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1. Motivation

Non-experimental Evidence

Typical Predictive Questions

• Can we predict aggressiveness from Day Care

• Can we predict crime rates from abortion rates 20 years ago

Causal Questions: 

• Does attending Day Care cause Aggression?

• Does abortion reduce crime?

Day Care Aggressivenes

John

Mary

A lot

None

A lot

A little
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Causal Estimation

Manipulated Probability P(Y | X set= x, Z=z)

from

Unmanipulated Probability P(Y | X = x, Z=z) 

When and how can we use non-experimental data to 
tell us about the effect of an intervention?
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Conditioning vs. Intervening

P(Y | X = x1) vs. P(Y | X set= x1)

⇒ Stained Teeth Slides
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2. Representation

1. Representing causal structure, and connecting it 

to probability

2. Modeling Interventions
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Causation & Association

X is a cause of Y iff 

∃ x1 ≠ x2 P(Y | X set= x1) ≠ P(Y | X set= x2)

X and Y are associated iff

∃ x1 ≠ x2 P(Y | X = x1) ≠ P(Y | X = x2)
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Direct Causation

X is a direct cause of Y relative to S, iff 
∃ z,x1 ≠ x2  P(Y | X set= x1 , Z set= z) 

≠ P(Y | X set= x2 , Z set= z)

where Z = S - {X,Y}

X Y
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Association

X and Y are associated iff 
∃ x1 ≠ x2 P(Y | X = x1) ≠ P(Y | X = x2)

X Y

X Y
X and Y are independent iff

X and Y are not associated
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Causal Graphs

Causal Graph G = {V,E} 
Each edge X → Y  represents a direct causal claim:

X is a direct cause of Y relative to V

Match
Struck

Match
Tip

Temperature

Match
Lights
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Modeling Ideal Interventions

Ideal Interventions (on a variable X):(on a variable X):(on a variable X):(on a variable X):

• Completely determine the value or 
distribution of a variable X

• Directly Target only X 
(no “fat hand”)
E.g., Variables: Confidence, Athletic Performance
Intervention 1: hypnosis for confidence
Intervention 2: anti-anxiety drug (also muscle relaxer)
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Teeth

Stains
Smoking

Pre-experimental SystemPost

Modeling Ideal Interventions

Interventions on the Effect
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Modeling Ideal Interventions

Teeth

Stains
Smoking

Pre-experimental SystemPost

Interventions on the Cause
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Interventions & Causal Graphs

• Model an ideal intervention by adding an “intervention” variable 
outside the original system

• Erase all arrows pointing into the variable intervened upon 

Exp Inf Rash

Intervene to change Inf

Post-intervention graph?Pre-intervention graph

Exp Inf Rash

I



15

Calculating the Effect of 
Interventions

Smoking [0,1]

Lung Cancer
[0,1]

Yellow Fingers
[0,1]

P(YF,S,L) = P(S) P(YF|S) P(L|S)

P(YF,S,L)m = P(S) P(YF|Manip) P(L|S)

Smoking [0,1]

Lung Cancer
[0,1]

Yellow Fingers
[0,1]

Manipulation

Replace pre-manipulation causes

with manipulation
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Calculating the Effect of 
Interventions

Smoking [0,1]

Lung Cancer
[0,1]

Yellow Fingers
[0,1]

P(YF,S,L) = P(S) P(YF|S) P(L|S)

P(YF,S,L) = P(S) P(YF|Manip) P(L|S)

Smoking [0,1]

Lung Cancer
[0,1]

Yellow Fingers
[0,1]

Manipulation

P(L|YF)

P(L| YF set by Manip)Probability
Calculus

Probability
Calculus
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Causal 
Structure

Statistical
Predictions

The Markov Condition

Causal Graphs

ZYX

Independence

X _||_ Z | Y

i.e.,

P(X | Y) = P(X | Y, Z)

Markov Condition
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Causal Markov Axiom

