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Introduction and Background 

 

Artificial Intelligence (AI) refers to a field of endeavor as well as a constel- 

lation of technologies. The Association for the Advancement of AI (AAAI) 

defines the field as pursuing “the scientific understanding of the mecha- 

nisms underlying thought and intelligent behavior and their embodiment 

in machines.” AI encompasses the development of methods for learning 

from data, representing knowledge, and performing reasoning aimed at 

building computer systems capable of performing tasks that typically have 

required human intelligence. Core capabilities covered in AI research in- 

clude methods for learning, reasoning, problem-solving, planning, language 

understanding, and visual perception. Over the last twenty years, AI re- 

search transitioned from a niche scientific endeavor to an impactful set of 

technologies. We provide in this overview chapter a brief history of the evo- 

lution of AI as a discipline over nearly seven decades. Then, we review re- 

cent advances and directions. This arc through history, present, and the 

expected near future was commissioned to provide a February 2024 snap- 

shot of the state of AI in support of a series of meetings on AI and the sci- 

ences that was organized by the National Academy of Sciences and the 

Annenberg Trust. 
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Birth and Evolution of Scientific Field 

 

The prospect of automating aspects of human thinking via mechanical sys- 

tems has been considered for hundreds of years. Modern metaphors and 

framing of thinking as a computational process have roots in the early twen- 

tieth century. Key contributions to the perspective of thinking as comput- 

ing include the theoretical work of Alan Turing on computability,1 efforts 

by John von Neuman, Turing, and others to construct general-purpose com- 

puting systems,2 and work on computational abstractions of neuronal sys- 

tems by McCollough and Pitts.3 The 1940s saw the rise of discussions and 

publications viewing the computer as a metaphor for the brain, including 

control-theoretic notions referred to as cybernetics.4 

The modern discipline of AI, per the establishment of a long-standing 

set of aspirations, harkens back to a research project proposal for a sum- 

mer workshop held at Dartmouth College in 1956.5 The proposal, coau- 

thored by John McCarthy, Marvin Minsky, Nathaniel Rochester, and 

Claude Shannon, outlined a new field of studying how machines could be 

programmed to perform “every aspect of learning or any other feature of 

intelligence.” Containing the first use of the phrase artificial intelligence, the 

proposal described goals of finding “how to make machines use language, 

form abstractions and concepts, solve kinds of problems now reserved for 

humans, and improve themselves.” The summer study is considered as the 

formal launch of AI as a distinct field of scientific inquiry, setting the foun- 

dation for decades of research in computer science. 

The maturation of the AI research program saw the evolution of a set of 

AI subdisciplines with overlapping but distinct research communities, in- 

cluding natural language understanding, problem-solving, planning, vision, 

robotics, and machine learning. Research areas and communities also 

formed around distinct foundational approaches to building AI, such as 

logical reasoning and representations, reasoning under uncertainty with 

statistical methods, and the use of neural network models versus high- 

level symbols—a domain of research that had been referred to for decades 

as connectionist approaches. Further, advances and questions in AI have 

stimulated efforts in other disciplines, such as cognitive psychology, 

where cognitive science refers to a subdiscipline of both AI and cognitive 
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psychology that centers on taking inspiration from studies, data, and 

questions about human cognition to build systems that can perform auto- 

mated learning and reasoning, and on using computational approaches to 

modeling and probing human psychological processes.6 

 

 
Representations and Reasoning Mechanisms 

 

Scientific studies of AI are best understood in terms of the technical evolu- 

tion of different approaches to representing and reasoning with data and 

knowledge. In the early days of the field, representations and reasoning 

methods included the use of neural networks, early-on referred to as per- 

ceptrons in work on learning to recognize visual patterns,7 and symbolic 

logic applied in both specific instances and in attempts to build general ar- 

chitectures for problem-solving.8 Symbolic representations dominated the 

first several decades of AI research with efforts in statistical methods, in- 

cluding neural networks, continuing but largely taking a backstage posi- 

tion. Work in logic-based systems included rule-based expert systems that 

came to focus of attention in the 1970s and 1980s. These systems were aimed 

at capturing specialist knowledge in sets of compact logical rules (e.g., if- 

then rules) that would be used to compose chains of inferences within an 

architecture referred to as a production system.9 

In a paradigm shift in the mid-1980s, attention began to shift from logic- 

based methods to statistical approaches for handling uncertainties associ- 

ated with the complexity of real-world problems, such as applications in 

medical diagnosis and decision support. Representation and reasoning ma- 

chinery were developed for harnessing probability theory and decision 

theory,10 including Bayesian networks11 and, more generally, probabilistic 

graphical models.12 Systems were developed using these probabilistic repre- 

sentations for making inferences, such as inferring medical diagnoses from 

information about a patient’s illness, sets of symptoms, and lab results. In 

some systems, the collection of additional information to help refine con- 

clusions or diagnoses was guided by computing the expected value of infor- 

mation of additional observations, tests, or data.13 In addition, AI research 

scientists began to incorporate and extend techniques developed in the 
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related disciplines of Operations Research, such as Markov decision pro- 

cesses to support sequential decisions.14
 

Despite the rise and fall of excitement in different methods, efforts have 

continued within and across multiple fundamental representation and rea- 

soning methods. For example, today’s successes and focus of attention on 

large-scale neural networks extends in a recognizable line from the nascent 

work in the early 1960s on perceptrons to the most recent developments with 

methods and systems based on neural networks. Today, studies of symbolic 

reasoning methods continue, including on mechanisms for integrating 

symbolic reasoning with neural models to bolster their abilities to perform 

logic and more general mathematics.15
 

 

 

Machine Learning: Foundation of Today’s AI 

 

Machine learning involves algorithms that enable computers to automati- 

cally improve their performance at some task through experience. Often 

that experience takes the form of a large dataset (e.g., in systems that learn 

to classify which new credit card transactions are likely to be legitimate ver- 

sus fraudulent) by training on large historical datasets of transactions 

where the correct classification is known in retrospect. In other cases, train- 

ing experience may involve active experimentation, as in AI systems that 

learn to play games by using their evolving current best strategy to play 

against itself, to collect data on which game moves produce a win. Break- 

throughs in AI over the last fifteen years are largely attributable to advances 

in machine learning. Today, machine learning is viewed as foundational to 

the field as AI moves into the future. 

Beyond the aforementioned early research with perceptrons, today’s sci- 

entific studies of machine learning extend back to numerous early efforts 

with learning from data or experience. Such efforts include game-playing 

systems in chess and checkers and research efforts that laid out surprisingly 

modern sets of concepts, flows, and architectures for machine learning.16 

For example, research on the Pandemonium system by Oliver Selfridge 

called out principles of salient feature discovery and the use of multiple lev- 

els of representation.17
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Machine learning research accelerated in the late-1990s. During that 

time, algorithmic advances, construction of prototypes, and undertaking 

of empirical studies were catalyzed by the fast-paced rise in computing 

power and data storage capabilities, along with the explosion in the quan- 

tity of online data available for research and development. In the mid-1990s, 

large amounts of data started to become available via precipitous drops in 

cost of storage, new data capture technologies, and the massive quantity of 

content and behavioral data coming with the growth of the web. 

A tapestry of machine learning methods has been developed over the 

last thirty years, many extending methods in traditional statistical analy- 

ses to handling datasets with larger numbers of variables and cases and fre- 

quently aimed at solving aspirational goals of AI. Enabling advances 

include methods developed in the late 1980s and early 1990s for directly 

learning probabilistic graphical models from data18 and for enhancing the 

efficiency and capabilities of neural network constructions.19
 

Particularly important to where we are today with the science of AI— 

and powering the fast-paced progress in research and development—are sci- 

entific advances with harnessing multilayered neural networks that came 

to be referred to as a methodology named deep learning. Advances in deep 

learning have propelled AI to unprecedented levels of capabilities and util- 

ity. Innovations, stemming back decades, include the method of back- 

propagation for tuning multilayered neural networks with data20 and 

convolution,21 an approach to pooling complex signals into higher-level 

abstractions. 

 

 
Discriminative and Generative Models 

 

Machine learning methods can be broadly divided into two main capabili- 

ties, discriminative AI and generative models, each with distinct objectives 

and application categories. Discriminative models take as input the descrip- 

tion of some item and outputs a label, or classification, of the item. For 

example, in the case of a junk email filter, a discriminative model learns 

to label each input email as either spam or non-spam by analyzing fea- 

tures derived from the email. These discriminative models directly use 
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the features of the input data to make predictions or classifications, focus- 

ing on the relationship between the input data and its corresponding labels. 

