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Today’s Agenda

High-level view

Sufficient statistics

Data processing inequality (no free statistical lunch)
Estimators: Bias, variance, Cramér-Rao

Exponential families



Supervised vs. Unsupervised Learning

Have a sequence (or set) of inputs x,xs,x3,...,,
“naturally” occuring, collected by hand, or generated by
machine

Supervised Learning: Machine is given desired outputs
v1,Y2, Y3, ..., and goal I1s to learn to produce the correct
output given a new input. This doesn’t specify how “correct”
should be assessed... Distinction between classification
(discrete y;) and regression (continuous v;).

Unsupervised Learning: Goal is to build representations
of x that can be used for reasoning, decision making,
predicting, communicating, etc. Task is often not well
specified.



Supervised vs. Unsupervised Learning  (cont.).

Semi-Supervised: Same as supervised, but some of the
values y; are missing in the training set, and the unlabeled
r’s are incorporated.



Inference vs. Learning

Estimation/Learning: Selecting parameters, a distribution
over parameters, or a set of cdf’s for a statistical problem
based on data.

Inference:  Making predictions, computing statistics,
expectations, or marginal probabilities for a statistical
model that has already been estimated/learned.



Parameters

A statistical family with a finite collection of adjustable
parameters is the starting point for a parametric estimation
problem.

If there are an infinite number of adjustable parameters—
typically entire functions or cdf’s, then the problem (or
approach) is said to be non-parametric.



Parametric vs. Non-Parametric

This can be confusing, since often “non-parametric”
problems seem to have many more “parameters” than a
typical parametric problem.

Non-parametric approaches make fewer assumptions
about the form or “shape” of the distribution being
estimated.

However, the distinction is sometimes subtle (e.g., neural
nets)



A Simple Estimator

Suppose that X, X5, ..., X, ~ N (6,1) (iid).

We want to determine 6 from the sample. Two options:

1. X4, since clearly E(X;) =6

2. X, =1(X1+ X2+ -+ X,). Also mean 6

Which is better? Well, depends what “good” means. In

fact, X,, is the minimum mean squared error unbiased
estimator.

Role of computation is not emphasized Iin classical
statistics...



Sufficiency

Suppose X; ~ f(-|0),for6 € © C R™.

A statistic is just a function of the sample: T(X1,..., X,).
It's a random variable.

Supose there is a statistician and a computer scientist. The
statistician has all of the data X;,...,X,,. The computer
scientist only keeps a “hash” of the data T'( X, ..., X,).

Who can make better estimates of 6, or in general make
better inferences?



Sufficiency (cont)

In general, the statistician can do better, but if 7" is a
sufficient statistic then the computer scientist will be able

to do just as well.

In this case, intuitively, T'(X,...,X,) contains all of the
“information” in the sample about 6, and the individual

values are irrelevant.

(We’'ll give a precise meaning to this later...)



Example 1: Bernoulli

X1, Xo,...,X,, are n coin tosses. X; ~ Bernoulli().

Given n, the number of “heads” is a sufficient statistic for 6.

( ]
)

Pr(X;=u;|n,T(X)=k) = {(
\O otherwise

More generally, for a multinomial 8 = (p1,p2,...,p:), the
vector of counts (ni,...,n:) is sufficient, where n, =

Z?ﬂ 0(z; =1).
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Example 2: Gaussian

Take |
_ ~5(==0)" _ Ar(9.1
f@(il?) \/%6 N( ’ )

A sufficient statistic is X, = + 3. X;.

X, and = > .(X; — X,,)? are sufficient for 4, and ¢ if § =
(1, 72).
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Example 2: Uniform

Take
X; ~ Uniform(0, 9)

A sufficient statistic is T'( X4, ..., X, ) = max; X;.
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Neyman Factorization Criterion

A statistic T'( X4, ..., X,,) is sufficient for ¢ if and only if the
joint pdf can be factored as

fo(x|0) = u(z) v(T((2),0))
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Information

Now let’s go back and give a precise meaning to “all of the
relevant information about 6 is in the sufficient statistic”

So far, we’ve only been thinking of A; as random, not 6.
We'll now need to treat ¢ as a random variable.
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Data Processing Inequality

“No clever manipulation of the data can improve the
Inferences that can be made from the data.”

Note: this is a statement about statistics, not computation
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Information Theory Concepts

For a discrete distribution pq, ps, ..., p,, Or random variable
X with p(X = ;) = p;, entropy
= — Y pilog,p;
1=1

In bits of information.

