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How can studies of
machine (human) learning inform
studies of
human (machine) learning?
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Learning = improving performance
at some task
through experience
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Outline

1. Machine Learning and Human Learning

2. Aligning specific results from ML and HL

 Learning to predict and achieve rewards
1D learning <> Dopamine system in the brain

« Value of redundancy in data inputs
« Cotraining <> Intersensory redundancy hypothesis

3. Core questions and conjectures
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FirstPregrancy: na FistPrsgnancy: no FirstPragnancy: no
Anemia: mo Ansmia: na Ansmi: o
Diabistes: na Disbstes: YES Disbetes: no
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Utrasound: ? Ultiasound: abrormal Uhrasound: ? e e C e CO n I I O n
Elsctive C-Ssction: ? Elsctive C-Saction: ma Elective G-Section: no
Emaigancy C—Saction: ? Emergency C-Saction: ? Emergency C-Section: Yes

One of 18 learned rules:

If DNo previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admission

Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63, ObjeCt recognition

Over test data: 12/20 = .60
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Mining Databases « Reinforcement learning

* Supervised learning

Control learning  Bayesian networks

Text analysis
X ysl e Hidden Markov models
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Machine Learning - Theory

PAC Learning Theory
(for supervised concept learning)

# examples (m)

representational

complexity (H)
error rate (g)

failure
probability ()

m > %(ln |H| +1n(1/9))
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Similar theories for

* Reinforcement skill learning
* Unsupervised learning
 Active student querying

... also relating:

* # of mistakes during learning
e learner’s query strategy
* convergence rate

 asymptotic performance




What We Know About ML

« Excellent algorithms for pure induction
— SVM's, decision trees, graphical models, neural nets, ...

 Algorithms for dimensionality reduction
— PCA, ICA, compression algorithms, ...

« Fundamental information theoretic bounds relate data and
biases to probability of successful learning
— PAC learning theory, statistical estimation, grammar induction, ...

* Active learning by querying teacher is much more data-
efficient than random observation

« Algorithms to learn from delayed feedback (reinforcement)
— Temporal difference learning, Q learning, policy iteration, ...
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ML Has Little to Say About

» Learning cumulatively over time
* Learning from instruction (lectures, discussion)

* Role of motivation, forgetting, curiosity, fear,
boredom, ...

 Implicit (unconscious) versus explicit (deliberate)
learning
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What We Know About HL"
Neural level:

* Hebbian learning: connection between the pre-synaptic and
post-synaptic neuron increases if pre-synaptic neuron is
repeatedly involved in activating post-synaptic
— Biochemistry: NMDA channels, Ca%*, AMPA receptors, ...

* Timing matters: strongest effect if pre-synaptic action
potential occurs within 0 - 50msec before postsynaptic
firing.

* Time constants for synaptic changes are a few minutes.

— Can be disrupted by protein inhibitors injected after the training
experience

ML * I'm not an expert
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What We Know About HL’

System level:

* In addition to single synapse changes, memory formation involves
longer term ‘consolidation’ involving multiple parts of the brain

« Time constant for consolidation is hours or days: memory of new
experiences can be disrupted by events occurring after the experience
(e.g., drug interventions, trauma).

— E.g., injections in amygdala 24 hours after training can impact recall
experience, with no impact on recall within a few hours

« Consolidation thought to involve regions such as amygdala,
hippocampus, frontal cortex. Hippocampus might orchestrate
consolidation without itself being home of memories

 Dopamine seems to play a role in reward-based learning (and
addictions)

m *I'm not an expert
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What We Know About HL’

Behavioral level:

« Power law of practice: competence vs. training on log-log plot is a
straight line, across many skKill types

* Role of reasoning and knowledge compilation in learning
— chunking, ACT-R, Soar

« Timing: Expanded spacing of stimuli aids memory, ...
« Theories about role of sleep in learning/consolidation
* Implicit and explicit learning. (unaware vs. aware).

« Developmental psychology: knows much about sequence of acquired
expertise during childhood

— Intersensory redundancy hypothesis

m * I'm not an expert
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Models of L

—

earning Processes

VA

Machine Learninq:

« # of examples

« Errorrate

« Reinforcement learning
« Explanations

« Learning from examples

« Complexity of learner’s
representation

« Probability of success

« Exploitation / exploration
* Prior probabilities

« Loss functions
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Human Learning:

« # of examples

« Errorrate

« Reinforcement learning
« Explanations

 Human supervision
— Lectures
— Question answering
« Attention, motivation
« Skills vs. Principles
* Implicit vs. Explicit learning
« Memory, retention, forgetting
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1. Learning to predict and achieve rewards

TD learning <> Dopamine in the brain

MACHINE LEARNING
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Reinforcement Learning

[Sutton and Barto 1981; Samuel 1957]
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Reinforcement Learning in ML

=100
O et RO R
V=72 V=81 V=90 V=100

V(S) E[I' +y t+1 Y t+2 ]
V(s,) =E[r, J+v V(s,)

To learn V, use each transition to generate a training signal;

training_errory = ¢ + YV (s411) — V(s¢)