Discriminative models span classic statistical models of logistic regres- 

sion, algorithms for learning classifiers from tabular data, and deep learn- 

ing for diagnosis and classification. Examples of discriminative models 

include leveraging labeled data drawn from electronic health record systems 

to predict readmission,22 sepsis,23 and the onset of infection24 in hospital- 

ized patients. 

Generative models have been front and center in the recent excitement 

about AI and its applications. Such models replicate the process by which 

data is generated. By learning the probability distribution of output features 

given input features, generative models can create and output new data in- 

stances that resemble the training data (in contrast to the labels output by 

discriminative models). Multiple methods have been used in generative 

AI, including techniques named generative adversarial networks (GANs), 

variational autoencoders (VAEs), diffusion modeling, and more recently, 

transformers that yield exciting capabilities of generative AI models. Gen- 

erative models trained on images are now being used to generate novel 

imagery, as has become popularized in the DALL-E and Midjourney ap- 

plications. Beyond images, generative methods are being used in a wide 

range of applications, including the structure and design of protein se- 

quences and the performing of scientific simulations. 

 

 
Supervised, Unsupervised, and Self-Supervised Learning 

 

The training procedures by which models are constructed in machine learn- 

ing can be broadly categorized into supervised, unsupervised, and self- 

supervised learning. Supervised learning relies on labeled datasets. The use 

of such curated data has been the basis of significant advancements in ar- 

eas like medical diagnosis, image analysis, and speech recognition. Unsu- 

pervised learning refers to methods that find patterns in data without explicit 

labeling. Traditional variants of these methods include clustering and 

anomaly detection, which have been particularly useful in exploratory data 

analysis. 
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Over the last decade, a special form of unsupervised learning,25 named 

self-supervised learning, has become very important. Self-supervision is a 

simple yet powerful idea that has enabled AI systems to learn from vast un- 

labeled datasets, such as massive corpora, crawled from across the web. 

One approach to self-supervision is to generate labels automatically by a “fill 

in the blanks” process of hiding words in text or other types of tokens in 

datasets and then trying to predict the hidden information. As an exam- 

ple, a model might predict the next word in a sentence or the next frame in 

a video sequence based on previous words or frames. 

Self-supervised learning represents a significant shift in machine learn- 

ing, moving away from heavy reliance on human-labeled data. This para- 

digm is unlocking new possibilities across various fields, enabling models 

to learn from vast untapped datasets and driving innovation in areas where 

labeled data is scarce or expensive to obtain. 

 

 

Inflection Point for AI: Deep Learning 

 

We are now experiencing an inflection in AI with an acceleration in the rate 

of innovation. The acceleration is largely attributable to advances in research 

and development with deep neural networks (DNNs) over the last decade. 

Excitement about the potential of DNNs was sparked by surprising 

results in speech recognition, natural language processing, and machine 

vision. In 2009, DNN methods surprised the community with an unexpected 

reduction in word error recognition rates challenging conversational speech 

recognition tasks, including one named Switchboard.26 Progress on the 

Switchboard benchmark had essentially plateaued for over a decade when 

progress was made with a DNN approach. Shortly after these gains in speech 

recognition, another DNN model named AlexNet was developed and dem- 

onstrated to perform with surprising capability on an object recognition 

challenge dataset named ImageNet.27
 

Since that time, research and applications with DNNs have exploded 

with new challenge problems and applications. Over the last five years, neu- 

ral models have been used in multiple applications, including scene recog- 

nition systems used in semiautonomous driving. In another domain, DNNs 
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Figure 8.1. Visualization generated by CheXNet model, highlighting a region in a 
radiological image of the thorax, where the system accurately recognizes 
pneumonia and highlights the region most representative of the pathology. 
Pranav Rajpurkar et al., “CheXNet: Radiologist-Level Pneumonia Detection on 
Chest X-Rays with Deep Learning” arXiv, December 25, 2017, 
https://doi.org/10.48550/arXiv.1711.05225. 

 

have been demonstrated to perform at expert levels with interpreting med- 

ical imagery. For example, DNNs have been shown to have the capability 

to provide expert-level classifications, such as the diagnosis of dermatologi- 

cal disorders from images of skin28 and diagnoses from radiological films 

(Figure 8.1).29
 

Sets of evaluation benchmarks have been defined in the language and 

vision areas, such as the General Language Understanding Evaluation 

(GLUE), a benchmark formulated to measure the performance of models 

with language understanding across a range of natural language processing 

tasks.30 In stunning advances over a decade, AI systems have reached par- 

ity with humans on numerous of the defined challenge problems, as high- 

lighted in Figure 8.2. Details of the progress on the capabilities of AI systems 

has been captured in the recurrent reports of the AI Index, an annual study 

of trends in AI hosted at Stanford University.31
 

 

 
Key Concepts and Research Directions 

 

Several key directions have come to the fore as important developments, 

requirements, and directions in work on DNNs, including interest in 
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Figure 8.2. AI at an inflection. Deep neural networks have fueled advances in 
capabilities on benchmarks designed as top challenges for AI systems. This figure 
shows competencies of AI models where human parity on the challenge problems 
was reached on seven benchmarks. 

 

 

automated ways to learn rich representations rather than curate them with 

expert guidance; efforts on robustness; the weaving together of multi- 

modal datasets; and the critical value of hardware, innovative algorithms, 

and programming platforms for research and development. 

 

Learning representations. Early supervised machine learning required the 

identification of handcrafted salient observations or features of the input 

and based its predictions on those handcrafted features. Researchers have 

explored how deep learning can identify such features automatically or, 

more generally, rich representations directly from fine-grained data, in pro- 

cesses referred to as representation learning. The automated learning of 

rich features to represent an image, starting with the lowest-level input pixel 

features and becoming progressively more complex and abstract at succes- 

sive layers of neural networks has been a celebrated aspect of modern deep 

neural models for vision. 

The ability to automatically learn, or discover, candidate features enables 

systems to discover how best to organize the structure of machine learning 

problems, often yielding more accurate and robust performance on com- 

plex tasks than human-defined attributes, albeit at the cost of increased data 

requirements. Neural models leveraging such representation learning have 

been developed for natural language processing, computer vision, speech 

recognition, and health care. 
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Robustness and generalization. Efforts in the field of DNNs have increas- 

ingly focused on achieving robustness and generalization to ensure accu- 

rate performance in varying real-world environments that can be assumed 

to require robust capabilities, for example, accurate diagnoses, classifica- 

tions, and predictions on new, previously unseen data, that is not contained 

in training datasets. Efforts in this realm push DNN training procedures 

to seek universal patterns from their training data so as to reduce their be- 

ing overfit to training data and to be more adaptable to diverse real-world 

scenarios. 

 

Hybrid strategies. Successes have been found with combining DNNs with 

other computational methods such as coupling the neural models with sci- 

entific simulations, integrating the methods with Markov decision processes 

(e.g., reinforcement learning), and integrating DNN approaches with sym- 

bolic approaches to reasoning. As an example, the AlphaGo systems rely 

on an integration of deep neural models for making predictions with rein- 

forcement learning for guiding the choice of actions.32
 

 

Multimodal modals. Most DNN efforts have focused on the singular mo- 

dalities of language or visual tasks. In the spirit of pursuing more human- 

like intelligence, researchers have pursued the development of multimodal 

models that bring together language, imagery, sounds, and other modali- 

ties. Multimodal DNNs include early efforts to do image captioning and 

more recent efforts to make inferences about language and images for such 

tasks as writing radiological reports. 

 

Tools, methods, and platforms. With the advent of the importance of DNNs 

and growing focus of attention on using increasingly large datasets, meth- 

ods have been pursued for introducing new forms of efficiency via hardware 

and algorithmic innovation, and for developing programming environ- 

ments doing exploratory work with architectural designs for neural net- 

works. At the hardware level, graphical processing units (GPUs) have 

provided speed-ups via parallel processing of matrix and vector operations 

that are central to deep learning. 
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Algorithmically, efforts span methods for introducing new forms of 

speed-ups in distributed computing at the hardware system level as well 

as on higher-level software innovations aimed at speeding-up the core 

back-propagation procedure to identify parameters that specify weights 

of connections in neural models. For example, efforts have focused on 

adaptation of mathematical optimization procedures like stochastic gra- 

dient descent. 

Programming environments such as TensorFlow and PyTorch were cre- 

ated to ease the design and testing of DNNs, providing engineers with 

computing libraries, methods for accelerating GPU computation, and effi- 

ciently specifying and revising the structure of neural networks. 