In a Causal Graph G, each variable V is

independent of its non-effects, 
conditional on its direct causes

in every probability distribution that G can 
parameterize (generate)
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Causal Graphs ⇒
Independence

Acyclic causal graphs: 
d-separation ⇔ Causal Markov axiom  

Cyclic Causal graphs:
• Linear structural equation models : d-separation, not

Causal Markov
• For some discrete variable models: d-separation, not 

Causal Markov
• Non-linear cyclic SEMs : neither
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Causal Structure ⇒ Statistical Data

X3 | X2X1

X2 X3X1

Causal MarkovAxiom
(D-separation)

Independence

AcyclicCausal Graph
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Causal Discovery
Statistical Data ⇒ Causal Structure

X3 | X2X1

X2 X3X1

Causal Markov Axiom
(D-separation)

Independence

Equivalence Class of
Causal Graphs

X2 X3X1

X2 X3X1

DiscoveryAlgorithm

Background Knowledge

e.g., X2 before X3
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Equivalence Classes

• D-separation equivalence
• D-separation equivalence over a set O
• Distributional equivalence
• Distributional equivalence over a set O

Two causal models M1 and M2 are distributionally equivalent
iff for any parameterization θ1 of M1, there is a 
parameterization θ2 of M2 such that M1(θ1) = M2(θ2), and 
vice versa.
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Equivalence Classes

For example, interpreted as SEM models 

M1 and M2 : d-separation equivalent & distributionally equivalent
M3 and M4    : d-separation equivalent & not distributionally equivalent

X1 X2

Μ1

X1 X2

ε1

Μ2

ε2

β12 β21
X1 X2

Μ3

ε'2ε'1

X3

ε'3

X1 X2

ε2ε1

X3

ε3 Τ3

Τ1

Τ2

Μ4
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D-separation Equivalence Over a set XXXX

Let X = {X1,X2,X3}, then Ga and Gb

1) are not d-separation equivalent, but

2) are d-separation equivalent over X

X3

T1

X2X1

X3

X2
X1 T2

Ga Gb
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D-separation Equivalence

D-separation Equivalence Theorem (Verma and 
Pearl, 1988)

Two acyclic graphs over the same set of variables 
are d-separation equivalent iff they have: 
• the same adjacencies
• the same unshielded colliders



26

Representations of
D-separation Equivalence Classes

We want the representations to:

• Characterize the Independence Relations 
Entailed by the Equivalence Class 

• Represent causal features that are shared 
by every member of the equivalence class
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Patterns & PAGs

• Patterns (Verma and Pearl, 1990): graphical 
representation of an acyclic d-separation 
equivalence - no latent variables.

• PAGs: (Richardson 1994) graphical 
representation of an equivalence class including
latent variable models and sample selection bias
that are d-separation equivalent over a set of 
measured variables X



28

Patterns

X2X1

X2X1

X2X1

X4X3

X2
X1

Possible Edges Example
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Patterns: What the Edges 
Mean

X2X1

X2X1
X1 → X2 in some members of the
equivalence class, and X2 → X1 in
others.

X1 → X2 (X1 is a cause of X2) in
every member of the equivalence
class.

X2X1
X1 and X2 are not adjacent in any

member of the equivalence class
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Patterns

X2

X4X3

X1

D-separation Equivalence Class

DAG

??????
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Patterns

X2

X4X3

X1

X2

X4X3

Represents

Pattern

X1 X2

X4X3

X1
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Patterns

X2 X3X1

Not

Represents

Pattern

X2 X3X1

X2 X3X1

X2 X3X1

X2 X3X1

Not all boolean combinations of orientations of
unoriented pattern adjacencies occur in the equivalence
class.
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PAGs: Partial Ancestral Graphs

X2X1

X2X1

X2X1

X2 There is a latent common
cause of X1 and X2

No set d-separates X2 and X1

X1 is a cause of X2

X2 is not an ancestor of X1

X1

X2X1 X1 and X2 are not adjacent

What PAG edges mean.
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PAGs: Partial Ancestral 
Graph

X 2

X 3

X 1

X 2

X 3

Represents

PAG

X 1 X 2

X 3

X 1

X 2

X 3

T1

X 1

X 2

X 3

X 1

etc.

