
Efficient Exact k-NN and Nonparametric
Classification in High Dimensions

Ting Liu
Computer Science Dept.
Carnegie Mellon Univ.
Pittsburgh, PA 15213
tingliu@cs.cmu.edu

Andrew W. Moore
Computer Science Dept.
Carnegie Mellon Univ.
Pittsburgh, PA 15213
awm@cs.cmu.edu

Alexander Gray
Computer Science Dept.
Carnegie Mellon Univ.
Pittsburgh, PA 15213
agray@cs.cmu.edu

Abstract

This paper is about non-approximate acceleration of high dimensional
nonparametric operations such as k nearest neighbor classifiers and the
prediction phase of Support Vector Machine classifiers. We attempt to
exploit the fact that even if we want exact answers to nonparametric
queries, we usually do not need to explicitly find the datapoints close
to the query, but merely need to ask questions about the properties about
that set of datapoints. This offers a small amount of computational lee-
way, and we investigate how much that leeway can be exploited. For
clarity, this paper concentrates on pure k-NN classification and the pre-
diction phase of SVMs. We introduce new ball tree algorithms that on
real-world datasets give accelerations of 2-fold up to 100-fold compared
against highly optimized traditional ball-tree-based k-NN. These results
include datasets with up to 106 dimensions and 105 records, and show
non-trivial speedups while giving exact answers.

1 Introduction
Nonparametric models have become increasingly popular in the statistics communities and
probabilistic AI communities. They remain hampered by their computational complexity.
Spatial methods such as kd-trees [6, 17], R-trees [9], metric trees [18, 4] and ball trees [15]
have been proposed and tested as a way of alleviating the computational cost of such statis-
tics without resorting to approximate answers. They have been used in many different
ways, and with a variety of tree search algorithms and with a variety of “cached sufficient
statistics” decorating the internal leaves, for example in [14, 5, 16, 8].

The main concern with such accelerations is the extent to which they can survive high
dimensional data. Indeed, there are some datasets in this paper for which a highly optimized
conventional k nearest neighbor search based on ball trees is on average more expensive
than the naive linear search algorithm,but extracting the k nearest neighbors is often not
needed, even for a k nearest neighbor classifier. This paper is about the consequences of
the fact that none of these three questions have the same precise meaning: (a) “What
are the k nearest neighbors of t?” (b) “How many of the k nearest neighbors of t are
from the positive class?” and (c) “Are at least q of the k nearest neighbors from the
positive class?” The computational geometry community has focused on question (a),
but uses of proximity queries in statistics far more frequently require (b) and (c) types of
computations. Further, in addition to traditional K-NN, the same insight applies to many
other statistical computations such as nonparametric density estimation, locally weighted
regression, mixture models, k-means and the prediction phase of SVM classification.

2 Ball trees
A ball tree is a binary tree in which each node represents a set of points, called
Points(Node). Given a dataset, the root node of a ball tree represents the full set of points
in the dataset. A node can be either a leaf node or a non-leaf node. A leaf node explicitly
contains a list of the points represented by the node. A non-leaf node does not explicitly
contain a set of points. It has two child nodes: Node.child1 and Node.child2, where

Points(Node.child1)∩Points(Node.child2) = φ
Points(Node.child1)∪Points(Node.child2) = Points(Node)

Points are organized spatially. Each node has a distinguished point called a pivot. Depend-
ing on the implementation, the pivot may be one of the datapoints, or it may be the centroid
of Points(Node). Each node records the maximum distance of the points it owns to its pivot.
Call this the radius of the node

Node.Radius = maxx∈Points(Node) | Node.Pivot−x |
Balls lower down the tree cover smaller volumes. This is achieved by insisting, at tree
construction time, that

x ∈ Points(Node.child1) ⇒ | x−Node.child1.Pivot | ≤ | x−Node.child2.Pivot |
x ∈ Points(Node.child2) ⇒ | x−Node.child2.Pivot | ≤ | x−Node.child1.Pivot |