 

Models as platforms. For decades in machine learning, researchers have 

studied methods for adapting models trained on a source task to perform 

well on other domains via processes of fine-tuning the models with special- 

ized data. This process, often referred to as transfer learning, leverages the 

knowledge that the model has gained from the initial training to perform 

well on a related, but different, task.33 Large-scale neural models can serve 

as platforms for extending via fine-tuning with specialized datasets drawn 

from target task domains. Given the myriad uses of the large models as 

platforms that can be extended via domain-specific data, they have been 

referred to as foundation models.34 Foundation models can be seen as an 

extension and scaling-up of transfer learning to DNNs that are trained on 

extremely large datasets, often encompassing a wide range of topics, lan- 

guages, or modalities. Their versatility lies in the ability of pretrained mod- 

els to be fine-tuned with smaller, task-specific datasets, thereby reducing 

the need for training a model from scratch for each new application. This 

approach not only saves significant computational resources but also allows 

for building upon the model’s base capabilities and knowledge. The term 

foundation reflects their role as a fundamental base upon which more spe- 

cialized or fine-tuned models can be built, similar to how a foundation sup- 

ports a structure. Their general-purpose nature and scalability make them 

akin to a utility or resource that can be tapped into for numerous AI sys- 

tems. Fine-tuning pretrained foundation models has become a standard 
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methodology for adding new capabilities, such as adding multimodal 

capabilities to language-only models35 and for extending the power of gen- 

eralist models to specialist performance.36
 

 

 

A Second Inflection: Generative AI 

 

The landscape of AI and its influences on the world has now reached a sec- 

ond inflection, Generative AI. Generative AI models are rich language and 

multimodal models that are trained to predict sequences of outputs, given 

input sequences or prompts. These generative models generate the output 

sequence one item at a time, at each step considering the newest generated 

item as a new part of the input, as they generate the next item in the sequence. 

Generative AI spans methods that generate natural language, portions of 

computer programs, imagery, combinations of imagery and language, and 

other types of output, such as sequences of amino acids in response to in- 

puts about desired structure and function. 

Generative AI systems have been largely based on three innovations that 

have been brought together to create powerful generative capabilities: the 

Transformer architecture, machinery for self-supervised training on mas- 

sive diverse content, and a special fine-tuning approach called instruction 

tuning. 

 

 
Architectural Innovation: “Attention Is All You Need” 

 

A seminal paper introduced the Transformer architecture,37 the foundation 

of today’s generative AI. This particular design of DNN delivers surprising 

competencies via a mechanism called attention, which allows neural lan- 

guage models to learn to focus on different parts of an input sequence when 

generating each part of the output. In short, transformers learn during self- 

supervised training how to weight the importance of different parts of the 

input data. Such a broad ability to learn where to look and what to consider 

has been seen as a pivotal feature for understanding the context and nu- 
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ances in language, in distinction to earlier approaches for learning about 

sequences, of only looking adjacently for the context of generation. The 

power of transformers in various applications, including language transla- 

tion, text generation, and image processing tasks has led to their broad 

adoption. 

The second pivotal development was combining the Transformer ar- 

chitecture with self-supervised training from a diverse, web-scale dataset. 

This approach was first demonstrated with the construction of the BERT 

foundation model.38 BERT learned language by predicting parts of text 

that were hidden from it, gaining a broader and more contextual under- 

standing of language via broader learning about where to attend. These 

innovations laid the groundwork for the development of follow-on Trans- 

former models like the GPT series, LLAMA, and others, each building 

upon and extending the transformative capabilities introduced by their 

predecessors. 

 

 
Alignment with Human Intent and Interaction 

 

A third innovation for enabling modern generative AI is a mechanism for 

shaping models to follow natural language instructions and to sustain a con- 

versation, versus simply generating tokens that are most likely to follow 

the input prompt. This process of learning to respond to the intentions of 

people involves fine-tuning the model on a new dataset composed of vari- 

ous tasks, each linked with explicit instructions and rating the output. The 

instructions are designed to mimic the way humans would typically instruct 

each other to perform tasks. The dataset is typically initially generated or 

refined by human annotators who craft the instructions and provide exam- 

ple outputs or correct responses. To scale instruction tuning, a method 

referred to as reinforcement learning from human feedback (RLHF) is used 

to expand the instruction dataset and provide measures of the quality of 

generated outputs. This method involves training and then using an auto- 

mated approach to scale up the shaping of the model’s behavior to ensure a 

wide coverage of task types and linguistic variations. 
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Scaling Laws and Emergent Capabilities 

 

A remarkable property of large language models based on the trans- 

former architecture is the existence of a strong empirical relationship 

between the accuracy of the trained language model and the size of the 

model (the number of parameters optimized during training), the amount 

of data on which it is trained, and the amount of computation used during 

training. This relationship, known as “scaling laws,” has been empirically 

validated multiple times.39 These scaling laws are important because they 

predict how larger models trained on larger datasets using greater comput- 

ing resources yield increased accuracy; if they continue to hold as models 

are further scaled up, then one can expect even greater accuracy. Figure 8.3 

displays a measure of the ability of a learned model to predict next tokens 

(the “Test Loss”), given a sequence of words at focus of attention, as a func- 

tion of increases in powers of ten in the compute time, training data, and 

number of parameters of models. 

Scaling laws have provided a reliable framework up to now for predicting 

basic performance metrics, such as error rates in next word prediction. 

However, they fall short in anticipating the competencies of models on chal- 

lenging tasks, including benchmarks in natural language and problem- 

solving. Training large-scale neural models from broad datasets can be 

viewed as a form of multitask learning with new tasks being learned with 

increasing amounts of computation for training and with the size or capacity 
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of models. Task-centric jumps, which have been referred to as the emer- 

gence of new capabilities, have been observed in neural language models on 

diverse tasks at different thresholds of model parameters, compute power, 

and training corpus size. Emergent behaviors include the relatively rapid 

increase in performance on benchmarks after reaching particular thresh- 

old levels of investments in computation for training, as captured in Fig- 

ure 8.4.40 Emergent capabilities include jumps in performance on nuanced 

language understanding benchmarks and with the acquisition of higher- 

level abilities, such as “theory of mind”—the ability of AI systems to solve 

challenges with interpreting and predicting the intentions, desires, and be- 

liefs of people.41 To date, we have a poor understanding of the basis for 

such jumps in capabilities as a function of model size, extent computation, 
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Figure 8.4. Jumps in capabilities on eight reasoning benchmarks for five different 
generative language models as a function of the number of floating-point 
operations (FLOPs) invested for optimizing model parameters during training. 
The jumps have been referred to as the emergence of specific capabilities at 
particular thresholds of model sophistication. Jason Wei et al., “Emergent 
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and training data, and links between the accuracy of next word prediction 

and performance on the more sophisticated benchmarks. 

To date, the exact mechanisms and thresholds that trigger emergent ca- 

pabilities remain largely unpredictable and are an important research di- 

rection. This unpredictability underscores a significant frontier in AI 

research, where the confluence of parameters, computing resources, and 

training data size creates a complex landscape, within which unexpected 

and sophisticated AI capabilities can spontaneously manifest. 

 

 
Surprising Powers of Abstraction, Generalization, and Composition 

 

The original set of ChatGPT systems, using GPT-3.5, GPT-4, and related 

models have surprised the world with their generalist powers to perform 

abstraction, generalization, and numerous forms of composition. The mod- 

els also show broad “polymathic” capabilities, demonstrating the ability to 

weave together concepts and content drawn from multiple disciplines. The 

scientific community does not yet have a good understanding of the emer- 

gence of their abilities to perform various kinds of summarization, text gen- 

eration, problem-solving, code program generation, and conversational 

dialogue. Multiple projects are underway to probe the powers and failings 

of these models. 

Since the release of GPT-4, and related large-scale models such as Claude 

and Gemini, numerous studies and associated papers have probed poten- 

tial uses and have provided an array of evaluations. An early survey of ca- 

pabilities was undertaken by Bubeck and colleagues,42 spanning a broad set 

of computing problems, specialist challenges, and the handling of needs and 

interpretation of events of daily life. The survey highlighted surprising ca- 

pabilities as well as weaknesses and future directions. Weaknesses include 

the tendency of the large models to confabulate with the creation of erro- 

neous but persuasive generations and solutions and failures to perform ba- 

sic arithmetic operations. Studies have also uncovered potentially 

fundamental challenges with limited abilities to solve complex planning 

problems that have relied on traditional AI problem-solving on searching 

through options with backtracking.43 These challenges have been attributed 



  

 

 

 

GPT-4 

Prompt: Can you writea proof that there are infinitely 

many primes, with every line that rhymes? 

GPT-4: 

Yes, I think I can, 
Though it might take a clever plan. 
I’ll start by noting Euclid’s proof, 
Which shows that primes aren’t just aloof. 
Assume we have a finite list, 
Of primes, and that none have been missed. 
Multiply them all together, 
And add one, just to be clever. 
The result will be a number, 
That has no prime factors, oh wonder! 
But every number has a prime, 
That divides it, it’s just a matter of time. 
So we’ve found a contradiction, 
And our finite list needs eviction. 
There must be infinitely many primes, 
And that’s the end of my rhyming lines.s 

 
Prompt: Draw a unicorn in TiKZ. 

