
122

CHAPTER 5

LARGE-SCALE CONCEPT SPACE GENERATION

5.1 Objectives

Chapter 4 demonstrates the ability of the concept exploration process to help

users elaborate information needs by using various manual and automatically gen-

erally knowledge sources. This chapter focuses on how large domain-speci�c knowl-

edge sources (concept spaces) can be generated automatically and investigates their

quality compared with that of corresponding domain-speci�c man-made thesauri.

In addition, the chapter addresses the feasibility and scalability issues of large-scale

concept space generation in terms of domain knowledge and computing resources.

Concept space generation has been the semantic research component for the

Illinois Digital Library Initiative (DLI) project, entitled: \Building the Interspace:

Digital Library Infrastructure for a University Engineering Community," one of

six projects recently funded by NSF/ARPA/NASA. The goal of the project is to

transform the Internet into the Interspace, in particular by bringing professional

and \intelligent" search and display of structured documents to the Net. To ad-

dress the scalability issue arising from the continuous growth of digital library

123

repositories, this chapter presents in detail a parallel computing approach to cre-

ating concept spaces for semantic retrieval. The Illinois DLI project provides the

large-scale testbed for this research.

5.2 Research Questions and Methodology

The speci�c research questions to be investigated were:

� Question 1: With regard to computing scalability, would the technique of

computer generation of concept spaces be applicable to very large textual

databases?

� Question 2: With regard to domain speci�c knowledge scalability, would

concept space generation by technology create satisfactory domain-speci�c

concept associations from corresponding textual databases?

� Question 3: How does the quality of concept associations in concept space

generated from very large textual databases compare with that of a man-

made domain-speci�c thesaurus?

I used the systems development methodology to iterate the system development

cycle using personal-sized Unix workstations, workgroup-sized Unix servers, and

national resources of a high performance and parallel computing facility. I also used

the experimental design methodology to collect quantitative measures - concept

recall and precision.

124

5.3 Background and Issues

5.3.1 Alleviating the Vocabulary Problem Using Concept Spaces

The vocabulary (di�erence) problem in human-computer interactions has been

studied extensively in recent years (Furnas et al., 1987), who found that in spon-

taneous word choice for objects in �ve domains, two people favored the same term

with less than 20% probability. This fundamental property of language limits

the success of various design methodologies for vocabulary-driven interaction. In

information science, indexing and search uncertainty have been recognized as the

primary sources of information retrieval problems. Previous research (Bates, 1986)

has shown that di�erent indexers, well trained in an indexing scheme, might assign

index terms for a given document di�erently. It has also been observed that an in-

dexer might use di�erent terms for the same document at di�erent times (possibly

because of learning or the cognitive state of mind at indexing). A high degree of

uncertainty with regard to search terms has also been reported: searchers tend to

use di�erent terms for the same information sought. Because of the indeterminism

involved in indexing and searching, an exact match between the searcher's terms

and those of the indexer is unlikely (Chen and Dhar, 1987). This often results in

poor recall and precision in search.

The vocabulary problem a�ects every domain of human knowledge. Based on

research over the past few decades, it has become clear to information scientists

125

that development of e�ective online information retrieval systems must consider

the cognitive processes and the vocabulary association characteristics of the users.

5.3.2 Concept Association and Thesaurus Work

According to Belkin, users of information retrieval systems bring with them a

problem statement which represents an information need. Inherent in all infor-

mation needs are \anomalous states of knowledge" (ASKs) (Belkin et al., 1982).

In a document retrieval system based on ASKs, the searcher's state of knowledge

is represented as a network of associations between words. From the structure

and characteristics of the network, it is possible to identify anomalies in the state

of knowledge. Several models of human memory association wherein knowledge

is represented by network-like structures with linked propositions have been sug-

gested. Anderson's work in human memory is particularly pertinent to term asso-

ciations in retrieval (Anderson, 1985b). According to Anderson, people remember

not the exact wording of verbal communication, but the meaning underlying it.

The smallest unit of knowledge that can stand as an assertion bearing meaning is

the proposition. Memory, then, is represented as a network of such propositions.

The strength of the association paths leading to that piece of information con-

tributes to the level of activation being spread. This theory of spreading activation

has in
uenced the design of many semantic network based information retrieval

systems (Chen et al., 1993).

126

Many research groups have created vocabulary-based search aids for online in-

formation retrieval systems by making use of existing thesauri or dictionaries.

Thesauri, in particular, exhibit a structure similar to human word-association net-

works. While these tools are able to provide the searcher with alternate terms

to use in searching, they do not overcome the knowledge acquisition bottleneck:

the cognitive demand required of humans (indexers or domain experts) to create

thesauri or dictionaries in the �rst place. An alternative approach to creating

vocabulary-based search aids is based on automatic thesaurus generation.

� Incorporating existing thesauri:

Fox et al. focused on creation of so-called \relational thesauri." For ex-

ample, CODER adopted the Handbook of Arti�cial Intelligence and Collin's

Dictionary (Fox et al., 1988). Ahlswede and Evens parsed (Ahlswede and

Evens, 1988) Webster's Seventh New Collegiate Dictionary to obtain a \lex-

ical database" containing lexical or lexical-semantic relationships from the

dictionary de�nitions. Lesk converted an online version of Murray's Oxford

English Dictionary into a thesaurus-like tool to facilitate searching of histori-

cal manuscripts. These approaches represent attempts to produce \universal

lexicons," rather than domain-speci�c thesauri or dictionaries. Chen et al.

conducted a series of experiments which included several large-scale, domain-

speci�c thesauri. In (Chen and Dhar, 1991), Chen and Dhar incorporated a

127

portion of the Library of Congress Subject Headings (LCSH) in the comput-

ing area into a system that used a branch-and-bound spreading activation

algorithm to assist users in query formulation. More recently, they devel-

oped concept-based document retrieval using multiple thesauri: two existing

thesauri (LCSH and the ACM Computing Review Classi�cation System)

and an automatically-generated computing-speci�c thesaurus (Chen et al.,

1993). The National Library of Medicine's Uni�ed Medical Language Sys-

tem (UMLS) project is probably the largest-scale e�ort adopting existing

domain-speci�c knowledge sources or thesauri in information access. It aims

to build an intelligent automated system that understands biomedical terms

and their interrelationships and uses this understanding to help users re-

trieve and organize information from multiple online sources (Lindberg and

Humphreys, 1990).

