Learning Virtual Sensors for Cognitive States (10-702 Lecture 1/13/03)

Tom M. Mitchell
Rebecca Hutchinson, Marcel Just,
Sharlene Newman, Francisco Pereira,
Radu Niculescu, Xuerui Wang

Paper draft available: www.cs.cmu.edu/~tom/nips02.ps

Can we train classifiers to decode instantaneous cognitive state?

- -> virtual sensors for cognitive states
- much analysis of average fMRI response
- little consideration of this question!

Classifiers for Cognitive States

Difficult!

- -Data very noisy
- -High dimensional
- -Sparse training data

AM MA

Approach

• Learn $fMRI(t,...,t+k) \rightarrow CognitiveState$

- Classifiers:
 - Gaussian Naïve Bayes, SVM, kNN
- Feature selection/abstraction
 - Select subset of voxels (by signal, by anatomy)
 - Select subinterval of time
 - Average activities over space, time
 - Normalize voxel activities

– ...

Study 1: Word Categories

[Francisco Pereira]

- Family members
- Occupations
- Tools
- Kitchen items
- Dwellings
- Building parts

- 4 legged animals
 - Fish
- Trees
- Flowers
- Fruits
- Vegetables

Word Categories Study

- Ten neurologically normal subjects
- Stimulus:
 - 12 blocks of words:
 - Category name (2 sec)
 - Word (400 msec), Blank screen (1200 msec); answer
 - Word (400 msec), Blank screen (1200 msec); answer
 - •
 - Subject answers whether each word in category
 - 32 words per block, nearly all in category
 - Category blocks interspersed with 5 fixation blocks

Training Classifier for Word Categories

Learn $fMRI(t) \rightarrow word\text{-category}(t)$

- fMRI(t) = 8470 to 11,136 voxels, depending on subject

Feature selection: Select n voxels

- Best single-voxel classifiers
- Strongest contrast between fixation and some word category
- Strongest contrast, spread equally over ROI's
- Randomly

Training method:

- train ten single-subect classifiers
- Gaussian Naïve Bayes \rightarrow P(fMRI(t) | word-category)

Results

Classifier outputs ranked list of classes

Evaluate by the fraction of classes ranked ahead of true class

0=perfect, 0.5=random, 1.0 unbelievably poor

Experiment	A	В	С	D	E	F	G	Н	I	J
12 classes	0.13	0.17	0.04	0.12	0.06	0.069	0.2	0.04	0.14	0.05
6 classes	0.45	0.52	0.4	0.5	0.42	0.38	0.52	0.35	0.50	0.29

Try abstracting 12 categories to 6 categories

e.g., combine "Family Members" with "Occupations"

Impact of Feature Selection

Feature Selection Method	A	В	C	D	E	F	G	Н	I	J
Feature Average Rank	0.11	0.18	0.04	0.12	0.065	0.085	0.20	0.047	0.13	0.054
Activity p-value	0.049	0.042	0.024	0.07	0.029	0.032	0.049	0.02	0.078	0.013
Activity p-value per ROI	0.13	0.15	0.051	0.12	0.058	0.068	0.13	0.039	0.15	0.042
Random	0.14	0.18	0.065	0.13	0.072	0.082	0.22	0.052	0.15	0.059
Use all voxels	0.13	0.17	0.044	0.12	0.058	0.069	0.2	0.043	0.14	0.05

(a) Distribution of discriminating voxels for subject I (the more red the better)

(b) Overlap (red) of the active (yellow) and discriminating (blue) 1200 voxel subsets for sub. I

(c) Distribution of discriminating voxels for subject J (the more red the better)

(d) Overlap (red) of the active (yellow) and discriminating (blue) 1200 voxel subsets for sub. J

(c) Distribution of discriminating voxels for subject J (the more red the better)

(a) Distribution of discriminating voxels for subject I (the more red the better)

[Haxby et al., 2001]

(c) Distribution of discriminating voxels for subject J (the more red the better)

Study 1: Summary

- Able to classify single fMRI image by word category block
- Feature selection important
- Is classifier learning word category or something else related to time?
 - Accurate across ten subjects
 - Relevant voxels in similar locations across subjs
 - Locations compatible with earlier studies

What We'd Like

19

Challenge: virtual sensors to track sequence of cognitive states