Provided our distance function obeys the triangle inequality, this gives the ability to bound
the distance from a target point t to any point in any ball tree node. If x ∈ Points(Node)
then we can be sure that:

|x− t| ≥ |t−Node.Pivot|−Node.Radius (1)

|x− t| ≤ |t−Node.Pivot|+ Node.Radius (2)
Ball trees are constructed top-down. There are several ways to construct them, and practical
algorithms trade off the cost of construction (it would be useless to be O(R2) given a dataset
with R points, for example) against the tightness of the radius of the balls. [13] describes
one fast way of constructing a ball tree appropriate for computational statistics. If a ball
tree is balanced, then the construction time is O(CR logR), where C is the cost of a point-
point distance computation (which is O(m) if there are m dense attributes, and O(f m) if
the records are sparse with only fraction f of attributes taking non-zero values).

2.1 KNS1: Conventional K nearest neighbor search with ball trees
In this paper, we call conventional ball-tree-based search [18] KNS1. Let a pointset PS be
a set of datapoints. We begin with the following definition:
Say that PS consists of the k-NN of t in pointset V if and only if

((|V |≥ k) ∧ (PS are the k-NN of t in V)) ∨ ((|V |< k) ∧ (PS = V)) (3)
We now define a recursive procedure called BallKNN with the following inputs and output.

PSout = BallKNN(PSin,Node)

Let V = set of points searched so far, on entry. Assume PSin consists of the k-NN of
t in V. This function efficiently ensures that on exit, PSout consists of the k-NN of t in
V ∪Points(Node).

Let Dsofar =

{
∞ i f | PSin |< k
maxx∈PSin | x− t | i f | PSin |= k

(4)

Dsofar is the minimum distance within which points would become interesting to us.

Let DNode
minp =

{
max(|t−Node.Pivot|−Node.Radius,DNode.parent

minp) i f Node 6= Root
max(|t−Node.Pivot|−Node.Radius,0) i f Node = Root

(5)
DNode

minp is the minimum possible distance from any point in Node to t.

Procedure BallKNN (PSin,Node)
begin

if (DNode
minp ≥ Dsofar) then exit returning PSin unchanged.

else if (Node is a leaf) PSout = PSin

∀x ∈ Points(Node)
if (| x− t |< Dsofar) then

add x to PSout

if (| PSout |= k + 1) then
remove furthest neighbor from PSout ; update Dsofar

else if (Node is a non-leaf)
node1 = child of Node closest to t
node2 = child of Node furthest from t
PStemp = BallKNN(PSin,node1)
PSout = BallKNN(PStemp,node2)

end

A call of BallKNN({},Root) returns the k nearest neighbors of t in the Ball tree.

2.2 KNS2: Faster k-NN classification for skewed-class data
In several binary classification domains,one class is much more frequent than the other, For
example, in High Throughput Screening datasets, [19] it is far more common for the result
of an experiment to be negative than positive. In fraud detection or intrusion detection,
a non-attack is far more common than an attack. The new algorithm introduced in this
section, KNS2, is designed to accelerate k-NN based classification beyond the speedups
already available by using KNS1 (conventional ball-tree-based k-NN). KNS2 attacks the
problem by building two ball trees: Rootpos is the root of a (small) ball tree built from all
the positive points in the dataset. Rootneg is the root of a (large) ball tree built from all
negative points.
Then, when it is time to classify a new target point t, we compute q, the number of k nearest
neighbors of t that are in the positive class, in the following fashion

• Step 1 — “ Find positive”: Find the k nearest positive class neighbors of t (and
their distances to t) using conventional ball tree search.

• Step 2 — “Insert negative”: Do sufficient search of the negative tree to prove
that the number of positive datapoints among k nearest neighbors is q for some
value of q.

Step 2 is achieved using a new recursive search called NegCount. In order to describe
NegCount we need the following three definitions.

• The Dists Array. Dists is an array of elements Dists1 . . .Distsk consisting of the
distances to the k nearest positive neighbors of t, sorted in increasing order of
distance. We will also write Dists0 = 0 and Distsk+1 = ∞.

• Pointsets. Define pointset V as the set of points in the negative balls visited so far.