� Automatic thesaurus generation:

Numerous investigators have developed algorithmic approaches to automatic

thesaurus generation. Most of these approaches employ techniques that com-

pute coe�cients of \relatedness" between terms using statistical co-occurrence

algorithms (e.g., cosine, Jaccard, Dice similarity functions) (Chen and Lynch,

1992), (Salton, 1988), (Rasmussen, 1992). Some algorithms, however, per-

form cluster analysis to further group terms of similar meanings (Rasmussen,

128

1992). Other algorithms, such as latent semantic indexing (Dumais, 1994),

perform statistical analysis to identify important semantic descriptors. Stiles

(Stiles, 1961) was one of the early researchers who reported improved retrieval

performance using a method based on term association (with collections of

librarian-applied subject tags). Doyle (Doyle, 1962) further argued that the

principles underlying association-based retrieval should apply whether the

associations are determined by humans or by machines (programs).

More recently, Crouch and Yang (Crouch and Yang, 1992) automatically

generated thesaurus classes from text keywords, which can subsequently be

used to index documents and queries. Crouch's approach is based on Salton's

vector space model and the term discrimination theory.

5.4 Concept Space Techniques

Based on the human information processing theory (Newell and Simon, 1972),

(Card et al., 1983), (Anderson, 1985a), Chen et al. argued that creating robust

and useful domain-speci�c thesauri (not universal thesauri) automatically requires

a clear understanding of the following seven system development principles: loga-

rithmic vocabulary growth, completeness, term speci�city, asymmetric association,

relevance feedback, vocabulary overlapping, and spreading activation (Chen et al.,

1997) Selected algorithms for automatic thesaurus generation have been devel-

oped based on these seven principles. The speci�c steps and algorithms adopted

129

include: document and object list collection, object �ltering, automatic indexing,

co-occurrence analysis, and associative retrieval.

The following presents a brief overview of these techniques in the context of

this research experiment. For algorithmic details, readers are referred to (Chen

and Lynch, 1992), (Chen et al., 1993), (Chen et al., 1995).

5.4.1 Document and object list collection

In any automatic thesaurus building e�ort, the �rst task is to identify complete

and recent collections of documents in speci�c subject domains that can serve as the

sources of vocabularies. The proliferation of Internet services and the availability

of online bibliographic databases have made document collection much easier.

In (Bates, 1986), Bates proposed a design model for subject access in online

catalogs. She stressed the importance of building domain-speci�c lexicons for

online retrieval purposes. A domain-speci�c, controlled list of keywords can help

identify legitimate search vocabularies and help searchers \dock" on to the retrieval

system. For most domain-speci�c databases, there appear always to be some

existing lists of subject descriptors (e.g., the subject indexes at the back of a

textbook), researchers' names (e.g., author indexes or researchers' directories), and

other domain-speci�c objects (e.g., genes, experimental methods, organizational

names, etc.) which exist online or can be obtained through OCR scanning.

130

5.4.2 Object Filtering

For each online document, terms are �rst identi�ed and then matched with

terms in known vocabularies, a process referred to as object �ltering. Because the

texts remaining after object �ltering may still contain many important concepts,

an automatic indexing procedure, which includes dictionary look-up, stop-wording,

word stemming, and term phrase formation, then follows (Salton, 1988).

5.4.3 Automatic Indexing

Automatic indexing begins with stop-wording and continues with term phrase

formation. The algorithm �rst identi�es individual words and non-word tokens

from free text. Next, a stop-word list is used to remove non-semantic bearing

words (e.g., \the", \a", \on", \in"). After removing stop words, a similar pro-

cedure is adopted to remove verbs and adverbs. Finally, term phrase formation

is accomplished by combining adjacent words. This approach is di�erent from

Salton's (Salton, 1988), which forms term phrases with non-stop words from vari-

ous word positions in a sentence. The main objective of the process of automatic

indexing is to extract useful concepts (semantics) from unstructured (free) text of

document records.

131

5.4.4 Co-occurrence Analysis

After terms have been identi�ed in each document, The analysis process com-

putes the term frequency and the document frequency for each term in a document.

Term frequency, tfij, represents the number of occurrences of term j in document

i. Document frequency, dfj, represents the number of documents in a collection of

n documents in which term j occurs. A few changes in the standard term frequency

and inverse document frequency measures have been made based on the experience

gained from the system development process.

Usually terms identi�ed from the title of a document are more descriptive than

terms identi�ed from the abstract of the document. In addition, terms identi�ed

by the object �lters are usually more accurate than terms generated by automatic

indexing. Adjustment in determining the weights of importance can be made

according to the requirements and needs of di�erent domains and applications.

The combined weight of term j in document i, dij, is computed based on the

product of \term frequency" and \inverse document frequency" as follows:

dij = tfij � log(N

dfj
� wj)

where N represents the total number of documents in a collection and wj represents

the number of words in descriptor j. Multiple-word terms are assigned heavier

132

weights than single-word terms because multiple-word terms usually convey more

precise semantic meaning than single-word terms.

Term co-occurrence analysis is performed based on the asymmetric \Cluster

Function" developed by Chen and Lynch (Chen and Lynch, 1992).