S R R
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Reinforcement Learning in ML
training error = 1, +7vy V(s ) — V(s,)

« Variants of RL have been used for a variety of
practical control learning problems

— Temporal Difference learning

— Q learning
— Learning MDPs, POMDPs

 Theoretical results too

— Assured convergence to optimal V(s) under certain
conditions

— Assured convergence for Q(s,a) under certain conditions

for bl
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Dopamine As Reward Signal

v

No prediction
Reward occurs

[Schultz et al.,
Science, 1997]
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Dopamine As Reward Signal

Mo prediction
Reward occurs

[Schultz et al.,
Science, 1997]

Reward predicted | | ‘ ||| Lk $
Reward occurs
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Dopamine As Reward Signal

v

No prediction
Reward occurs

[Schultz et al.,
Science, 1997]

Reward predicted
Reward occurs

error = 1, +7 V(s,.,) ~ V(s,)

Reward predicted
Mo reward occurs
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RL Models for Human Learning

[Seymore et al., Nature 2004]

a Experimental design

S
(5

0 3.6 7.2

Time (s)

Figure 1 Experimental design and temporal difference model. a, The experimental design
expressed as a Markov chain, giving four separate trial types. b, Temporal difference
value. Aslearning proceeds, earlier cues learn to make accurate value predictions (that is,
weighted averages of the final expected pain). ¢, Temporal difference prediction error;

ML

MACHINE LEARNING
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Trial type 1 High
(41%) Cue A —» Cue B—» pain

Trial type 2 ~ Low
(41%) Cue C mmp CUE D e oain

High
pain

Trial type 3

(9%) Cue C—p Cue B —p

Trial type 4 Low
@ %) CueA—hCue.‘J—pan

during learning the prediction error is transferred to earlier cues as they acquire the
ability to make predictions. In trial types 3 and 4, the substantial change in prediction
elicits a large positive or negative prediction error. (Forclanty, before and mid-learning are
shown only for trial type 1.)

b Temporal difference value ¢ Temporal difference

prediction errar

.-« Before learning ~ «veeee Mid-learning = | ate learning
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a Experimental design

High

Cue A —» CueB—» =
pain

Cue C=—p-Cue D—p- Lﬁ;ﬁ:

High

Cue C—p Cue B —p pain

Low

Cue A —» Cue .'J—br,an

b Temporal difference value

Mid-earning

€ Temporal difference
prediction error

— N

T— N

= Late learning

Figure 2 Temporal difference prediction error (statistical parametric maps). Areas
coloured yellow/orange show significant correlation with the temporal difference

[Seymore et al., Nature 2004]




Human EEG responses to Pos/Neg Reward

from [Nieuwenhuis et al.]

— Negative feedback

6r — — Positive feedback
4 F
2t
0 L
2 -
>
=9
4 L
6 -
8 L
10 + feedback N/
onset «—P300
12 L L 1 1 L L ]
-100 0 100 200 300 400 500 600

Time (ms)

Fig. 1. Typical example of event-related brain potentials associated with
negative and positive feedback (adapted from Ref. [25]). Negative 1s
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Response due to
feedback on timing task
(press button exactly 1
sec after sound).

Neural source appears
to be in anterior
cingulate cortex (ACC)

Response is abnormal
In some subjects with
OCD
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One Theory of RL in the Brain
from [Nieuwenhuis et al.]
« Basal ganglia monitor events, predict future rewards
* When prediction revised upward (downward), causes
increase (decrease) in activity of midbrain
dopaminergic neurons, influencing ACC
* This dopamine-based e
activation somehow results b
. . . Striatum L% .~ |
In revising the reward b=
prediction function. OO
Possibly through direct e A PR
iInfluence on Basal ganglia, P N u?,
. Amygdala \ \ g
and via prefrontal cortex o Y
ML ;?ggqental ﬁltébstantla

for bl
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Summary: Temporal Difference ML Model
Predicts Dopaminergic Neuron Acitivity during Learning

« Evidence now of neural reward signals from
— Direct neural recordings in monkeys
— fMRI in humans (1 mm spatial resolution)
— EEG in humans (1-10 msec temporal resolution)

« Dopaminergic responses track temporal difference error in
RL

« Some differences, and efforts to refine HL model
— Better information processing model
— Better localization to different brain regions
— Study timing (e.g., basal ganglia learns faster than PFC ?)

for bl
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2. The value of unlabeled multi-sensory data
for learning classifiers

Cotraining <> Intersensory redundancy
hypothesis

MACHINE LEARNING
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Professor Faloutsos

Redundantly Sufficient Features

my advisor
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CO-Training Idea: Train Classifier, and Classifier, to:
1. Correctly classify labeled examples
2. Agree on classification of unlabeled
Answer, Answer,
Classifier, Classifier,

Professor Faloutsos
N

Research Inferests:
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Co-Training

Answer,

T

Classifier,

e —— R —

Where else might this work?

- learning lexicons and named-
entity recognizers for people,
places, dates, books, ... (eqg.,
Riloff&Jones; Collins et al.)