T1

T1 T2
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Search Difficulties

z The number of graphs is super-exponential in 
the number of observed variables (if there are 
no hidden variables) or infinite (if there are 
hidden variables)

z Because some graphs are equivalent, can only 
predict those effects that are the same for every 
member of equivalence class
y Can resolve this problem by outputting equivalence 

classes
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What Isn’t Possible

z Given just data, and the Causal Markov 
and Causal Faithfulness Assumptions:
y Can’t get probability of an effect being within 

a given range without assuming a prior 
distribution over the graphs and parameters
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What Is Possible

z Given just data, and the Causal Markov 
and Causal Faithfulness Assumptions:
y There are procedures which are 

asymptotically correct in predicting effects (or 
saying “don’t know”)
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Overview of Search Methods

• Constraint Based Searches
• TETRAD

• Scoring Searches
• Scores: BIC, AIC, etc.
• Search:  Hill Climb, Genetic Alg., Simulated Annealing
• Very difficult to extend to latent variable models

Heckerman, Meek and Cooper (1999). “A Bayesian Approach to Causal 
Discovery” chp. 4 in Computation, Causation, and Discovery, ed. by
Glymour and Cooper, MIT Press, pp. 141-166
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Constraint-based Search

• Construct graph that most closely implies 
conditional independence relations found in 
sample

• Doesn’t allow for comparing how much better 
one model is than another

• It is important not to test all of the possible 
conditional independence relations due to speed 
and accuracy considerations – FCI search 
selects subset of independence relations to test
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Constraint-based Search

• Can trade off informativeness versus 
speed, without affecting correctness 

• Can be applied to distributions where 
tests of conditional independence are 
known, but scores aren’t

• Can be applied to hidden variable models 
(and selection bias models)

• Is asymptotically correct
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Search for Patterns

Adjacency:

•X and Y are adjacent if they are dependent conditional on
all subsets that don’t include X and Y

•X and Y are not adjacent if they are independent
conditional on any subset that doesn’t include X and Y
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Search

X4X3

X2

X1
Independencies entailed???
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Search

X4X3

X2

X1
Independencies entailed

X1 _||_ X2

X1_||_ X4 | X3

X2_||_ X4 | X3
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X1

X2

X3 X4

Causal
Graph

Independcies

Begin with:

X1

X2

X3 X4

X1 X2

X1 X4 {X3}

X2 X4 {X3}

Search: Adjacency
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X1

X2

X3 X4

Causal
Graph

Independcies

Begin with:

From

X1

X2

X3 X4

X1 X2

X1 X4 {X3}

X2 X4 {X3}

X1

X2

X3 X4

X1

X2

X3 X4

X1

X2

X3 X4

From

From

X1 X2

X1 X4 {X3}

X2 X4 {X3}
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Search: Orientation in Patterns

X Y Z

X Z | YX Z | Y

Before OrientationY Unshielded

Collider Non-collider

X Y Z

X Y Z

X Y Z

X Y Z

X Y Z
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Search: Orientation in PAGs

X Y Z

X Z| YX Z| Y

YUnshielded

Collider Non-collider

X Y Z X Y Z
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Orientation: Away from Collider

X3

X2

X1

X1 X3 | X2

1) X1 - X2 adjacent, and into X2.
2) X2 - X3 adjacent, and unoriented.
3) X1 - X3 not adjacent

No Yes

X3

X2

X1 X3

X2

X1

Test

Test Conditions
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Search: Orientation

X 4X 3

X 2

X 1

X 4X 3

X 2

X 1

X 4X 3

X 2

X 1

X 4X 3

X 2

X 1

X 4X 3

X 2

X 1

P A GP a tte rn

X 4X 3

X 2

X 1

X1 || X2

X1 || X4 | X3

X2 || X4 | X3

After Orientation
Phase
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Knowing when we know enough to 
calculate the effect of Interventions