 

GPT-4: [Produces LATEX compiling to 

following picture.] 

 

 

Prompt: Can you generate a pyplot for the following data: x = [1, 3, 5, 6, 8],y1= [2, 3, 5, 18, 1],y2= [3, 5, 6, 8, 1] ,y3= 

[5, 1, 2, 3, 4],y4 = [9, 7, 2, 3, 1]. I want y1,y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in 
below. I want the legend of y1 to be ”bob”, y2 to be ”alice”, y3 to be ”bilbo”, y4 to be ”allie”. I want the x-axis to be 

labeled with ”time” and y axis to be labeled with ”money”. I want to add a 10 %-40% random error bar to each curve, 

through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not 

use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make 
it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the 

fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the 

pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three 

plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible. 

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps: 

 

GPT-4: [We give two snapshots from the animation resulting from the produced code] 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Prompt: Suppose g(x)= f −1(x),g(0)= 5, g(4)= 7, g(3)= 2, g(7)= 9, g (9 )=6 what is f (f (f (6)))? 

 

GPT-4: There are different ways to approach this problem, but one possible method is to use the fact that g(x) = 

f −1(x) implies that f (g(x)) = x for any x in the domain of g. That is, applying f to both sides of the equation 

g(x) = f −1(x) gives f (g(x)) = f (f −1(x)) = x. This means that we can undo the effect of f by applying g, and vice 

versa. Using this idea, we can try to find f (6) by looking for the value of x such that g(x) = 6. From the given 

information, we see that g(9) = 6, so f (6)= f (g(9))= 9. Similarly, we can find f (9) by looking for the value of x such 

that g(x)= 9. We see that g(7)= 9, so f (9)= f (g(7)) = 7. Finally, we can find f (7) by looking for the value of x such 

that g(x)= 7. We see that g(4)= 7, so f (7)= f (g(4))= 4. Therefore, f (f (f (6))) = f (f (9)) = f (7)= 4. 

 

Figure 8.5. A sample of diverse prompts and output to an early version of GPT-4. 
Sébastien Bubeck et al., “Sparks of Artificial General Intelligence: Early 
Experiments with GPT-4,” arXiv, April 13, 2023, https://doi.org/10.48550/arXiv 
.2303.12712. 



  

 

 
 Description: The pig can be lying on its back with its four legs forming the two  
 vertical bars of the H, and its curly tail forming the horizontal bar. 

Round 2: A house and the letter U. 
 Description: A house with a U shape, where the two vertical lines of the U are the 
 walls and the horizontal line is the floor. The roof is a triangle above the U. 

Round 3: A chair and the letter K. 

 

Round 4: A dog and the letter Q. 
 Description: The dog is sitting with its tail curled around its body, forming a Q 

 

 

 
Round 5: A car and the letter E. 
 Description: The car has an E shape on its front bumper, with the horizontal lines 
 of the E being lights and the vertical line being the license plate. 

Description: The back of the chair can have a K shape, with two vertical lines and 
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You will be given a name of an object (such as Car, Chair, Elephant) and a letter in the alphabet. Your 
goal is to first produce a 1-line description of how that object can be combined with the letter in an 
image (for example, for an elephant and the letter J, the trunk of the elephant can have a J shape, and 
for the letter A and a house, the house can have an A shape with the upper triangle of the A being the 
roof). Following the short description, please create SVG code to produce this (in the SVG use shapes 
like ellipses, triangles etc and polygons but try to defer from using quadratic curves). 

 

Figure 8.6. Prompts and output demonstrating surprising powers of 
“compositionality” demonstrated by an early version of GPT-4. Bubeck et al., 
“Sparks of Artificial General Intelligence.” 

 

 

to the sequential generative processes of current models. Exploratory efforts 

have pursued insights about the root cause of failures, such as weaknesses 

models can exhibit with accurately solving constraint satisfaction and 

mathematics problems.44
 

 

 
Tapping Specialist Performance via Steering 

 

For years, specialist performance with large language models has been 

achieved via training with domain-specific datasets, such as with the 

construction of BioBert45 and PubMedBert46 or fine-tuning foundation 
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Figure 8.7. Prompting strategies can be used to guide generalist models to act as 
specialists. This figure shows comparative analysis of simple versus more 
sophisticated prompting strategies for steering GPT-4 to perform as a specialist 
on competency benchmarks in multiple realms. Harsha Nori et al., “Can 
Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study 
in Medicine,” arXiv, November 27, 2023, https://doi.org/10.48550/arXiv.2311.16452. 

 

 

models with domain-specific data to update the parameters of the general 

models via optimization. In addition to surprising powers of abstraction, 

generalization, and composition, recent studies have demonstrated that 

generalist foundation models can be guided through special prompting 

strategies to perform as top specialists. For example, prompting methods 

can guide GPT-4 to act as a top medical specialist, with record performance 

on the MedQA benchmark of medical challenge problems.47 Innovation 

with prompting shows that generalist models can be steered to perform as 

experts on competency exams in other areas, including electrical engineer- 

ing, machine learning, philosophy, accounting, nursing, and psychology. 
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Research Directions on Generative AI 

 

A great many questions have been framed by the successes and failures 

of generative AI models. The current questions and curiosity frame a set of 

research directions and underscore the critical importance of furthering the 

scientific study of the methods and models. 

 

Representation and reasoning. There is evidence that pushing Transform- 

ers via intensive optimization to become increasingly better at predicting 

the next tokens in their generations, under bounded computing and repre- 

sentational resources, induces the models to induce rich world models as 

an ideal form of compression. Although several directions have provided 

insights about the construction of world representations, much remains un- 

known,48 and this is an open and interesting area of research. 

In a related direction of research focused more on the microstructure 

of internal activity within transformers, researchers have begun to study 

the finer details of the activity of the artificial neurons in neural net- 

works that form large language models, as well as the associations among 

neurons or “neuronal subcircuits” that are induced during training49 and 

patterns of neuron activation at inference time.50 One hypothesis is that a 

large amount of diverse content forces neural networks to learn generally 

applicable and special-purpose circuits that can support multiple tasks. 

Such investigations occur largely in smaller models under controlled learn- 

ing settings. In such work, small models may be promising as more pene- 

trable, understandable “drosophila,” with results that are generalizable to 

much larger models, just as smaller animal models are used to do medical 

research aimed at advancing human biology and health care. 

Opportunities for more fundamental research include investigations of 

how principles and methods of probability and decision theory might be 

more deeply harnessed in representations and inference methods to 

guide the allocation of computational effort and the selective gathering 

of information in learning and reasoning.51 Another direction is to ad- 

dress challenges noted with the ability of generative models to perform 

planning of the form solved by methods developed in the AI and Operations 
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Research communities for formulating multistep plans via exploration with 

search and backtracking.52 We also see opportunity to move beyond 

solving single prompts and problems with relatively fixed models to 

extended presence and situatedness. Directions include exploration of 

methods aimed at continual reasoning about streams of problems over 

time.53 Other opportunities include pursuing understandings and exten- 

sions of how the models perform and seeking deeper understandings of 

challenges and opportunities with the physical embodiment of systems, 

where grounding of concepts and implications of action are developed 

with flows of information and learning garnered from immersion in rich, 

realistic environments.54
 

 

Memory, learning, and adaptation. Deep neural models do not have the 

ability to quickly learn and adapt as humans do to real-time experiences 

and information. Once they are trained, these models are then applied 

but typically remain fixed, or sometimes they are updated via the tradi- 

tionally long cycle times of fine-tuning. Long cycles for collecting data 

and building updated models means that late-breaking scientific ad- 

vances, news, and information will be unavailable to large language mod- 

els without the use of special machinery to augment inferences. Efforts to 

address these challenges include extending large models with methods 

for search and retrieval of recent information. While these adjuvant tech- 

niques are helpful, new methods and machinery that enable faster-paced 

and near real-time memory and learning would be game changing. Op- 

portunities include developing and integrating methods for ongoing, 

never-ending learning.55 Extending abilities to remember, learn, and 

adapt would enable models to stay up-to-date and would enable break- 

throughs in personalization. 

Architectural innovation. The Transformer has been a go-to architecture for 

generative AI. Nonetheless, this architecture and methodology has limi- 

tations, such as challenges with handling long-term dependencies in 

sequences. There are opportunities to innovate with new architectures, 

including introducing new mechanisms into Transformers. 
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Reliability, calibration, and trustworthiness. As AI systems become more 

integrated into daily life, ensuring their reliability and safety is para- 

mount, especially when the methods are applied in high-stakes areas like 

medicine, criminal justice, education, and industrial process control. 