• The Counts Array (n,C). Say that (n,C) summarize interesting negative points
for pointset V if and only if

1. ∀i ∈ [0,n],
Ci =|V ∩{x : Distsi ≤| x− t |< Distsi+1} | (6)

2. ∑n
i=0 Ci ≥ k, ∑n−1

i=0 Ci < k. This simply declares that the length n of the C
array is as short as possible while accounting for the k members of V that are
nearest to t.

Step 2 of KNS2 is implemented by the recursive function

(nout ,Cout) = NegCount(nin,Cin,Node,Dists)

Assume that on entry that (nin,Cin) summarize interesting negative points for pointset V ,
where V is the set of points visited so far during the search. This algorithm efficiently
ensures that on exit (nout ,Cout) summarize interesting negative points for V ∪Points(Node).

Procedure NegCount (nin,Cin,Node,Dists)
begin

nout := nin; Cout := Cin

Let T = ∑nin−1
i=0 Cin

i
T is the total number of negative points closer than the ninth positive point

if (DNode
minp ≥ Distnin) then exit and return(nout ,Cout)

else if (Node is a leaf)
∀x ∈ Points(Node)
Use binary search to find j ∈ [0,nout], such that Distsj ≤| x− t |< Distsj+1
Cout

j := Cout
j + 1; T := T + 1

If T exceeds k, decrement nout until T = ∑nout−1
i=0 Cout

i < k.
Distsnout +1 := ∞
if (nout = 0)exit and return(0, Cout)

else if(Node is a non leaf)
node1 := child of Node closest to t
node2 := child of Node furthest from t
(ntemp,Ctemp) := NegCount(nin,Cin,node1,Dists)
if (ntemp = 0) exit and return (0, Cout)
(nout ,Cout) := NegCount(ntemp,Ctemp,node2,Dists)

end

We can stop the procedure when nout becomes 0 (which means all the k nearest neighbors
of t are in the negative class) or when we run out of nodes. The top-level call is

NegCount(k,C0,NegTree.Root,Dists)

where C0 is an array of zeroes and Dists are defined in Equation 6 and obtained by applying
KNS1 to the (small) positive ball tree.

2.3 KNS3: Are at least q of the k nearest neighbors positive?
Unfortunately, space constraints prevent us from describing the details of KNS3. KNS3
removes KNS2’s constraint of an assumed skewedness in the class distribution, while in-
troducing a new constraint: we answer the binary question “are at least q nearest neighbors
positive?” (where the questioner must supply q). This is often the most statistically rele-
vant question, for example during classification with known false positive and false negative
costs. KNS3 will be described fully in a journal-article length version of the paper 1.

2.4 SVP1: Faster Radial Basis SVM Prediction
After an SVM [3] has been trained we hit the prediction phase. Given a batch of query
points q1,q2 . . .qR we wish to classify each q j. Furthermore, in state-of-the-art training
algorithms such as SMO, training time is dominated by SVM evaluation [12]. q j should be
classified according to this rule:

ASUM(q j) = ∑
i∈posvecs

αiK(|q j−xi|) , BSUM(q j) = ∑
i∈negvecs

βiK(|q j−xi|) (7)

1available from www.autonlab.org

Class(q j) = 1 if ASUM(q j)−BSUM(q j)≥−b

= 0 if ASUM(q j)−BSUM(q j)<−b

Where the positive support vectors posvecs, the negative support vectors negvecs and the
weights {αi}, {βi} and constant term b are all obtained from SVM training.

We place the queries (not the support vectors) into a ball-tree. We can then apply the same
kinds of tricks as KNS2 and KNS3 in which we do not need to find the explicit values of
the ASUM and BSUM terms, but merely find balls in the tree in which we can prove all
query points satisfy one of the above inequalities.