Conditional entropy H(X |Y) is

HX|Y) = Zp H(X|Y =y)

- Zp(y) > plz|y)logyp(z|y)
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Information Theory Concepts (cont)

Mutual information 7(X;Y")

I[(X;Y) = H(X)—HX|Y)

= H(Y)-H(Y|X)

B N o p(z,y)
B ;;p( )1 ®p(@) p(y)

Informally, “the average value of a hint.” Amount by which
knowing X reduces the average code length needed to
compress Y.
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Markov Chains

X — 'Y — Z forms a Markov chain in case the
conditional distribution of Z is independent of X.

Equivalently, In case X and Z are conditionally

iIndependent given Y. Note: “time” symmetric

(Concept extends to spatial processes, or “random fields”)
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Data Processing Inequality

If X — Y — Z is a Markov chain, then
I(X;Y) > 1(X;Z)
In particular, since X — Y — g(Y),

I(X;Y) > I(X;9(Y))
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Sufficiency Revisited

Since ® — X — T'(X) is a Markov chain, we have that
1(0; X) > 1(6; T(X)).

However, if © — T(X) — X is a Markov chain also, i.e.,
T'(X) is sufficient, then we have equality:

1(6;T(X)) =1(0; X)

(Historical note: Notion of sufficiency due to Fisher; Formulation in
terms of mutual information due to Kullback.)
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Estimation: Basic Concepts

Point estimation: choose a single parameter 6 or cdf, or
other prediction.

A

Note: 6 Is a random variable, since it is a function of the
data (which is random):

O = g(X1,Xo,..., X,

where g represents an algorithm for computing the point
estimate.
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Bias

The bias of a point estimator is
bias(0,) = Ep]
An estimator is unbiased If
Er[0,] =0

where X, X5, ..., X,, areiid ~ F.

n) —0
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Consistency

A point estimate of a parameter 6 is consistent if
0, — 0 (in probability)

The standard error is the standard deviation of 4,

se(f,) = \/EF(én — Ep(6,))?

For an unbiased estimator this is

se(d,) = \/Er(6, —0)2

Note that since the expectation Is the “true” expectation
over the data, this is in general impossible to compute.
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Example

Let X; ~ Bernoulli(6).

satisfies

so this I1s an unbiased estimate of 6.
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Example (cont.)

The standard error Is

se(f,) = \ E <<%ZXZ>2 - 92>
_ \/9(1 — 0)

and so can’'t be computed. The estimated standard error is
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Mean Squared Error

The mean squared error (MSE) of an estimator is
E[(0n, — 0)°]
Another way of looking at this is

MSE = [(én )2]
= E[((0, — E[6x))* + (E[0.] - 6))?]
— Var(f,) + bias®(,,)

Fundamental tradeoff.
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Asymptotically Normal

An estimator Is asymptotically normal in case

0, — 0

se(@.) ~ N(0,1)
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Point Estimation for Parametric Families

We have a family F = { fo(x),0 € ©} and want to estimate
certain parameters of interest.
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Maximum Likelihood

The most commonly used method for point estimation.

Given a family 7 = {f(z|6)} and data X, X, ..

likelihood function is defined as

and the log-likelihood function is given by

ln(0) = log L,(0)
= Zlogf(Xz-\é’)

., Xp, the
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Maximum Likelihood

The maximum likelihood estimator Is
) = argmaxg/ly, (6)

(whenever this exists)
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What is the Best Possible Estimator?

What is the minimum variance of an (unbiased) estimator
of 67

Take f(x|60) where 6 € R (1-dimensional for simplicity).

Let’s look at the change in log-likelihood as a function of 6.
The score s(X, 0) is defined as

0
$(X,0) = 55log f(X[0)

This has mean zero (with respect to f(-|6))

31



Fisher Information and Cram ér-Rao
Fisher information iIs the variance of the score:
J(0) = Ep(s?)

9 2
Ey ((99 log f(X | 9))

Basic additivity property: The Fisher information of n iid
samples is nJ(0).

Crameér-Rao Inequality: The mean-squared error of any
unbiased estimator T'(X) for 6 satisfies

Eyo(T — 6)* = Var(T) > ﬁ

32



Example: Gaussian

Let X4,...,X,, ~N(6,0%) where o is known.

It's easy to compute that J(0) = .

The sample mean meets the Crameér-Rao lower bound:

It Is an efficient estimator
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Asymptotic Normality of the MLE

Under some regularity conditions, the MLE is asymptotically
normal, with standard error given by the inverse Fisher
iInformation:

(0 - 6)
V1/nJ(6)

This enables us to compute asymptotic confidence
Intervals

~ N(0,1)
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Different Emphasis for Estimation/Learning

Traditional Statistics

Machine Learning

consistency
bias

statistical efficiency

computational efficiency

computational efficiency
statistical efficiency
bias

consistency
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