Wjk =

Pn
i=1 dijk
Pn

i=1 dij
�WeightingFactor(k)

Wkj =

Pn
i=1 dikj
Pn

i=1 dik
�WeightingFactor(j)

Wjk indicates the similarity weights from term j to term k and Wkj indicates the

similarity weights from term k to term j. dij and dik were calculated based on the

equation in the previous step. dijk and dikj represent the combined weight of both

descriptors j and k in document i. However, they are computed slightly di�erently

due to their di�erent starting terms. They are de�ned as follows:

dijk = tfijk � log (N

dfjk
� wj)

dikj = tfijk � log (N

dfjk
� wk)

133

where tfijk represents the number of occurrences of both term j and term k in

document i (the smaller number of occurrences between the terms is chosen). dfjk

represents the number of documents (in a collection of N documents) in which

terms j and k occur together. wj represents the number of words of descriptor

j and wk represents the number of words of descriptor k (thus descriptors with

multiple words receive higher weights).

In order to penalize general terms (terms which appeared in many places) in

the co-occurrence analysis, the following weighting scheme, which is similar to the

inverse document frequency function, is applied:

WeightingFactor(k) =
log N

dfk

logN

WeightingFactor(j) =
log N

dfj

logN

Terms with a higher dfk or dfj value (more general terms) have a smaller weight-

ing factor value, which causes the co-occurrence probability to become smaller. In

e�ect, general terms are pushed down in the co-occurrence table (terms in the co-

occurrence table are presented in reverse probabilistic order, with more relevant

terms appearing �rst).

134

5.4.5 Associative Retrieval

In addition to the user-controlled thesaurus browsing process, searchers can

also invoke selected spreading activation algorithms for multiple-term, multiple-

link term suggestions. The previous chapter presents in detail the use of the

serial branch-and-bound algorithm and the parallel Hop�eld net algorithm for

the spreading activation process. The Hop�eld algorithm, in particular, has been

shown to be ideal for concept-based information retrieval.

5.5 Parallel Computing Approach

Over the past decade, use of parallel computing for information retrieval grad-

ually has progressed from active research to commercial applications (Rasmussen,

1991). Many new classes of algorithms and applications have emerged and created

unique opportunities and challenges, especially in the context of Grand Challenge

Applications and National Information Infrastructures (Wah, 1993).

5.5.1 Parallel Computing for Information Retrieval

Parallel computing is de�ned as information processing that emphasizes con-

current manipulation of data belonging to one or more processes solving a single

problem. Two classes of architecture have been used to distinguish between dif-

ferent parallel supercomputers: SIMD (single instruction stream, multiple data

stream) and MIMD (multiple instruction stream, multiple data stream). In SIMD

135

machines (e.g., MasPar MP-1), one control processor broadcasts a single instruc-

tion stream to all the other processors simultaneously for execution on di�erent

data streams. In MIMD machines (e.g., Thinking Machine's CM-5), each processor

has its own independent program instruction stream. While this classi�cation has

been useful in distinguishing between supercomputing architectures, many other

classi�cation schemes have recently been proposed.

In (Rasmussen, 1991), Rasmussen suggested three approaches to parallel com-

puting in information retrieval (IR): development and testing of parallel IR al-

gorithms, design of special-purpose parallel hardware for IR applications (e.g.,

database machines), and development of distributed systems for database access.

The �rst approach, in particular, is of most relevance to this research.

A major focus of research in the 1980s was on the adaptation and re�nement

of existing popular IR algorithms to parallel processors. Algorithms based on pat-

tern matching (string matching) algorithms or text signatures (superimposed cod-

ing) and inverted index �le algorithms have attracted most attention (Rasmussen,

1991). Text signatures provide an e�cient �xed-length document representation

which is ideal for parallel processors (Stan�ll and Thau, 1991). However, Salton

and Buckley (Salton and Buckley, 1988) have shown that the limited memory units

attached to the small processing units on Connection Machine cannot accommo-

date sophisticated term weights, resulting in signi�cantly degraded performance.

In (Couvreur et al., 1994), Couvreur et al. reported the results of modeling the

136

performance of searching large text databases (10+ GBs of Chemical Abstracts) via

various parallel hardware architectures and search algorithms. They found that a

multiprocessor mainframe with parallel inverted index �le algorithms and the TRW

Fast Data Finder (FDF, special-purpose parallel IR hardware) with \on-the-
y"

pattern matching capability out-performed loosely-coupled RISC processors with

a text signature algorithm.

While parallelizing existing IR algorithms accounted for a majority of previous

research e�orts, a signi�cant number of diverse and promising information process-

ing and analysis algorithms have emerged and are believed to be ideal for parallel

computation. Co-occurrence analysis and clustering algorithms have traditionally

been the most computationally intensive algorithms in information science. As dis-

cussed previously, this class of algorithms often aims to compute \relationships"

between term-pairs and/or document-pairs and cluster terms/documents of similar

nature. As Rasmussen commented (Rasmussen, 1991), \An IR application that

is particularly computationally intensive (usually O(N2) to O(N3), while o�ering

a high degree of parallelism, is document clustering." He cautioned that the suc-

cessful implementation of a parallel solution in IR requires an appropriate match

of task, algorithm, and architecture.

137

5.5.2 Parallel Computing for Knowledge Discovery

Many new algorithms developed in the area of machine learning, in particular

neural networks and genetic algorithms, are parallel in nature and have become

prime candidates for parallel computation. Unlike the IR tasks performed by the

previous pattern matching, signature �les, and inverted index algorithms, most of

these machine learning algorithms require extensive pre-processing and analysis

of a signi�cant number of textual documents. (Chen provides a complete and

up-to-date review and discussion of machine learning techniques for IR in (Chen,

1995b).)

Neural networks computing, in particular, seems to �t well with conventional

retrieval models such as the vector space model (Salton, 1988) and the proba-

bilistic model (Maron and Kuhns, 1960). Oddy and Balakrishnan (Oddy and

Balakrishnan, 1991) described a parallel IR system in which a document collection

is represented as a network mapped over a Connection Machine. The PThomas

system is similar to the neural networks model conceptually. However, these re-

searchers noted the practical problem of CM size limits (32K processors), which

may render the approach to be infeasible for large-scale databases. They suggested

a network partition approach to solving this problem.