To classify all the points in a node called Node we do the following:

1. Compute values (ASUMLO,ASUMHI) such that we can be sure

∀q j ∈ Node : ASUMLO ≤ ASUM(q j)≤ ASUMHI (8)

without iterating over the queries in Node. This is achieved simply, for example if
q j ∈ Node we know

ASUM(q j) = ∑
i∈posvecs

αiK(|q j−xi|)

≥ ∑
i∈posvecs

αiK(|Node.pivot−xi|+ Node.Radius)

= ASUMLO

Similarly,

ASUM(q j) = ∑
i∈posvecs

αiK(|q j−xi|)

≤ ∑
i∈posvecs

αiK(max(|Node.pivot−xi|−Node.Radius,0))

= ASUMHI

under the assumption that the kernel function is a decreasing function of distance.
This is true, for example, for Gaussian Radial Basis function kernels.

2. Similarly compute values (BSUMLO,BSUMHI).

3. If ASUMLO−BSUMHI ≥ −b we have proved that all queries in Node should be
classified positively, and we can terminate this recursive call.

4. If ASUMHI−BSUMLO < −b we have proved that all queries in Node should be
classified negatively, and we can terminate this recursive call.

5. Else we recurse and apply the same procedure to the two children of Node, unless
Node is a leaf node in which case we must explicitly iterate over its members.

3 Experimental Results
Table 1 is a summary of the datasets in the empirical analysis.
Life Sciences: These were proprietary datasets (ds1 and ds2) similar to the publicly avail-
able Open Compound Database provided by the National Cancer Institute (NCI Open Com-
pound Database, 2000). The two datasets are sparse. We also present results on datasets
derived from ds1, denoted ds1.10pca, ds1.100pca and ds2.100anchor by linear projection
using principal component analysis (PCA).
Link Detection: The first, Citeseer, is derived from the Citeseer web site (Citeseer,2002)
and lists the names of collaborators on published materials. The goal is to predict whether
J Lee (the most common name) was a collaborator for each work based on who else is

listed for that work. We use J Lee.100pca to represent the linear projection of the data to
100 dimensions using PCA. The second link detection dataset is derived from the Internet
Movie Database (IMDB,2002) and is denoted imdb using a similar approach, but to predict
the participation of Mel Blanc (again the most common participant).
UCI/KDD data: We use three large datasets from KDD/UCI repository [2]. The datasets
can be identified from their names. They were converted to binary classification problems.
Each categorical input attribute was converted into n binary attributes by a 1-of-n encod-
ing (where n is the attribute’s arity).The post-processed versions of these datasets are at
http://www.cs.cmu.edu/∼awm/kns

1. Letter originally had 26 classes: A-Z. We performed binary classification using
the letter A as the positive class and “Not A” as negative.

2. Movie is a dataset from[11]. The TREC-2001 Video Track organized by NIST
shot boundary Task. It is a 4 hours of video or 13 MPEG-1 video files at slightly
over 2GB of data.

3. Ipums (from ipums.la.97). We predict farm status, which is binary.

4. Kdd99(10%) has a binary prediction: Normal vs. Attack.

Table 1: Datasets

Dataset Num. Num. Di- Num. Dataset Num. Num. Di- Num.
records mensions pos. records mensions pos.

ds1 26733 6348 804 ds1.10pca 26733 10 804
ds1.100pca 26733 100 804 ds2.100anchor 88358 100 211
ds2 88358 1100000 211 J Lee.100pca 181395 100 299
Letter 20000 16 790 Blanc Mel 186414 10 824
Movie 38943 62 7620 Kdd99(10%) 494021 176 97278
Ipums 70187 60 119

For each dataset, we tested k = 9 and k = 101. For KNS3, we used q = dk/2e when
k = 9 and q = dpk/(n+p)e when k = 101, where p = Num.positive in the dataset and n =
Num.negative in the dataset. : a datapoint is classified as positive iff the majority of its k
nearest neighbors are positive. Each experiment performed 10-fold cross-validation. Thus,
each experiment required R k-NN classification queries (where R is the number of records
in the dataset) and each query involved the k-NN among 0.9R records. A naive implemen-
tation with no ball-trees would thus require 0.9R2 distance computations.These algorithms
are all exact. No approximations were used in the classifications.