Characterizing and communicating potential errors, including erroneous 

generations and rates of false positives and false negatives in pattern recog- 

nition, is critically important in understanding costs of failures. Consider- 

ations of types of failures and their rates of occurrence is important in 

ethical deliberations about uses of AI in specific domains and contexts; AI 

capabilities and errors frame cost–benefit considerations and decisions 

that hinge on value considerations. 

A weakness of generative AI models is their propensity to generate 

content that is persuasive yet erroneous. A critical research direction is 

to develop methods and machinery for assigning well-calibrated confi- 

dences to generations and also to deepen understanding of when halluci- 

nating content is expected and desired (e.g., generating fiction) or is a 

concern (e.g., performing medical diagnoses). Directions include developing 

internal machinery, fine-tuning, experimenting with new forms of prompt- 

ing, and calling external tools, such as databases and search engines that 

perform traditional information retrieval for providing verification and con- 

straints. Recent work has explored careful curation of high-quality datasets, 

including using large-scale models to generate high-quality data to boost 

the efficiency of learning and accuracy of inferences.56
 

Some studies have verified good calibration of confidences in specific 

settings. For example, Figure 8.8 shows good calibration of the confidence 

of GPT-4 about its answers to multiple choice challenges on competency ex- 

ams in medicine. 

Power of small models. While scaling laws, confirmed by empirical studies 

and theoretical results,57 suggest that large scale is need for top performance, 

recent work has demonstrated remarkable power with smaller models, 

some built from high-quality datasets. In recent work, large language 

models are used to supply training data to build more compact models that 

show strong performance.58 Research is needed to better understand how 

one can achieve strong capabilities with smaller datasets and computational 
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Figure 8.8. Calibration of confidence of GPT-4’s answers in response to challenge 
problems drawn from medical competency exams. Harsha Nori et al., 
“Capabilities of GPT-4 on Medical Challenge Problems,” arXiv, April 12, 2023, 
https://doi.org/10.48550/arXiv.2303.13375. 

 

resources, including questions about whether such model construction de- 

pends in some way on the poorly understood special properties of data 

generated by the larger models. 

 

Grappling with opacity and complexity. Large-scale neural models are dif- 

ficult to understand, potentially hindering scientific progress dependent on 

insights about the induction of neural circuits and larger representations. 

New tools are needed to better understand representations and inference 

in large-scale models. There is a growing similarity of the “black box” chal- 

lenges of large-scale neural models and the difficulties of probing the op- 

eration of biological nervous systems with fine-grained unit recordings and 

coarse-grained fMRI and related studies. There is a potential convergence 

of methods and analytical tools between these fields. 

 

Mechanisms and designs for human–AI collaboration. There are great op- 

portunities to extend prior work on human–AI collaboration.59 Although 

generative AI models are trained to engage in conversational dialogue, there 

is a large space of possibilities to design interaction strategies that empha- 

size the primacy of human agency in problem-solving and that introduce 
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new styles of human–AI interaction that enable AI systems to complement 

human decision-making.60 Related goals include developing better ways for 

generative AI systems to share the rationale for their generations and 

recommendations. 

 

 
Engineering Trends with Generative AI 

 

Although it is impossible to predict the future, especially in an area as dy- 

namic as generative AI, it is nevertheless useful to examine emerging trends 

in the technology that may shape the future of the technology and its ap- 

plications. In this section we consider several trends that have emerged after 

the November 2022 introduction of ChatGPT and their potential to change 

the future of generative AI. 

 

Multimodal generative AI models. Whereas initial LLM models were trained 

only on text data, one recent trend is toward training models on multi- 

modal data, such as text, image, video, and sound data. For example, Google 

recently released a model that it calls Gemini, trained “from the bottom up” 

on such multimodal data. In October 2023, OpenAI made available a ver- 

sion of its GPT-4 system, GPT-4V, which can accept image and text data as 

input (although its output is still text only). Figure 8.9 shows a typical inter- 

action with GPT-4V, in which it is able to interpret the content of an up- 

loaded image and reason about how to stack the items in a stable fashion. 

The significance of this trend toward multimodal models is that such 

models hold the potential to capture significantly more commonsense 

knowledge about the physical world—knowledge that cannot be easily cap- 

tured in text alone. If successful, this trend could lead to significant new 

applications, for example, systems that observe and guide people step-by- 

step as they cook a particular recipe for dinner or as you assemble a new 

piece of furniture. One interesting question is whether successful develop- 

ment of such multimodal models might cause a rapid burst of new progress 

in robotics, given that much of what limits robotic systems today is their 

poor ability to interpret and reason about physics of diverse objects and 

environments. 
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Figure 8.9. An interaction with GPT-4V, which accepts image as well as text inputs. 
Here the input image on the left shows four items on a desktop. The input request 
to GPT-4V is “How can I stack these four objects in a stable vertical stack?” When 
the output answer from GPT-4V (shown in the middle) is followed, it produces the 
vertical stack shown on the right. Created by Tom Mitchell using GPT-V website. 

 

Power of synthetic data. Generative models and more traditional simulation 

methods are being used to generate large quantities of training data that 

are being used successfully to build and extend neural models. Datasets be- 

ing generated and harnessed includes visual datasets and focused, high- 

quality distillations of specific types of output, such as reasoning strategies61 

and domain-specific data.62
 

 

Incorporating software plugins. LLM’s like GPT-4 exhibit many impressive 

abilities, they also have many limitations and shortcomings. For example, 

today’s LLM’s cannot reliably perform arithmetic with large numbers (e.g., 

multiply 483 times 9,328) and can hallucinate incorrect answers to factual 

questions. Model plugins consist of traditional software (e.g., a calcula- 

tor, a database of factual information) that can be called as subroutines by 

LLMs. Providing LLMs with plugins allows them to overcome numerous 

limitations and to take advantage of the vast store of software developed by 

many groups over multiple decades of effort. For example, as of Novem- 

ber 2023, ChatGPT had access to approximately 1,000 plugins—from cal- 

culators, to web search engines, to restaurant reservation apps—which 
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MMLU Philosophy 
From sources across the web 

 

Figure 8.10. Small sample from approximately a thousand plugins accessible to 
GPT. From the OpenAI website. 

 

significantly extend its capabilities beyond those provided by its trained 

neural network (Figure 8.10). 

The model decides whether and when to invoke any given plugin, de- 

pending on the prompt it is responding to, but at present most generative 

AI models limit the number of plugins to be considered in any given con- 

versation. For example, ChatGPT requires users to preselect at most a hand- 

ful of its available plugins for any given conversation. It remains to be seen 

how large a set of plugins a model will be able to automatically consider in- 

voking. However, giving models access to the vast store of software devel- 

oped across the computer industry will be a goal for future systems. One 

question raised by the rise of plugins is whether generative AI models will 

become user interfaces of choice to many software packages that currently 

have their own idiosyncratic interfaces. Will future users prefer to interact 

in natural language conversation instead of learning the specialized inter- 

face for each software application? Plugins are extensions that allow LLMs 

to impact the world beyond conversations, such as researching. 

Beyond such tasks as arithmetic calculation and information retrieval, 

plugins can enable LLMs to perform myriad functions, including executing 
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actions in the open world, such as making purchases, sending messages, 

and controlling physical systems. While such integration with broader 

software and systems can provide new functionalities and services, the 

new powers also pose risks to safety and security and must be handled 

with care. 

Multifunctional interactive workspaces. In a direction of innovation related 

to plugins, we see the rise of integrated interactive experiences that promote 

human–AI collaboration by enabling users and AI components to work 

together in a step-by-step manner on problem-solving, where multiple 

tools, data analysis abilities, and code creation are made available in a 

collaborative approach to solving problems and subproblems. A portion of 

a sample session of such a multifunctional interactive workspace provided 

by OpenAI named Advanced Data Analysis is displayed in Figure 8.11. 
 

 

 

 

 

 

 

 

 

ClimatelmpactLab_Global Data_20Marc... 

Spreadsheet 

 

I’d like to better understand this data about global warming. Can 

you show me the changes in the average temperature changes 50 

years from now—and what parts of the earth will be most affected? 

 

 

Certainly! Let’s start by examining the contents of the file you’ve 

uploaded. I'll load the data and provide a brief summary to 

 

 

 

 

 

 

 

Understood. Let’s break this down step by step: 

 

1. We’ll load the data for average temperatures for June/July/August 

(“tas_JJA_sspX-Y” sheets) from the file. 

2. We’ll calculate the difference between the average temperatures 

50 years from now and the current temperatures. 