Yang and his coworkers (Yang and Korfhage, 1993) have developed adaptive

retrieval methods based on genetic algorithms and the vector space model using

138

relevance feedback. They reported the e�ect of adopting genetic algorithms in

large databases, the impact of genetic operators, and GA's parallel searching ca-

pability. Frieder and Siegelmann (Frieder and Siegelmann, 1991) also reported

a data placement strategy for parallel information retrieval systems using a ge-

netic algorithms approach. Their results compared favorably with pseudo-optimal

document allocations.

This emerging machine learning and information analysis paradigm for IR was

also echoed in the recent \Report on Workshop on High Performance Computing

and Communications for Grand Challenge Applications: Computer Vision, Speech

and Natural Language Processing, and Arti�cial Intelligence" (Wah, 1993). Au-

tomatic analysis of co-occurrence patterns in a text corpus, development of elec-

tronic librarians to locate information, and discovering new knowledge from exist-

ing sources are among the main areas of future research identi�ed by the workshop

participants. As the report stated: \High performance AI systems will undoubt-

edly require very large knowledge bases. Today, the construction of even small

to medium knowledge bases is very time-consuming and often prevents the ap-

plication of AI to real-world problems. To overcome this de�ciency, automation

of knowledge-base construction is needed. Knowledge may be acquired from the

vast amount of information stored as texts. Patterns of concepts and their se-

mantic properties may then be extracted from text via natural language parsing

and learning techniques." The research work in the areas of automatic thesaurus

139

generation, spreading activation, and machine learning based IR is a good example

of adopting this new \knowledge discovery" paradigm for digital libraries.

5.6 Parellel Computing: Concept Space Generation

In addition to discussing supercomputers based on the SIMD and MIMD archi-

tectures, some researchers also classify supercomputers in terms of their processor

and memory requirements. According to Larry Smarr, director of NCSA, the �rst

era of supercomputing belongs mainly to \shared memory vector processors" such

as Cray X-MP, Cray Y-MP, Cray 2, and Convex C3. The second era of \distributed

memory systems" include systems like CM-2, CM-5, IBM clusters, HP clusters,

etc. More recently, \shared memory multiprocessors" (SMP) have emerged as the

dominant force for the third and current era, e.g., SGI Power Challenge, Convex

Exemplar, etc. The parallel computation implementation of the Illinois DLI se-

mantic retrieval research has coincided with the availability of supercomputers of

the second and third eras.

As one of the Arti�cial Intelligent (AI) Lab members at the University of Ari-

zona I have had an opportunity to use all NCSA's supercomputing facility. The

rest of this section describes a series of parallel computing implementations and

experiments on concept space generation that we have performed from 1994 to

1999. The parallel implementation since Fall 1994 has been on a 512-node CM-5,

a 16-processor SGI Power Challenge, a 48-processor SGI Power Challenge Array

140

(SGIs), a 16-processor Cray CS6400 (SPARCs), a 64-processor Convex Exemplar

(HPs), and a 1024-processor SGI Origin2000.

5.6.1 Worm and Fly Concept Spaces Generation Using CM-5 and SGI Power

Challenge

In our previous NSF-funded \Worm Community System" project, we adopted

the concept space approach to cross-domain scienti�c information retrieval. By

working closely with worm and
y biologists in the Molecular and Cellular Biology

Department at the University of Arizona for about two years, we generated a worm

thesaurus in Fall 1993 (Chen et al., 1995) and a
y thesaurus in Summer 1994.

Both thesauri were independently tested by the biologists and are available for

Internet WWW access at: http://bpaosf.bpa.arizona.edu:8000/cgi-bin/BioQuest.

The resulting worm thesaurus consisted of 7,657 terms and 547,810 links and

the
y thesaurus contained 15,626 terms and 750,314 links (after applying vari-

ous thresholds). Most of these terms were author names or subject descriptors.

The document collections were mainly Medline and Biosis abstracts acquired from

online sources. Each collection contained about 7,000 abstracts, with 10 MBs of

text. It took 50 and 70 minutes, respectively, to generate the two thesauri on

a DEC Alpha 2100 workstation (200 MHz, 128-MB RAM). Automatic indexing,

which is less computationally intensive, took about 2.5 minutes; while the rest of

141

the computation was for co-occurrence analysis. The resulting thesauri were about

the same size as the initial document collections (i.e., 1 : 1 storage overhead).

In order to address the scalability issue for concept space generation for large

collections, i.e., GB-scale collections, which are common in scienti�c and engi-

neering domains (the topic domains of the Illinois DLI project), we proceeded to

test all concept space algorithms, in particular those of automatic indexing and

co-occurrence analysis on supercomputers at NCSA. Our initial platform was the

CM-5.

The 7000+ abstracts of the
y collection were used to generate the same
y

thesaurus using a 512-node CM-5. CM-5 was mainly based on a massively parallel

architecture, with 512 SPARC Cypress processors on distributed memory. Its total

memory size is 16 GBs (32 MBs/node on 512 nodes). In automatic indexing, we

took the data parallel approach by breaking the data �le into 100 documents (each

0.5 MB in size) and assigned each 100-document set to one node. Our existing C

code was modi�ed to C*, CM's data parallel programming language. In addition,

each node needed to access a 2-MB object �ltering �le (with list of known biology

terms). Due to the memory size limit of the CM-5 processing unit (node), the au-

tomatic indexing process on the same collection took about 19 minutes. However,

the same data parallel approach worked very well for co-occurrence analysis. By

sorting all unique terms in alphabetical order and partitioning them into 22-by-22

(484) chunks of ordered terms, we were able to assign each chunk (0.25 MB) to

142

one CM-5 node. The small �le size and processor scale-up greatly speeded up

the processing time from 67 minutes (on the DEC Alpha) to 4 minutes, a 17-fold

improvement (according to Thomborson (Thomborson, 1993), a more than 20-fold

speedup on supercomputers is unlikely without expensive and time-consuming re-

coding). Although the testing was encouraging, CM-5 did not appear to be able

to alleviate the automatic indexing bottleneck for large-scale test collections.

