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Today’s Agenda

• High-level view

• Sufficient statistics

• Data processing inequality (no free statistical lunch)

• Estimators: Bias, variance, Cramér-Rao

• Exponential families
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Supervised vs. Unsupervised Learning

Have a sequence (or set) of inputs x1, x2, x3, . . . ,,
“naturally” occuring, collected by hand, or generated by
machine

Supervised Learning: Machine is given desired outputs
y1, y2, y3, . . ., and goal is to learn to produce the correct
output given a new input. This doesn’t specify how “correct”
should be assessed... Distinction between classification
(discrete yi) and regression (continuous yi).

Unsupervised Learning: Goal is to build representations
of x that can be used for reasoning, decision making,
predicting, communicating, etc. Task is often not well
specified.
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Supervised vs. Unsupervised Learning (cont.).

Semi-Supervised: Same as supervised, but some of the
values yi are missing in the training set, and the unlabeled
x′is are incorporated.
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Inference vs. Learning

Estimation/Learning: Selecting parameters, a distribution
over parameters, or a set of cdf’s for a statistical problem
based on data.

Inference: Making predictions, computing statistics,
expectations, or marginal probabilities for a statistical
model that has already been estimated/learned.
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Parameters

A statistical family with a finite collection of adjustable
parameters is the starting point for a parametric estimation
problem.

If there are an infinite number of adjustable parameters–
typically entire functions or cdf’s, then the problem (or
approach) is said to be non-parametric.
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Parametric vs. Non-Parametric

This can be confusing, since often “non-parametric”
problems seem to have many more “parameters” than a
typical parametric problem.

Non-parametric approaches make fewer assumptions
about the form or “shape” of the distribution being
estimated.

However, the distinction is sometimes subtle (e.g., neural
nets)
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A Simple Estimator

Suppose that X1, X2, . . . , Xn ∼ N (θ, 1) (iid).

We want to determine θ from the sample. Two options:

1. X1, since clearly E(X1) = θ

2. Xn = 1
n(X1 + X2 + · · ·+ Xn). Also mean θ

Which is better? Well, depends what “good” means. In
fact, Xn is the minimum mean squared error unbiased
estimator.

Role of computation is not emphasized in classical
statistics...
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Sufficiency

Suppose Xi ∼ f(· | θ), for θ ∈ Θ ⊂ Rm.

A statistic is just a function of the sample: T (X1, . . . , Xn).
It’s a random variable.

Supose there is a statistician and a computer scientist. The
statistician has all of the data X1, . . . , Xn. The computer
scientist only keeps a “hash” of the data T (X1, . . . , Xn).

Who can make better estimates of θ, or in general make
better inferences?
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Sufficiency (cont.)

In general, the statistician can do better, but if T is a
sufficient statistic then the computer scientist will be able
to do just as well.

In this case, intuitively, T (X1, . . . , Xn) contains all of the
“information” in the sample about θ, and the individual
values are irrelevant.

(We’ll give a precise meaning to this later...)
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Example 1: Bernoulli

X1, X2, . . . , Xn are n coin tosses. Xi ∼ Bernoulli(θ).

Given n, the number of “heads” is a sufficient statistic for θ.

Pr(Xi = xi |n, T (X) = k) =





1

(n
k)

if
∑

i xi = k

0 otherwise

More generally, for a multinomial θ = (p1, p2, . . . , pt), the
vector of counts (n1, . . . , nt) is sufficient, where nj =∑n

i=1 δ(xj = i).
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Example 2: Gaussian

Take
fθ(x) =

1√
2π

e−
1
2(x−θ)2 = N (θ, 1)

A sufficient statistic is Xn = 1
n

∑
i Xi.

Xn and 1
n

∑
i(Xi − Xn)2 are sufficient for µ and σ2 if θ =

(µ, σ2).
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Example 2: Uniform

Take
Xi ∼ Uniform(0, θ)

A sufficient statistic is T (X1, . . . , Xn) = maxi Xi.
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Neyman Factorization Criterion

A statistic T (X1, . . . , Xn) is sufficient for θ if and only if the
joint pdf can be factored as

fn(x | θ) = u(x) v(T ((x), θ))
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Information

Now let’s go back and give a precise meaning to “all of the
relevant information about θ is in the sufficient statistic”

So far, we’ve only been thinking of Xi as random, not θ.
We’ll now need to treat θ as a random variable.
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Data Processing Inequality

“No clever manipulation of the data can improve the
inferences that can be made from the data.”

Note: this is a statement about statistics, not computation
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Information Theory Concepts

For a discrete distribution p1, p2, . . . , pn, or random variable
X with p(X = xi) = pi, entropy

H(p) = −
n∑

i=1

pi log2 pi

in bits of information.

Conditional entropy H(X |Y ) is

H(X |Y ) =
∑

y

p(Y = y)H(X |Y = y)

= −
∑

y

p(y)
∑

x

p(x | y) log2 p(x | y)
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Information Theory Concepts (cont.)

Mutual information I(X; Y )

I(X; Y ) = H(X)−H(X |Y )

= H(Y )−H(Y |X)

=
∑
x,y

p(x, y) log
p(x, y)

p(x) p(y)

Informally, “the average value of a hint.” Amount by which
knowing X reduces the average code length needed to
compress Y .
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Markov Chains

X −→ Y −→ Z forms a Markov chain in case the
conditional distribution of Z is independent of X.