3. We’ll visualize the changes on a map, coloring the regions where 

the changes are the greatest in redder shades. 

understand its structure and contents. 

 
Finished working  Show work 

 

 

 

 

I’m interested in the changes in the average temperatures for the 

summers in the northern hemisphere based in a starting point of 

today. I’d like to see a map colored by where the changes are the 

greatest. How about making those areas redder appearing. 

Projected Change in Summer Temperatures (2040-2059 vs 1985-2005 SSP2-45 Scenario 
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Figure 8.11. Advanced Data Analysis provided by OpenAI, a multifunctional 
interaction workspace that enables databases and papers to be loaded for 
analysis, and provides multiple step analyses, introducing tools as needed, 
including writing of code and provision of visualizations, and with ongoing 
sharing of plans and steps with users. Created by Eric Horvitz using OpenAI 
Advanced Data Analysis, November 2023. 
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1. Instructions to GPT-4 to define StudentBot (Rufle): 

You are an enthusiastic 18-year-old student who is trying to learn. You need the user 

 

This is the list of topics you found from the internet that you need the user to slowly 
teach you (by order): + {tutoring-script} 

question if you need more information about the current topic or ask a question about 
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Software development environments for programming with AI models. In 

contrast to using tools that enable generative AI models to call other soft- 

ware as subroutines, this trend supports the development of new software 

systems that instead call generative AI as subroutines. Frameworks such as 

the open-source LangChain, Microsoft’s Semantic Kernel, and AutoGen 

have emerged to support software developers in building systems that call 

multiple instances of a generative model.63 These frameworks make it eas- 

ier to build software systems that capture the benefits of LLMs (e.g., to in- 

teract in natural language, and to perform certain types of commonsense 

reasoning) while also incorporating standard programming and capabili- 

ties missing from generative AI, such as long-term memory and database 

access. One aspect of generative AI that makes this especially interesting is 

the ease with which one can “program” or “instruct” an instance of a gen- 

erative AI model on how to behave. For example, Figure 8.12 shows the text 

used to instruct, or program, an instance of GPT-4 to perform the role of 

 

 

Figure 8.12. Natural language instructions used to “program” an instance of 
GPT-4 to play the role of an artificial student, as part of a larger online 
educational software, in which humans learn by teaching this artificial 
studentbot (implemented by GPT-4), with the occasional assistance of an 
artificial ProfessorBot (implemented by a second instance of GPT-4). Robin 
Schmucker et al., “NeurIPS Paper 38: Ruffle&Riley: Towards the Automated 
Induction of Conversational Tutoring Systems,” 2023, https://neurips.cc/virtual 
/2023/79097. 
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an artificial student, to be taught by a human teacher within an online ed- 

ucation application. The programming of the LLM is done here using only 

natural language instruction rather than a programming language. 

One interesting question about the future which is raised by this trend 

is whether we are beginning to see the emergence of a new paradigm for 

software development which, unlike previous paradigms that relied exclu- 

sively on formal programming languages to instruct the machine, will in 

the future seamlessly blend natural language instructions with formal lan- 

guages (Figure 8.13). 

 

Personalized generative AI systems. Generative AI models such as OpenAI’s 

GPT-4 and Google’s Gemini are very costly to develop and are so large (con- 

taining hundreds of billions of learned parameters) that they are not 

downloaded, but only used remotely over the web. As a result, it may seem 

unlikely that these models could be personalized to each of billions of people 

on the planet. Nevertheless, we are already beginning to see a trend toward 

personalized LLMs. For example, ChatGPT allows users to provide a natural 

language description of themselves and their interests which it can use to 

 

Agent Customization Flexible Conversation Patterns 

 

Figure 8.13. AutoGen orchestration framework for generative AI models allows 
the efficient specification of roles and flows of generations. Qingyun Wu, Gagan 
Bansal, Jieyu Zhang, Yiran Wu, et al., “AutoGen: Enabling Next-Gen LLM 
Applications via Multi-Agent Conversation,” paper presented at the Conference 
on Language Modeling, Philadelphia, PA, October 7–9, 2024. 



  

 

 
summarize my recent emails regarding my upcoming presentation to the USPTO. 

View other drafts 

 

Google Workspace 

 

You received an email from Ram Konduru regarding your upcoming presentation 

to the USPTO. He shared the link to the Google Drive where all the content for the 

lecture series is stored, and asked you to confirm your lecture date by entering 

your initials in column F of the scheduling spreadsheet. He also mentioned that all 

the lectures to date have been very well received by the USPTO, and that Tom 

suggested that he share the past lecture videos and presentations with all the 

faculty involved in the lecture series. 

 

 
Gmail Items considered for this response Learn more 
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modulate conversations with that user (e.g., to customize to their educa- 

tional background). Furthermore, Google has released an experimental ver- 

sion of its conversational assistant Bard that enables users to give it access 

to their entire Gmail collection as well as their online Google Docs, then 

discuss the content of these. For example, Figure 8.14 shows a typical inter- 

action with this experimental version of Bard. Beyond this, Microsoft has 

also released a new version of their Office software suite in which LLMs are 

integrated with systems such as Word, PowerPoint, and Excel. Both Apple 

and Google have announced plans to release versions of LLMs small enough 

to run on their respective mobile phones, opening the possibility of highly 

personalized LLM-based agents that preserve privacy by operating solely 

on personal devices. 

 

Figure 8.14. A conversation with Google’s Bard about the content of the user’s 
Gmail and Google Docs. Created by Tom Mitchell using the Google Bard web 
interface. 
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The significance of this trend is that it suggests that the future will see 

an increasing ability of generative AI systems to interface with personal 

data, and data of corporations, in ways that make them tremendously more 

useful and knowledgeable about the problems of interest to their users. Cus- 

tomization to specific users, corporations, and problem settings is likely to 

be supported by a combination of model fine-tuning, providing access to 

relevant user data, and direct natural language instructions defining roles 

for the agent. 

 

Open-source models. One trend in generative AI might be summarized as 

“bigger is better.” Between 2018 and 2023 the sequence of top state-of-the- 

art generative AI models followed a clear scaling law: models with more 

parameters, trained on larger datasets, produced significantly improved ca- 

pabilities (Figure 8.15). This led to models with costs of over $100 million to 

train and containing so many parameters that they would not fit on most 

computers. Given this trend, one might expect a future in which only a few 

dozen well-resourced companies and governments could afford to develop 

the next generation of models, and where the rest of us would only be able 

to access those models over the cloud. As mentioned earlier in the discus- 

sion of research directions, a number of new models being developed and 

fielded rely on many fewer parameters—few enough that the models can 

be downloaded and trained or fine-tuned on much smaller computers. Al- 

though these smaller models do not match the competence of the very best 

models, they exhibit surprisingly good competence, especially when trained 

for specific domains such as medicine or finance, and when trained using 

carefully selected training data such as textbooks. These small models make 

it feasible for researchers and developers across the world to build and work 

with generative AI, rather than just the employees of a handful of organi- 

zations; that is, they make open-source shared development by many coop- 

erating developers possible. 

Of all the trends mentioned here, this trend toward smaller, open-source, 

widely shared models may be the most consequential, as it will strongly in- 

fluence both the number of researchers and developers who participate 

in advancing the technology, and it will strongly influence the ability of 
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So far, bigger models trained on larger data sets produce best 

results 

 

But models orders of magnitude smaller and cheaper are 

surprisingly good 
 

Model Parameters Year 

Falcon 40B 2023 

Alpaca 7B 2023 

Vicuna 13B 2023 

Phi 1.5 1.3B 2023 

Phi 1 small 350M 2023 

 

Figure 8.15. Sizes and year of release of various generative AI models. Created by 
Tom Mitchell. 

 

governments to control and regulate uses of the technology and the 

“guardrails” placed on it. 

Consider first the impact of the open-source trend on the number of 

technical experts who can work to advance the technology. Because cur- 

rent state-of-the-art models such as OpenAI’s GPT-4 and Google’s Gemini 

are so large and so expensive to train, they can only be accessed over the 

cloud, and the next generation of these models can only be developed by 

organizations such as OpenAI, Google, Microsoft, Amazon, and other 

organizations who have computational infrastructures that cost hundreds 

of millions of dollars. Such organizations may have many thousands of em- 

ployees, but this number is dwarfed by the number of researchers and de- 

velopers outside such large organizations (e.g., university faculty and 

students in computer science, and employees at small startup companies). 

Because the rate of research progress is often strongly dependent on the 

number of researchers working on a problem, a successful and vibrant open- 

source movement is likely to result in more rapid advances and in the 

democratization of application development. One concern of the US gov- 

ernment as it seeks policies that enable the United States to lead in this tech- 

nology is the potential loss of university research as a key driver of AI 

advances. For many decades, US universities drove the key advances in AI. 