Further testing was conducted in Spring 1995 on the new NCSA Power Chal-

lenge (installed in Fall 1994), which is based on a shared memory multiprocessor

architecture. It contains 16 MIPS R8000 processors, with a total shared memory

size of 4 GBs. Using the same data parallel approach, we fully utilized the 16 pro-

cessors. The resulting processing time was 24 seconds for automatic indexing and

21.5 minutes for co-occurrence analysis. The shared memory architecture allevi-

ated the automatic indexing bottleneck experienced in CM-5, but the co-occurrence

analysis time was longer than that on CM-5. All programs were written in C. Table

1 summarizes the CPU time for the 10-MB
y collection on automatic indexing

and co-occurrence analysis, respectively, on a DEC Alpha 2100, 512-node CM-5,

and 16-processor SGI Power Challenge.

In summary, due to the (distributed) memory size limit of the CM-5 processing

unit (32 MBs/node), the automatic indexing process, which involved a large object

�ltering �le, became the bottleneck. However, the 512-node CM-5 was able to

perform co-occurrence analysis (a similarity matrix computation by nature, an

143

Algorithm/Platform DEC Alpha 2100 CM-5 SGI Power Challenge

Automatic Indexing 2.5 mins 19 mins 24 secs

Co-occurrence Analysis 67 mins 4 mins 21.5 mins

Total 69.5 mins 23 mins 22 mins

Table 5.1: A benchmark comparison summary on DEC Alpha, CM-5, and SGI

Power Challenge

O(N2) process, where N is the number of terms) e�ciently after we adopted a

data parallel approach, in which each node received a small block (in size) of the

matrix to compute. Due to the large shared memory space (4 GBs), automatic

indexing was no longer the bottleneck for SGI Power Challenge. However, co-

occurrence analysis remained time-consuming, especially for the speci�c 16-node

NCSA SGI Power Challenge we tested (due to a smaller number of processors and

a slower clock rate).

The programming learning curve on SGI Power Challenge was signi�cantly

smoother than that on CM-5 (roughly 2 weeks vs. 2 months). After some careful

consideration and discussions with researchers and sta� at NCSA, SGI Power Chal-

lenge appeared most promising because of its ease of programming, large shared

memory, and expandability. With the planned addition of the 48-processor SGI

Power Challenge Array (and faster processors) and supercomputers of similar ar-

chitecture (e.g., 64-processor Convex Exemplar, and 16-processor Cray CS6400),

at NCSA, SMP-based parallel computers were our choice for further experiments.

144

Our most recent experiment involved a 24-node Convex Exemplar, also provided

by NCSA. The NCSA Convex Exemplar employed in September 1995 was a 3-

hypernode SPP-1200 system, with 24 HP PA-RISC 7200 chips (processors), 4

GBs of physical memory, and 88 of GBs disk space with peak performance 240

MFLOPS per processor and 1.9 GFLOPS per hypernode. Given more processors

and a higher clock rate per processor (compared with the 16-node SGI Power

Challenge), automatic indexing for the same
y collection took 0.39 minutes and

co-occurrence analysis took 1.46 minutes, both better performances than those of

CM-5 and the 16-node SGI Power Challenge.

For large-scale analysis of textual collections, we believe the shared memory

multiprocessors (SMP) such as SGI Power Challenge (the NCSA SGI Power Chal-

lenge was also recently upgraded) and Convex Exemplar are extremely promising.

In a recent issue of Science (Pool, 1995), two U.S. supercomputing center direc-

tors have commended SMP highly for its architectural �t with the emerging data

mining (knowledge discovery) and digital library applications.

5.6.2 Computer Engineering Concept Space Generation Using SGI Power Chal-

lenge

In the Illinois DLI project, we obtained an INSPEC test collection of 400,000+

(computer science and electrical engineering abstracts from the 1992-1994 INSPEC

145

database in Spring 1995. This 2-GB testbed recently was used to generate a com-

puter engineering concept space using the 16-processor SGI Power Challenge. The

automatic indexing process for this gigabyte collection (about a 200-fold increase

in size over the
y/worm collection) took 1.5 hours. The most computationally

intensive co-occurrence analysis took 23 hours. It used about 25% of the available

CPU cycles on the NCSA Power Challenge for a three-week period (in fact it was

the largest single user of the NCSA supercomputing resources at that time). The

computer engineering concept space contained about 270,000 terms and 4,000,000+

links. We estimated that running the same program on our DEC Alpha 2100 work-

station for the same INSPEC collection would take about 20-30 days of CPU time.

This long turn-around time was considered infeasible, due to the iterative nature

of our system development and testing e�ort and the need for testing other even

larger collections, e.g., 5 million Compendex engineering abstracts.

We also obtained an online version of the INSPEC thesaurus, which contains

7,000+ terms in a classi�cation hierarchy (mostly narrower-term, broader-term,

related-term relationships). Our initial analysis showed that the computer engi-

neering concept space appears to contain �ner-grained and newer concepts (terms)

than the INSPEC thesaurus. On the other hand, the INSPEC thesaurus provides

a richer classi�cation structure of the conceptual relationships than the concept

space because of its symbolic links.

146

The computer engineering concept space was indexed (using WAIS indexing)

and recently placed onWWW as an Internet server at: http://ai.bpa.arizona.edu/cgi-

bin/csquest. Figure 5.1 shows the search results (related terms) using this server,

called CSQuest, with a search term, \context analysis." We recommend that

this server be used as an interactive computer term suggester for searching any

computer-related bibliographical databases (e.g., INSPEC database) or Internet

services (e.g., the CS Technical Report projects).