Equivalently, in case X and Z are conditionally
independent given Y . Note: “time” symmetric

(Concept extends to spatial processes, or “random fields”)
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Data Processing Inequality

If X −→ Y −→ Z is a Markov chain, then

I(X; Y ) ≥ I(X; Z)

In particular, since X −→ Y −→ g(Y ),

I(X; Y ) ≥ I(X; g(Y ))
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Sufficiency Revisited

Since Θ −→ X −→ T (X) is a Markov chain, we have that
I(Θ;X) ≥ I(Θ;T (X)).

However, if Θ −→ T (X) −→ X is a Markov chain also, i.e.,
T (X) is sufficient , then we have equality:

I(Θ;T (X)) = I(Θ;X)

(Historical note: Notion of sufficiency due to Fisher; Formulation in

terms of mutual information due to Kullback.)
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Estimation: Basic Concepts

Point estimation: choose a single parameter θ̂ or cdf, or
other prediction.

Note: θ̂ is a random variable, since it is a function of the
data (which is random):

θ̂n = g(X1, X2, . . . , Xn)

where g represents an algorithm for computing the point
estimate.

21



Bias

The bias of a point estimator is

bias(θ̂n) = EF [θ̂n]− θ

An estimator is unbiased if

EF [θ̂n] = θ

where X1, X2, . . . , Xn are iid ∼ F .
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Consistency

A point estimate of a parameter θ is consistent if

θ̂n −→ θ (in probability)

The standard error is the standard deviation of θ̂n:

se(θ̂n) =
√

EF (θ̂n − EF (θ̂n))2

For an unbiased estimator this is

se(θ̂n) =
√

EF (θ̂n − θ)2

Note that since the expectation is the “true” expectation
over the data, this is in general impossible to compute.
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Example

Let Xi ∼ Bernoulli(θ).

θ̂n =
1
n

n∑

i=1

Xi

satisfies

E[θ̂n] =
1
n
· nθ = θ

so this is an unbiased estimate of θ.
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Example (cont.)

The standard error is

se(θ̂n) =

√√√√E

((
1
n

∑
Xi

)2

− θ2

)

=

√
θ(1− θ)

n

and so can’t be computed. The estimated standard error is

ŝe =

√
θ̂n(1− θ̂n)

n
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Mean Squared Error

The mean squared error (MSE) of an estimator is

E[(θ̂n − θ)2]

Another way of looking at this is

MSE = E[(θ̂n − θ)2]

= E[((θ̂n − E[θ̂n])2 + (E[θ̂n]− θ))2]

= Var(θ̂n) + bias2(θ̂n)

Fundamental tradeoff.
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Asymptotically Normal

An estimator is asymptotically normal in case

θ̂n − θ

se(θ̂n)
; N (0, 1)
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Point Estimation for Parametric Families

We have a family F = {fθ(x), θ ∈ Θ} and want to estimate
certain parameters of interest.
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Maximum Likelihood

The most commonly used method for point estimation.
Given a family F = {f(x | θ)} and data X1, X2, . . . , Xn, the
likelihood function is defined as

Ln(θ) =
∏

i

f(Xi | θ)

and the log-likelihood function is given by

`n(θ) = logLn(θ)

=
∑

i

log f(Xi | θ)
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Maximum Likelihood

The maximum likelihood estimator is

θ̂ = argmaxΘ`n(θ)

(whenever this exists)
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What is the Best Possible Estimator?

What is the minimum variance of an (unbiased) estimator
of θ?

Take f(x | θ) where θ ∈ R (1-dimensional for simplicity).

Let’s look at the change in log-likelihood as a function of θ.
The score s(X, θ) is defined as

s(X, θ) =
∂

∂θ
log f(X | θ)

This has mean zero (with respect to f(· | θ))
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Fisher Information and Cram ér-Rao

Fisher information is the variance of the score:

J(θ) = Eθ(s2)

= Eθ

(
∂

∂θ
log f(X | θ)

)2

Basic additivity property: The Fisher information of n iid
samples is nJ(θ).

Cramér-Rao Inequality: The mean-squared error of any
unbiased estimator T (X) for θ satisfies

Eθ(T − θ)2 = Var(T ) ≥ 1
J(θ)
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Example: Gaussian

Let X1, . . . , Xn ∼ N (θ, σ2) where σ is known.

It’s easy to compute that J(θ) = 1
σ2.

The sample mean meets the Cramér-Rao lower bound:

Eθ(Xn − θ)2 =
σ2

n
=

1
Jn(θ)

It is an efficient estimator
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Asymptotic Normality of the MLE

Under some regularity conditions, the MLE is asymptotically
normal, with standard error given by the inverse Fisher
information:

(θ̂ − θ)√
1/nJ(θ)

; N (0, 1)

This enables us to compute asymptotic confidence
intervals
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Different Emphasis for Estimation/Learning

Traditional Statistics Machine Learning

consistency computational efficiency

bias statistical efficiency

statistical efficiency bias

computational efficiency consistency
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