However, in recent years the greatest AI breakthroughs have instead come 

from industry, because universities lack the high-cost computational 

Model Parameters Year 

GPT-1 117M 2018 

BERT 345M 2018 

GPT-2 1.5B 2019 

GPT-3 175B 2020 

PaLM 540B 2022 

Megatron- 
Turing 

540B 2022 

GPT-4 ?? 2023 
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resources necessary to train and experiment with the largest, most ad- 

vanced AI foundational models. One proposal under consideration is to 

fund a National AI Research Resource (NAIRR) to provide computational 

resources to keep US universities a vital part of research at the frontier of 

AI. A pilot NAIRR effort is being organized by the National Science Foun- 

dation and is planned for launch in mid-2024. 

The success or failure of smaller models and therefore of the related 

open-source effort in generative AI will also have a strong impact on whether 

and how governments can track and regulate AI technology. Large corpo- 

rations that work in this area are already cooperating with various govern- 

ments to create frameworks, best practices, and regulations to minimize the 

risk of AI being used for nefarious purposes, as well as risks of adverse un- 

intended consequences. If only very large AI systems dominate in the 

future, then the open-source movement is likely to be small or nonexistent, 

and governments can continue to work with large corporations and can ef- 

fectively enforce any government regulations. However, if small AI models 

and the corresponding open-source movement succeed, then it will be very 

difficult, perhaps impossible, for governments to know which organizations 

and which individuals have highly capable AI models and what they are us- 

ing them for. In short, if small AI models become highly capable and easily 

copied and ported, then they will become very difficult to regulate. 

 

 

Key Opportunities with Applications 

 

Discriminative and generative AI models have great applications in daily 

life and in specific domains and specialties. Major areas of future impact 

include the biological and physical sciences, health and well-being, and 

education. 

 

Biosciences. AI’s impact is expanding rapidly in the biosciences. AI meth- 

ods promise to provide fast-paced leaps in understanding complex biologi- 

cal processes and designing new drugs and therapies. Neural modeling 

pipelines, including AlphaFold64 and RoseTTAfold,65 are providing game- 

changing capabilities to biologists. Recent work on harnessing these and 



  

 

180   

 

other neural modeling methods are putting tools in the hands of biologists 

for estimating protein structure and better understanding protein function 

and interactions. As an example, AI tools were recently used to perform a 

cross-proteome, large-scale screening of potential protein–protein interac- 

tions in yeast cells (Figure 8.16). The screening identified previously un- 

known protein interactions in these eukaryotic cells—cells that are closely 

related to those that we are composed of.66 Many of the interactions could 

be mapped to pathways by biologists. However, the roles of several predicted 

interactions remain mysteries, framing new questions in cell biology. Ad- 

vances with predicting protein–protein interactions offer a multitude of 

possibilities for harnessing AI advances for understanding and interven- 

ing with cellular pathways. Figure 8.17 shows that recently developed diffu- 

sion modeling techniques, analogous to AI methods for image generation, 

have been harnessed in protein design.67 Such methods can be harnessed 

for designing new medications, protective binders that block the active site 

of viruses, and synthetic vaccines. Over the next decade and beyond, AI 

could revolutionize personalized medicine, offering tailored treatments 

based on illness specifics and individual genetic profiles, and accelerate the 

pace of biotechnological innovation, possibly leading to solutions for today’s 

incurable diseases. 

Health care. To date, AI has been a sleeping giant in health care. In the next 

decade, we may see AI becoming a regular assistant in diagnosis and treat- 

ment planning, offering more accurate and faster diagnoses. AI could also 

enhance remote health care and monitoring, making quality health care ac- 

cessible in underserved regions. Multiple opportunities for traditional ma- 

chine learning exist, as do uses of discriminative and generative neural 

models to assist with diagnoses and predicting outcomes. Work to date has 

demonstrated great possibilities for enhancing the quality of care, includ- 

ing raising levels of diagnostic and therapeutic excellence, and reducing 

human errors. Beyond clinical decision support, the capabilities of genera- 

tive models to generate and summarize reports can reduce the administra- 

tive on physicians providing them with more time for quality patient 

engagement (Figures 8.18 and 8.19). 



  

 

 

 

 

Figure 8.16. Decoding protein complexes. In work moving beyond structure, 
DNNs have been applied to identify likely protein complexes in eukaryotic cells. 
The complexes have been linked to processes of transcription, translation, DNA 
repair, mitosis and meiosis, metabolism, and protein transport within cells and 
across membranes. The dark blue lines indicate likely points of contact predicted 
between the proteins. The function of some of the identified complexes are 
mysteries. See Ian R Humphreys et al., “Computed Structures of Core Eukaryotic 
Protein Complexes,” Science 374, no. 6573 (December 10, 2021): eabm4805– 
eabm4805, https://doi.org/10.1126/science.abm4805. 

 

Figure 8.17. Supercharging protein design. Use of diffusion modeling methods to 
design proteins. In this case, a protein is designed with conditioning on a given 
motif. See Joseph L Watson et al., “De Novo Design of Protein Structure and 
Function with RFdiffusion,” Nature 620, no. 7976 (August 2023): 1089–1100, 
https://doi.org/10.1038/s41586-023-06415-8. 



  

 

 

 

 

 
Given the current understanding of the pathophysiology of glaucoma, potential areas of 

research to advance knowledge and improve outcomes for patients with glaucoma could 

include the following: 

 
1. Elevated intraocular pressure (IOP): Further studies could investigate the mechanisms 

by which elevated IOP leads to optic nerve damage, and identify more accurate and 

personalized methods for predicting which patients with elevated IOP are at the highest 

risk for developing glaucoma. 

 
2. Vascular dysregulation: Research could focus on gaining a better understanding of the 

role of vascular dysregulation in glaucoma, and identifying new interventions to prevent 

or mitigate optic nerve ischemia and damage. 

 
3. Neurodegeneration: More studies could be done to elucidate the mechanisms 

involved in neurodegeneration in glaucoma, and to identify new neuroprotective 

interventions for the prevention and treatment of glaucoma. 

 
4. Genetic factors: Further research could aim to identify new genetic risk factors for 

glaucoma, and explore how genetic testing and personalized medicine could be used to 

improve the detection, prevention, and treatment of glaucoma. 

 
5. Clinical trials: Large-scale clinical trials could be conducted to compare the 

effectiveness of different interventions for glaucoma, including medications, surgeries, 

and new treatments such as gene therapy and stem cell therapy. 

 
By pursuing these areas of research, it may be possible to advance understanding of the 

pathophysiology of glaucoma, identify new targets for therapies, and improve outcomes 

for patients with glaucoma. 

 

Figure 8.18. Snippet from a medical session with GPT-4, showing diagnosis, 
summarization, review of relevant frontier research, and patient communication. 
Full session available at https://unlocked.microsoft.com/ai-anthology/case 
-studies. Created by Eric Horvitz with GPT-4, January 2023; from Eric Horvitz, 
“Case Studies: Sample Sessions with GPT-4 Prior to Public Release,” AI 
Anthology, Microsoft Unlocked (2023), https://unlocked.microsoft.com/ai 
-anthology/case-studies/. 

 
EH If you survey the literature of what we know, what new studies might be done to make a 

contribution forward in resolving the uncertainties? 

https://unlocked.microsoft.com/ai-anthology/case-studies/
https://unlocked.microsoft.com/ai-anthology/case-studies/
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Figure 8.19. Rise of multimodal models. Creating a multimodal medical imaging 
model by fine-tuning a generalist open-source model with millions of aligned 
images and captions accessed from the openly available medical literature. 
Chunyuan Li et al., “LLaVA-Med: Training a Large Language-and-Vision 
Assistant for Biomedicine in One Day,” in Proceedings of the 37th International 
Conference on Neural Information Processing Systems, NIPS ’23 (Red Hook, NY: 
Curran Associates, 2024), 28541–28564. 

 

Physical sciences. Work is underway on numerous fronts in the physical sci- 

ences with uses of generative AI models. A detailed review of recent efforts 

and directions is provided in The Impact of Large Language Models on Sci- 

entific Discovery, an AI survey by Microsoft Research AI4Science and Mi- 

crosoft Azure Quantum.68 In material science, AI is already accelerating the 

discovery of new materials and understanding complex physical phenom- 

ena. Work includes using neural models to provide candidate chemical 

compounds and to speed up analyses of suitability of candidates by pro- 

viding efficient approximations of more complex traditional quantum com- 

putations. With recent advances in AI-driven simulations and predictive 

modeling, the next decade could see AI systems designing materials with 

tailored properties for specific applications, such as ultra-strong compos- 

ites for aerospace or highly efficient conductors for electronics. Directions 

with applications of AI for science include the development of large inte- 

grated scientific foundation models that form datasets drawn from multi- 

ple scientific domains and at a variety of spatial scales. 