5.6.3 CancerLit Concept Space Generation Using SGI Origin2000

In a medical informatics project, we obtained a CancerLit collection from Na-

tional Cancer Institute (NCI) that includes close to a million CancerLit document

records from January 1992 to June 1999. This 4-GB testbed also represents close

to two-thirds of recent cancer research in the entire CancerLit collection. We have

created several CancerLit concept spaces exclusively on SGI Origin2000, a new

shared memory supercomputing machine in NCSA, since 1997.

Because of the availability of faster processors than those of SGI Power Chal-

lenge, the automatic indexing process took less than an hour of processing time on

the SGI Origin2000. We tested various processors using the data parallelization

strategy. The operating results showed that the wall-clock time (real time elapsed)

decreased linearly proportional to the number of processors being used. That is,

if 16 processors were used, the wall-clock time to �nish the automatic indexing

147

Figure 5.1: CSQuest-suggested terms for \context analysis"

148

process was about 4 minutes. Memory usage for this automatic indexing process

was insigni�cant. Each processor used about 2 MB of memory to handle input,

output and working memory needed. The required lookup memories for stop words

and stemming were initialized at less than 0.1 MB of shared memory in less than

1 second of processing time.

Intrinsically, while the data parallelization strategy works well with the auto-

matic indexing process, which is merely an independent analysis on each individual

record, parallelization strategy at an algorithmic level is needed for co-occurrence

analysis on the entire CancerLit collection. However, we found that a coarse-

grained algorithmic parallelization strategy was adequate for co-occurrence analy-

sis when the tremendous memory of up to 64 GB RAM was available and shared

simultaneously by multiple processors to perform parallel and independent tasks.

We also found that using more processors for co-occurrence analysis might not be

bene�cial to the overall run-time performance because the use of more processors

(up to 32) led to longer total waiting time for peer processes to reach corresponding

synchronized points. The coarse-grained strategy allowed longer individual pro-

cessing cycles between synchronized points to maximize the advantage of having

large physical memory. The co-occurrence analysis took 3.5 hours of computing

cycles in the SGI Origin2000 running with 8 processors and 4 GB RAM. The

improvement in performance came from both better hardware and software opti-

mization.

149

A revision of CancerLit concept space as of August 1999 contained 1.3 million

terms and 27 million links, which covered the underlying CancerLit records from

January 1992 to June 1999. A simple CGI-enabled search engine was built to

access both CancerLit concept space and document space interchangeably. The

server size for the corresponding revision was 3.5 GB. The CancerLit concept space

server is accessible at http://ai20.bpa.arizona.edu/cgi-bin/cancerlit/cn.

5.6.4 Lessons Learned: Matching Concept Space Techniques with Parallel Com-

puter Architecture

Both evolution of supercomputer architectures and the maturation of the con-

cept space techniques for very large applications since 1993 have provided tremen-

dous dynamics impetus to understand how to optimize software design and imple-

mentation by leveraging on di�erent characteristics of various hardwares and archi-

tectures. The strengths and weaknesses of di�erent supercomputer architectures

play a signi�cant role in directing the software optimizing e�ort. Simultaneously,

optimization e�orts need to �t the nature of concept space techniques at various

stages.

Both data and algorithmic parallelization strategies �t well with concept space

techniques and are fully supported by the lastest shared memory supercomputer

architecture represented in SGI Origin2000. In addition to dicussing these two

150

strategies, the following examines the scalability issues related to the overall con-

cept space generation process.

5.6.4.1 Data Parallelization

Acknowledging that concept space techniques are applicable to information

analysis at the single-document as well as the entire-collection level, it neverthe-

less is natural to separate these two levels of analysis cleanly. The automatic

indexing process is single-document analysis while the co-occurrence process is an

aggregated analysis at collection level. The data parallelization strategy �ts well

with the automatic indexing process because the analysis involves taking an input

stream, using a small amount of working memory (usually less than 0.1 MB), and

producing an output stream. If input data are equally distributed to N processors,

a linear reduction in wall-clock run-time will be achieved. We can use as many

processors as are available in a computing environment to speed up the automatic

indexing process using data parallelization strategy. Indeed, such a strategy will

apply equally well on a network of personal computers.

5.6.4.2 Algorithmic Parallelization

The co-occurrence analysis requires simultaneous availability of all relevant data

to compute each co-occurring weight between two terms. This requirement de-

mands enormous memory for operation. The shared memory architecture in SGI

151

Origin2000 �ts this requirement. In fact, the size of all necessary data for co-

occurrence analysis after pre-processing is under 0.5 GB for a collection of 1 million

documents.

The design of the algorithmic parallelization strategy for co-occurrence analysis

depends on how much working memory is available and the characteristics of the

co-occurrence matrix. Generally, the available memory, other than that for input

data, is divided equally among a set of processors for parallel execution. The co-

occurrence matrix is very sparse; that is, a term rarely co-occurs with more than

10% of all terms in an analysis. Many terms co-occur only hundreds or thousands

of times in a collection. Based on this observation, we used an optimal method

to accumulate all co-occurring pairs of terms when processing each document.

However, such a co-occurrence process may not have su�cient working memory to

hold all pairs of terms. When going through all documents, we therefore mixed

a data parallelling strategy to create a portion of term pairs having a di�erent

set of starting terms. That is, all documents were parsed multiple times. Using

of up to 2 to 4 GB of memory, the number of times to parse all documents was

less than 100. Therefore, the performance e�ciency of the co-occurrence analysis

was directly proportional to the size of memory available to the process. From a

series of experiments on executing the co-occurrence analysis with various number

of processors ranging from 1 to 32 (not continuously), the increase in number

of processors used demonstrated diminishing overall performance e�ciency for a

152

given size of memory. This is due to the fact that having more processors reduces

the e�ective size of each one's working memory. The optimal combination of

memory and number of processors were found to be 2-4 GB and 8-16 processors,

respectively.