Table 2 shows the computational cost of naive k-NN, both in terms of the number of dis-
tance computations and the wall-clock time on an unloaded 2 GHz Pentium. We then
examine the speedups of KNS1 (traditional use of Ball-trees) and our two new Ball-tree
methods (KNS2 and KNS3). It is notable that for some high dimensional datasets, KNS1
does not produce an acceleration over naive. KNS2 and KNS3 do, however, and in some
cases they are hundreds of times faster than KNS1. The ds2 result is particularly interesting
because it involves data in over a million dimensions. The first thing to notice is that con-
ventional ball-trees (KNS1) were slightly worse than the naive O(R2) algorithm. In only
one case was KNS2 inferior to naive and KNS3 was always superior. On some datasets
KNS2 and KNS3 gave dramatic speedups.

Table 3 gives results for SVP1, the Ball-tree-based accelerator for SVM prediction2 In
general SVP1 appears to be 2-4 times faster than SV Mlight [12], with two far more dramatic
speedups in the case of two classification tasks where SVP1 quickly realizes that a large
node near the top of its query tree can be pruned as negative. As with previous results,
SVP1 is exact, and all predictions agree with SVM-Light. All these experiments used
Radial Basis kernels, with kernel width tuned for optimal test-set performance.

2Because training SVMs is so expensive, some of the results below used reduced training sets.

Table 2: Number of distance computations and wall-clock-time for Naive k-NN classifi-
cation (2nd column). Acceleration for normal use of ball-trees in col, 2 (in terms of num.
distances and time). Accelerations of new methods KNS2 and KNS3 in other columns.
Naive times are independent of k.

NAIVE KNS1 KNS2 KNS3
dists time dists time dists time dists time

(secs) speedup speedup speedup speedup speedup speedup
ds1 k=9 6.4×108 4830 1.6 1.0 4.7 3.1 12.8 5.8

k=101 1.0 0.7 1.6 1.1 10 4.2
ds1.10pca k=9 6.4×108 420 11.8 11.0 33.6 21.4 71 20

k=101 4.6 3.4 6.5 4.0 40 6.1
ds1.100pca k=9 6.4×108 2190 1.7 1.8 7.6 7.4 23.7 29.6

k=101 0.97 1.0 1.6 1.6 16.4 6.8
ds2 k=9 8.5×109 105500 0.64 0.24 14.0 2.8 25.6 3.0

k=101 0.61 0.24 2.4 0.83 28.7 3.3
ds2.100- k=9 7.0×109 24210 15.8 14.3 185.3 144 580 311

k=101 10.9 14.3 23.0 19.4 612 248
J Lee.100- k=9 3.6×1010 142000 2.6 2.4 28.4 27.2 15.6 12.6

k=101 2.2 1.9 12.6 11.6 37.4 27.2
Blanc Melk=9 3.8×1010 44300 3.0 3.0 47.5 60.8 51.9 60.7

k=101 2.9 3.1 7.1 33 203 134.0
Letter k=9 3.6×108 290 8.5 7.1 42.9 26.4 94.2 25.5

k=101 3.5 2.6 9.0 5.7 45.9 9.4
Movie k=9 1.4×109 3100 16.1 13.8 29.8 24.8 50.5 22.4

k=101 9.1 7.7 10.5 8.1 33.3 11.6
Ipums k=9 4.4×109 9520 195 136 665 501 1003 515

k=101 69.1 50.4 144.6 121 5264 544
Kddcup99 k=9 2.7×1011 1670000 4.2 4.2 574 702 4 4.1
(10%) k=101 4.2 4.2 187.7 226.2 3.9 3.9

Table 3: Comparison between SVM light and SVP1. We show the total number of distance
computations made during the prediction phase for each method, and total wall-clock time.

SVM light SVP1 SVM light SVP1 speedup
distances distances seconds seconds

ds1 6.4×107 1.8×107 394 171 2.3
ds1.10pca 6.4×107 1.8×107 60 23 2.6
ds1.100pca 6.4×107 2.3×107 259 92 2.8
ds2.100pca 7.0×108 1.4×108 2775 762 3.6
J Lee.100pca 6.4×106 2×106 31 7 4.4
Blanc Mel 1.2×108 3.6×107 61 26 2.3
Letter 2.6×107 1×107 21 11 1.9
Ipums 1.9×108 7.7×104 494 1 494
Movie 1.4×108 4.4×107 371 136 2.7
Kddcup99(10%) 6.3×106 2.8×105 69 1 69

