer.

What will this method need to remember?

2 integers. how many steps we are
from the start, and the answer to
return

11 of 15

public static int distanceToWall()

{
int distFromStart;
distFromStart = 0;
while (Robot.frontIsClear())
{
Robot.move();
distFromStart = distFromStart + 1;
}
int distToWall; . .
distToWall = distFromStart;f?—— save this §1stance
while (distFromStart > 0) to return it later
{
backUp();
distFromStart = distFromStart - 1;
}
return distToWall;
}

Operations on Integers

BOOLEXP: cee
EXP == EXP equals
EXP != EXP not equals
INTEXP < INTEXP
INTEXP > INTEXP
INTEXP <= INTEXP
INTEXP >= INTEXP

INTEXP: e
INTEXP
INTEXP
INTEXP
INTEXP
INTEXP
- INTEXP

-+

INTEXP

INTEXP

INTEXP multiply

INTEXP divide

INTEXP remainder ("mod")

@~ % |

12 of 15

What's wrong with this code?

distanceToWall();

I've asked the computer to

find the distance to the wall,
but I'm not doing anything with the result.

I call void methods for their side effects.
Calls to void methods are used as statements.

Robot.move();

turnRight();

13 0of 15

I call non-void methods for their return value.
Calls to non-void methods are used as expressions.

dark = Robot.onDark();
if (Robot.frontIsClear()) ...
distance = distanceToWall();

if (distanceToWall() < 5) ...

//asks user for 2 numbers and prints out whichever
//number is higher
public static void max()

{
System.out.println("Enter first number");
int x;
x = Integer.parselInt(Util.input());
System.out.println("Enter second number");
int y;
y = Integer.parseInt(Util.input());
if (x > y)
{
System.out.println(x);
}
else
{
System.out.println(y);
}
}

14 of 15

See Animation.java for our animation code ...

15of 15