5.6.4.3 Synchronization: How Often?

The frequency of synchronization was directly related to whether an algorithmic

parallelation strategy applies to a particular process. We chose to use a coarse-

grained approach to maximize the ratio of run time to idle time for each processor

in the co-occurrence analysis. This also was one of the factors in reaching the point

of diminishing return on the performance e�ciency when adding more processors.

As long as one processor was still working, all other peer processors were forced

to wait. The use of more processors simply cumulates more idle time in each

synchronization.

5.7 System Evaluation: A Concept Association Experiment

In order to examine the performance of the computer engineering concept space

in capturing meaningful conceptual associations between terms, a concept associ-

ation experiment was conducted using the INSPEC thesaurus as the benchmark

for comparison. The experimental design was similar to that of those adopted in

memory association (Anderson, 1985a), (Chen and Lynch, 1992) and information

153

retrieval experiments (Chen et al., 1995). The experimental design and results

generated are presented in this section.

5.7.1 Experimental Design

A two-phase experiment was performed involving 12 subjects a�liated with the

University of Arizona Management Information Systems Department, including

two faculty members, and ten graduate degree candidates who had successfully

completed course work in Arti�cial Intelligence, Databases, or Telecommunica-

tions/Networking. Prior to Phase 1, experimenters solicited from each faculty

subject a list of 16 candidate terms from his domain that could be used as test

descriptors. For each domain, eight terms found in both the engineering concept

space and the INSPEC thesaurus were selected. One term was discarded because

subjects objected to it, leaving a total of 23 test descriptors.

In Phase 1 (Recall Phase), each subject (both student and faculty) was asked

to generate through a free association process as many related terms as possible

in response to each test descriptor presented. This phase of the experiment called

upon subjects' memory recall.

In Phase 2 (Recognition Phase), experimenters created randomized lists of as-

sociated terms for subjects to evaluate with regard to their relevance to the test

descriptor, including 40 associated terms suggested by the Computer Engineering

Concept Space, and all terms suggested by the INSPEC thesaurus. The concept

154

space o�ered signi�cantly more than 40 terms; the highest weighted 40 terms were

selected for evaluation (about 2 screenfuls of terms). The 12 subjects were then

asked to evaluate each suggested term according to the Likert-like scale: \Irrel-

evant," \Somewhat Relevant," \Very Relevant." Terms considered too general

were to be ranked as \Irrelevant." This phase of the experiment called upon the

subjects' ability to recognize relevant terms. Human beings are more likely to

recognize than to recall. The complete experiment lasted between 1.25 hours and

2.5 hours for each subject.

5.7.2 Experimental Results: Concept Recall and Concept Precision

In contrast to the document recall and precision measures typically used in

information science research, this experiment adopted concept recall and concept

precision for evaluation. Instead of examining the number of relevant documents

retrieved, the number of relevant terms (concepts) identi�ed by the concept space

and the INSPEC thesaurus was counted. They were computed as follows:

ConceptRecall =
Number of Retrieved Relevant Concepts

Number of Total Relevant Concepts

ConceptPrecision =
Number of Retrieved Relevant Concepts

Number of Total Retrieved Concepts

155

The number of Retrieved Relevant Concepts represented the number of concepts

judged \Very Relevant" or \Somewhat Relevant" for each thesaurus. Total Rele-

vant Concepts represented the target set of concepts that can be obtained through

user-thesaurus interaction, and included all concepts generated by the subjects

in Phase 1, as well as those additional unique concepts judged relevant from the

computer engineering concept space and the INSPEC thesaurus from Phase 2.

Graduate student subjects generated between 0 and 49 terms, with a mean of 7.83

terms. Faculty subjects generated between 5 and 30 terms, with a mean of 16.47

terms. Based on this target set of concepts, we examined the relevant concepts

generated by each thesaurus to determine the concept recall. Total Retrieved Con-

cepts, representing the total number of terms suggested by either thesaurus, was

used to calculate concept precision levels. For the concept space, this value was

always 40. The number of retrieved terms o�ered by the INSPEC thesaurus ranged

from 2 to 38, with a mean of 10.391 terms. Two-sample t-tests were performed

for concept recall and concept precision. Separate comparisons were made for each

group of subjects (graduate students and experts).

The ten graduate student subjects, responding to each of the 23 test descrip-

tors, generated a total of 230 data sets. The results for concept recall and concept

precision are shown in Figure 5.2. The concept recall results represented a sample

size of 218 and included 12 data sets in which subjects did not respond to the

test descriptor presented and thus were assigned a Retrieved Relevant Concepts

156

value of zero. Concept recall for the automatically generated concept space was

69%, signi�cantly greater than the 17.7% recall value resulting from the INSPEC

thesaurus. This result can be attributed to the fact that the concept space o�ered

the subjects a greater number of potentially useful and relevant terms. Of the

total set of relevant terms for each test descriptor, approximately 70% came from

the automatic concept space. This points to a major advantage of the automat-

ically generated concept space { that it can o�er the searcher a richer and more

meaningful space for concept association and term suggestion.

Concept precision for the concept space was less than that of the INSPEC the-

saurus (59.5% vs. 68.2%), a di�erence that was statistically signi�cant (at a 10%

signi�cance level). That the precision for INSPEC thesaurus was not 100% can be

explained by the fact that although terms in a manually generated thesaurus are

carefully selected to represent a limited number of highly relevant terms, subjects

typically considered broader or parent terms to be irrelevant, which lessened the

number of potentially relevant terms within the set suggested. It was not unex-

pected, then, that the INSPEC thesaurus fared better on precision than did the

concept space. Automatic indexing, the technique used in automatic thesaurus

generation, not only generates useful, but also noisy terms. Thresholds can be

applied to limit this e�ect, but cannot eliminate it. Therefore the concept space

would be expected to contain more potentially irrelevant terms.