Observation: IQ _||_ Lead
Background Knowledge: Lead prior to IQ

Exposure to
Lead

IQExposure to
Lead

IQ

SES

Exposure to
Lead

IQ

PAG

P(IQ | Lead) ≠ P(IQ | Lead set=) P(IQ | Lead) = P(IQ | Lead set=)
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Knowing when we know enough to 
calculate the effect of Interventions

Observation: All pairs associated
Lead _||_ Grades | IQ

Background Lead prior to IQ prior
Knowledge to Grades

Exposure to
Lead

IQ Grades

PAG

P(IQ | Lead) ≠ P(IQ | Lead set=)

P(Grades | IQ) = P(Grades | IQ set=)

Exposure to
Lead

IQ

SES

Grades
Exposure to

Lead
IQ Grades

P(IQ | Lead) = P(IQ | Lead set=)

P(Grades | IQ) = P(Grades | IQ set=)



52

Knowing when we know enough to 
calculate the effect of Interventions

• Causal graph known

• Features of causal graph known

• Prediction algorithm (SGS - 1993)

• Data tell us when we know enough –
i.e., we know when we don’t know
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4. Problems with Using
Regession for Causal 

Inference
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Regression to estimate 
Causal Influence

• Let V = {X,Y,T}, where 

- Y : measured outcome

- measured regressors: X = {X1, X2, …, Xn}
- latent common causes of pairs in X U Y: T = {T1, …, Tk}

• Let the true causal model over V be a Structural Equation 
Model in which each V ∈ V is a linear combination of its 
direct causes and independent, Gaussian noise.
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Regression to estimate 
Causal Influence

• Consider the regression equation:
Y = b0 +  b1X1 + b2X2 + ..…bnXn

• Let the OLS regression estimate bi  be the estimated causal 
influence of Xi on Y.  

• That is, holding X/Xi experimentally constant, bi is an estimate of 
the change in E(Y) that results from an intervention that changes
Xi by 1 unit.

• Let the real Causal Influence Xi → Y = βi

• When is the OLS estimate bi an unbiased estimate of the the real
Causal Influence Xi → Y = βi  ?
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Regression vs. PAGs to estimate 
Qualitative Causal Influence

• bi  = 0  ⇔ Xi _||_ Y | X/Xi

• Xi - Y  not adjacent 
in PAG over X U Y ⇔ ∃ S ⊆⊆⊆⊆ X/Xi, Xi _||_ Y | S

• So for any SEM over V in which
• Xi _||_ Y | X/Xi and

• ∃ S ⊂⊂⊂⊂ X/Xi, Xi _||_ Y | S

PAG is superior to regression wrt errors of commission
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Regression Example

X2

Y

X3X1

T1

True Model

T2

X2

Y

X3X1

PAG

b1

b2

b3

≠ 0 !

≠ 0 X

≠ 0 X
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Regression Bias

If
• Xi is d-separated from Y conditional on  X/Xi

in the true graph after removing Xi → Y, and 
• X contains no descendant of Y, then:

bi is an unbiased estimate of βi

See “Using Path Diagrams ….”
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Regression Bias Theorem

If T = ∅ , and X prior to Y, then 

bi is an unbiased estimate of βi
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Tetrad 4 Demo

www.phil.cmu.edu/projects/tetrad
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Applications

• Genetic Regulatory Networks
• Pneumonia
• Photosynthesis
• Lead - IQ 
• College Retention
• Corn Exports

• Rock Classification
• Spartina Grass
• College Plans
• Political Exclusion
• Satellite Calibration
• Naval Readiness



Projects: Extending the 
Class of Models Covered

1) Feedback systems

2) Conservation, or equilibrium systems

3) Parameterizing discrete latent variable
models



Projects: Search Strategies

1) Genetic Algorithms, Simulated Annealing

2) Automatic Discretization

3) Scoring Searches among Latent Variable Models

4) Latent Clustering & Scale Construction (Ricardo Silva)
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