Climate and sustainability. AI methods are showing promise with optimi- 

zation of renewable energy systems and with important tasks as predicting 
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climate patterns and responses to alternate interventions. Looking forward, 

AI could be instrumental in helping with the discovery and design of more 

efficient catalysts and overall processes for carbon capture and storage. AI- 

driven models could offer more precise predictions of climate change im- 

pacts, aiding in more effective policymaking and environmental protection 

measures (Figure 8.20). 

 

Education. GPT-4 is being explored in early deployments, including by 

Khan Academy, but also in educational research. There are great opportu- 

nities to harness generative AI systems to act as a personalized tutor, per 

the “theory of mind,” pedagogical skills, and explanatory capabilities dem- 

onstrated by the largest models (Figure 8.21). 

 

Engineering brainstorming and design. Generative AI, including problem- 

solving, guidance, and visualization of novel designs might provide a trans- 

formative toolkit to boost engineers’ creativity and innovation. Generative 

AI models trained to have language, imagery, and multimodal capabilities 

can help scientists to formulate, explore, and visualize complex concepts 

or designs that they might not have considered otherwise. There are op- 

portunities for such models to serve as collaborative partners, providing 

instant feedback or making suggestions based on prompts describing goals. 

Figure 8.22 shows an early exploration with the DALL-E2 system of visual- 

izations of designs for a combination of solar water heating and power 

generation. 

 

 

AI, People, and Society: From Technical to Sociotechnical 

 

The capabilities of AI methods are dual use. AI methods can be harnessed 

in sciences, engineering, and in daily life to raise the quality of life and to 

promote human flourishing. They can also be leveraged by malevolent ac- 

tors to pursue costly and criminal activities. Beyond explicit pursuits of uses 

of AI in adversarial ways, uses of AI may have inadvertent influences on 

people and society. The intersection of AI with societal aspects encompasses 



  

 

 

 

 
 

EH Can you compare the strengths and weaknesses with doing what the authors did with 

their atmosphere 3D inversion analysis versus an alternate study with using a Bayesian 

hierarchical model (BHM) for the atmospheric 3D inversion component of the study? 

 

 

There are different approaches to atmospheric inversion, which is the process of 

estimating sources and sinks of a trace gas (such as methane) from its observed 

concentrations in the atmosphere. One approach is the variational Bayesian inversion, 

which is based on minimizing a cost function that measures the discrepancy between the 

prior estimates of the sources and sinks and the posterior estimates that are consistent 

with the observations, weighted by their respective uncertainties. This approach requires 

an adjoint model that computes the gradient of the cost function and an iterative 

algorithm that finds the optimal solution. Another approach is the Bayesian hierarchical 

model (BHM), which is based on specifying a probabilistic model that relates the sources 

and sinks to the observations, accounting for the uncertainties in the model parameters, 

the observation errors, and the prior information. This approach requires a Markov chain 

Monte Carlo (MCMC) algorithm that samples from the posterior distribution of the 

sources and sinks given the observations. 

 
Both approaches have strengths and weaknesses, and the choice of one over the other 

may depend on the specific problem, the available data, the computational resources, 

and the scientific objectives. Here are some possible comparisons between the two 

approaches: 

 
– The variational Bayesian inversion may be more computationally efficient than the 

BHM, especially for high-dimensional problems, as it does not require repeated runs of 

the forward model or the storage of a large number of samples. However, the variational 

Bayesian inversion may also be more sensitive to the choice of the initial guess, the 

convergence criteria, and the regularization parameters, and it may not fully explore the 

 

Figure 8.20. Snippet from a session showing analysis of late-breaking scientific 
paper, showing rich dialog on the scientific methods, foundations, and future 
directions. Full session available at  https://unlocked.microsoft.com/ai 
-anthology/case-studies/. Created by Eric Horvitz with GPT-4, December 2022; from Eric 
Horvitz, “Case Studies.” 

nature 
Article | Published: 14 December 2022 

explain methane growth in 2020 
 

https://unlocked.microsoft.com/ai-anthology/case-studies/
https://unlocked.microsoft.com/ai-anthology/case-studies/
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EH  The computer is trying to teach a high school student about quantum computing, using 

analogies and trying to teach the basics so they have a true understanding of the main 

concepts. The student already studied the basics of quantum physics but is puzzled 

about quantum computing. 

 
I’d really like to better understand how quantum computers compute and the types of 

problems they can solve. 

 

 
Quantum computing is a way of using the properties of quantum physics to perform 

calculations that are impossible or very hard for classical computers. Quantum physics is 

the study of the behavior of the smallest particles and waves that make up matter and 

energy, such as electrons, photons, and atoms. 

 

 
EH  Yes, but how exactly do they compute? 

 

 
Quantum computers use quantum bits, or qubits, as their basic units of information. 

Unlike classical bits, which can only be either 0 or 1, qubits can be in a superposition of 

both 0 and 1 at the same time. This means that a qubit can store and process more 

information than a classical bit, and that multiple qubits can be entangled, or linked, so 

that their states depend on each other. 

 

 

EH  I get that but want to develop an intuition about how one can go from that description 

to really understand how an answer would be generated. 

 

 
One way to think about quantum computing is to imagine that you have a very large 

book with many pages, each containing a possible answer to a problem. A classical 

 

 

Figure 8.21. Snippet from education session on quantum computing, showing 
rich dialog, signs of pedagogical competence, and responsiveness. Full session 
available at https://unlocked.microsoft.com/ai-anthology/case-studies/. Created 
by Eric Horvitz with GPT-4, September 2022; from Eric Horvitz, “Case 
Studies.” 

 

reliability and safety issues, privacy and security trade-offs, and fairness and 

accountability.69 Legal and ethical issues around data provenance, intellec- 

tual property, and copyright are increasingly pertinent. AI’s role in mili- 

tary applications brings up concerns about competitive landscapes and the 

potential for destabilizing influences. Socially, AI risks exacerbating 

https://unlocked.microsoft.com/ai-anthology/case-studies/
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Figure 8.22. The powers of composition demonstrated by the multimodal 
DALL-E2 system provide a glimmer into the potential uses of generative AI as a 
design colleague. Created by Eric Horvitz using DALLE-2, April 2022. 

 

 

the digital divide, impacting job markets, and enabling malevolent 

uses like deepfakes and online manipulation. The deeper social, cultural, 

and psychological dimensions—trust, authenticity, diversity, agency, and 

creativity—are also crucial areas for consideration. A great deal of discus- 

sion and activities have been framed by the opportunities and concerns 

posed by advances in AI. These include efforts by governments of the 

United States, the United Kingdom, and the European Union to call for 

study and regulation. In October 2023, an extensive US Presidential Exec- 

utive Order on Safe, Secure, and Trustworthy Development and Use of Arti- 

ficial Intelligence called for study and actions to address the possibilities of 

AI technologies to “exacerbate societal harms such as fraud, discrimina- 

tion, bias, and disinformation; displace and disempower workers; stifle 

competition; and pose risks to national security.”70 Directions forward for 

realizing the benefits of AI while minimizing risks will require continuing 

investments in understandings and innovation on the technical, socio- 

technical, and regulatory fronts. 
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Conclusion 

 

The journey of AI to date has involved decades of innovation with empiri- 

cal studies and prototypes, the development of theoretical principles, and 

shifts among paradigms. In our overview, we shared a fast-paced arc through 

the history of AI as a distinct field of scientific inquiry. This journey saw a 

pivotal shift from early symbolic logic to probabilistic models in the mid- 

1980s as a response to the complexity of real-world problems. The growth 

and impact of the field over the last 20 years has been based largely on 

advancements in machine learning with efforts in discriminative mod- 

els, which excel in pattern recognition and classification, and generative 

models, which replicate and innovate with data generation processes. The 

recent inflections in progress have come with advances in deep learning, 

which have become the foundation of today’s AI applications. The current 

landscape of AI is defined by two significant inflection points: the rise of 

deep learning, and now the advent of generative AI, demonstrating both 

specialist and generalist competencies. 

With all the rising capabilities—sprinkled with both systematic and 

poorly understood weaknesses—that we now see, we have little under- 

standing of large generative AI models. There are tremendous opportu- 

nities ahead for advancing the science of AI. At the same time, we see 

unprecedented possibilities ahead via AI advances for leveraging com- 

puting technologies in a multitude of areas, including key domains of the 

biosciences, health care, the physical sciences, education, and climate 

and sustainability. 
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