4 Comments and related work
Applicability of other proximity query work. For the problem of “find the k nearest dat-
apoints” (as opposed to our question of “perform k-NN or Kernel classification”) in high
dimensions, the frequent failure of traditional ball trees to beat naive has lead to some inno-
vative alternatives, based on random projections, hashing discretized cubes, and acceptance
of approximate answers. For example [7] gives a hashing method that was demonstrated
to provide speedups over a ball-tree-based approach in 64 dimensions by a factor of 2-5
depending on how much error in the approximate answer was permitted. Another approx-
imate k-NN idea is in [1], one of the first k-NN approaches to use a priority queue of
nodes, in this case achieving a 3-fold speedup with an approximation to the true k-NN.
However, these approaches are based on the notion that any points falling within a factor of
(1+ε) times the true nearest neighbor distance are acceptable substitutes for the true near-
est neighbor. Noting in particular that distances in high-dimensional spaces tend to occupy
a decreasing range of continuous values [10], it remains an open question whether schemes
based upon the absolute values of the distances rather than their ranks are relevant to the

classification task. Our approach, because it need not find the k-NN to answer the relevant
statistical question, finds an answer without approximation. The fact that our methods are
easily modified to allow (1 + ε) approximation in the manner of [1] suggests an obvious
avenue for future research.

References
[1] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for ap-

proximate nearest neighbor searching fixed dimensions. Journal of the ACM, 45(6):891–923,
1998.

[2] S. D. Bay. UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: University of California,
Dept of Information and Computer Science, 1999.

[3] C. Burges. A tutorial on Support Vector Machines for Pattern Recognition. Data Mining and
Knowledge Discovery, 2(2):955–974, 1998.

[4] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search
in metric spaces. In Proceedings of the 23rd VLDB International Conference, September 1997.

[5] K. Deng and A. W. Moore. Multiresolution Instance-based Learning. In Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence, pages 1233–1239, San Fran-
cisco, 1995. Morgan Kaufmann.

[6] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in loga-
rithmic expected time. ACM Transactions on Mathematical Software, 3(3):209–226, September
1977.

[7] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via Hashing. In
Proc 25th VLDB Conference, 1999.

[8] A. Gray and A. W. Moore. N-Body Problems in Statistical Learning. In Todd K. Leen,
Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Processing
Systems 13 (December 2000). MIT Press, 2001.

[9] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of
the Third ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. Assn for
Computing Machinery, April 1984.

[10] J. M. Hammersley. The Distribution of Distances in a Hypersphere. Annals of Mathematical
Statistics, 21:447–452, 1950.

[11] CMU informedia digital video library project. The trec-2001 video trackorganized by nist shot
boundary task, 2001.

[12] T. Joachims. Making large-scale support vector machine learning practical. In A. Smola
B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Machines. MIT
Press, Cambridge, MA, 1998.

[13] A. W. Moore. The Anchors Hierarchy: Using the Triangle Inequality to Survive High-
Dimensional Data. In Twelfth Conference on Uncertainty in Artificial Intelligence. AAAI Press,
2000.

[14] S. M. Omohundro. Efficient Algorithms with Neural Network Behaviour. Journal of Complex
Systems, 1(2):273–347, 1987.

[15] S. M. Omohundro. Bumptrees for Efficient Function, Constraint, and Classification Learning.
In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information
Processing Systems 3. Morgan Kaufmann, 1991.

[16] D. Pelleg and A. W. Moore. Accelerating Exact k-means Algorithms with Geometric Reason-
ing. In Proceedings of the Fifth International Conference on Knowledge Discovery and Data
Mining. ACM, 1999.

[17] F. P. Preparata and M. Shamos. Computational Geometry. Springer-Verlag, 1985.

[18] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information
Processing Letters, 40:175–179, 1991.

[19] W. Zheng and A. Tropsha. A Novel Variable Selection QSAR Approach based on the K-Nearest
Neighbor Principle. J. Chem. Inf.Comput. Sci., 40(1):185–194, 2000.