157

Similar results were obtained from the faculty subjects. These subjects re-

sponded to those terms relevant to their area of expertise; one responded to Arti�-

cial Intelligence terms, the other to Database and Telecommunication/Networking

terms. All data sets were completed by the faculty subjects, resulting in a sample

size of 23. The experts' concept recall for the automatic thesaurus was somewhat

lower than that of student subjects, indicating that the faculty members' criteria

for relevance was more stringent than that of the students. In addition, experts

tended to have a much higher rate of matching thesaurus and concept space sug-

gested terms. So, while they identi�ed fewer terms as being relevant than did

the student subjects, the presence of numerous matching terms from Phase 1 re-

sulted in lower recall. Experts' concept precision was higher than that for the

students for both the concept space and the INSPEC thesaurus, primarily because

experts failed to respond to far fewer concepts than students. That the di�erence

in precision performance was not statistically signi�cant for the experts is probably

attributable to the relatively small sample size.

In conclusion, the automatically generated computer engineering concept space

performed much better than the INSPEC thesaurus with regard to concept recall,

whereas the INSPEC thesaurus performed better than the concept space with

regard to concept precision. The implications of these �ndings are that the concept

space appears to be robust and useful, that the automatically-generated concept

space and the manually-created INSPEC thesaurus complement one another, and

158

INDIVIDUAL 95 PCT CI'S FOR MEAN

LEVEL N MEAN STDEV -+---------+---------+---------+-----

Rec Auto Stud 218 0.6908 0.1852 (*-)

Rec Insp Stud 218 0.1771 0.1381 (*)

-+---------+---------+---------+-----

POOLED STDEV = 0.1633 0.16 0.32 0.48 0.64

INDIVIDUAL 95 PCT CI'S FOR MEAN

LEVEL N MEAN STDEV -+---------+---------+---------+-----

Pre Auto Stud 230 0.5950 0.2822 (--------*--------)

Pre Insp Stud 230 0.6822 0.4153 (--------*---------)

-+---------+---------+---------+-----

POOLED STDEV = 0.3551 0.550 0.600 0.650 0.700

Figure 5.2: ANOVA analysis for recall and precision with graduate student subjects

INDIVIDUAL 95 PCT CI'S FOR MEAN

LEVEL N MEAN STDEV ----+---------+---------+---------+--

Rec Auto Fac 23 0.5923 0.1294 (--*---)

Rec Insp Fac 23 0.1502 0.1064 (--*--)

----+---------+---------+---------+--

POOLED STDEV = 0.1185 0.15 0.30 0.45 0.60

INDIVIDUAL 95 PCT CI'S FOR MEAN

LEVEL N MEAN STDEV --------+---------+---------+--------

Pre Auto Fac 23 0.6772 0.2004 (-------------*-------------)

Pre Insp Fac 23 0.7366 0.2665 (-------------*-------------)

--------+---------+---------+--------

POOLED STDEV = 0.2358 0.630 0.700 0.770

Figure 5.3: ANOVA analysis for recall and precision with faculty subjects

159

that the greatest assistance to the searcher can be provided when both are available

for query enhancement.

Although the concept association experimental result was encouraging, the use-

fulness of the concept space for improving user query results (i.e., document recall

and precision) was not tested. In a recent AI Lab experiment involving worm

(nematode) and
y (Drosophila) concept spaces and a worm database, we have

shown that concept spaces helped improve the document recall level (from 32% to

65%), although the document precision level did not improve signi�cantly (Chen

et al., 1997). As the next step of our project, we plan to incorporate the engi-

neering concept space in the Illinois engineering literature testbed and examine its

usefulness in improving document recall and precision. Future experiments will

also include several spreading activation techniques for consulting concept spaces

algorithmically for document retrieval, as shown in previous chapter.

5.8 Discussion and Conclusion

This research presents preliminary results generated from the semantic retrieval

research component of the NSF/ARPA/NASA-funded Illinois DLI project. Using

a variation of the automatic thesaurus generation technique - the concept space ap-

proach, the goal was to create graphs of domain-speci�c concepts (terms) and their

weighted co-occurrence relationships for all major engineering domains. Merging

these concept spaces and providing traversal paths across di�erent concept spaces

160

could potentially help alleviate the vocabulary (di�erence) problem evident in large-

scale information retrieval. The AI Lab previously has successfully adopted such

a technique for a smaller molecular biology domain (Worm Community System,

with 10+ MBs of document collection) with encouraging results.

In order to address the scalability issue related to large-scale information re-

trieval and analysis for the current Illinois DLI project, we recently proceeded to

experiment using the concept space approach on parallel supercomputers. Our test

collection was 2+ GBs of computer science and electrical engineering abstracts and

the concept space approach called for extensive textual and statistical analysis (a

form of knowledge discovery) based on automatic indexing and co-occurrence analy-

sis algorithms, both previously tested in the biology domain. Initial testing results

using a 512-node CM-5 and a 16-processor SGI Power Challenge were promis-

ing. Power Challenge was later selected to automatically create a comprehensive

computer engineering concept space of about 270,000 terms and 4,000,000+ links

using 24.5 hours of CPU time. The user evaluation involving 12 knowledgable sub-

jects revealed that the automatically-created computer engineering concept space

generated signi�cantly higher concept recall than the human-generated INSPEC

thesaurus (concept space : INSPEC thesaurus = 69.08% : 17.71%). However,

the INSPEC was more precise than the automatic concept space (concept space

: INSPEC thesaurus = 59.50% : 68.22%). Using the INSPEC thesaurus as the

benchmark for comparison, I believe the computer engineering concept space has

161

demonstrated its robustness and potential usefulness for suggesting relevant terms

for search. However, multiple interfaces and multiple vocabulary search aids will be

necessary for e�ective concept-based search across multiple large-scale repositories

and domains.