Answer,

T

Classifier,

New York

I flew to today

ML I flew to New York today.

nnnnnnnnnnnnn
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CoMpIied to Named Entity Recognition

[Rosie Jones, 2005], [Ghani & Nigam, 2000]
NP context

the dog . <X ran quickly

australia travelled to <X>

. <X 1s pleasant

Z P(class|N Pj) P(N Pj|context;)
J

france

the canary
1slands

P(class|context;)

P(class|NF;)

Z P(class|context;) P(context;|N F;)
J
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Co applied to Named Entity Recognition
[Rosie Jones, 2005], [Ghani & Nigam, 2000]

. <X> ran quickly

travelled to <X>

the dog

australia

- - i
'
= 3 r . - :
france . K . <X> 1s pleasant
Fa
F
s
the canary Y
1slands

Z P(class|N Pj) P(N Pj|context;)
J

U pd ate P (f:f. ass | Ct_’m.telti )
rules: P(class|NF;) Z P(class|context;) P(context;|N F;)

ML !

MACHINE LEARNING
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Co applied to Named Entity Recognition
[Rosie Jones, 2005], [Ghani & Nigam, 2000]

the dog . . <X> ran quickly
australia (R- - — =N\ - - . travelled to <X>

7
l,.bl'-
-
france . . . <X> 1s pleasant
'
r
4
the canary
1slands

>~ P(class|N P;) P(N Pj|context;)
J
rules: P(class|NF;) Y P(class|context)P(context;|N F;)

ML !

MACHINE LEARNING
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Update P(class|context;)
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Precision

038

0.6

0.4

0.2

locations

T
coem

hand-correctad seed examples
00 random labeled examples

0.2

0.4

Recall

0.6 0.3
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Co- -Training Theory

[Blum&Mitchell 98; Dasgupta 04, ...]

# labeled examples

# unlabeled examples

Final
Accuracy

nnnnnnnnnnnnn
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CoTraining setting:

learn f:X Y

where X =X, xX,

where x drawn from unknown distribution

and 30,,9, (Vx)gl(xl) - gz(xz) = f (X)

Number of
redundant
Inputs

Conditional
dependence
among inputs

- want inputs less dependent,
increased number of redundant

Inputs,

33




Theoretical Predictions of CoTraining

* Possible to learn from unlabeled examples

* Value of unlabeled data depends on

— How (conditionally) independent are X, and X,
* The more the better

— How many redundant sensory inputs X there are
« Expected error decreases exponentially with this number

* Disagreement on unlabeled data predicts true error

Do these predictions hold for human learners?

for bl
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C O-T ra | N | N g [joint work with Liu, Perfetti, Zi]

Can it work for humans
learning chinese as a
second language?

Answer: nail Answer: nail
Classifier, Classifier,

4T
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Examples

» Training fonts and « Testing fonts and speakers
speakers for “nail” for “nail”

< /L ¢ .
%T ; /%T § Familiar
5T« 47
%T%. Unfamiliar

for bl
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Experiment: Cotraining in Human Learning

[with Liu, Perfetti, Z1 2006]

* 44 human subjects learning Chinese as second lanuage

« Target function to be learned:
— chinese word (spoken / written) - english word
— 16 distinct words, 6 speakers, 6 writers = 16x6x6 stimulus pairs

« Training conditions:

1. Labeled pairs: 48 labeled pairs R
2. Labeled pairs plus 32 labeled pairs 192 unlabeled singles 16 labeled pairs_
unlabeled singles: >
3. Labeled pairs plus 32 labeled pairs 192 unlabeled pairs 16 labeled pairs
unlabeled, conditionally -
indep. pairs:

« Test: 16 test words (single chinese stimulus), require english label

nnnnnnnnnnnnn
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Accuracy

0.9 -

0.8 -

©
~
1

o
(o]
1

o
(63
1

o
HAN
1

©
w
1

o
(V)

Results

Does it matter whether X,, X,
are conditionally independent?

Familiar
font

Unfamiliar Familiar
font speaker

Testing task

Unfamiliar
speaker

O Labeled
B Lab +unl singles
O Lab + unl pairs
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Ipact of Cond

itional Independence In

unlabeled pairs

[EEY
I

o
(o]
1

o
(e0)
1

o
~
|

o
(o))
1

OLabeled only

B Lab +unlab singles

E Lab + cond dep lab pairs

O Lab +cond indep lab pairs

Accuracy
o o
H ol
| |

o
w
1

o
(V)

Familiar Unfamiliar Familiar Unfamiliar
speaker

speaker

Testing task




CURBENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE

Intersensory Redundancy
Guides the Development of
Selective Attention, Perception,
and Cognition in Infancy

Lorraine E. Bahrick.! Robert Lickliter.! and Ross Flom®

!Infant Development Research Center, Department of Psychology, Florida International University, and

2 - - 7 niversi
Department of Human Development. Brigham Young University

ABSTRACT—That the senses provide overlapping information for
objects and events is no extrovagance of nature. This overlap
Jucilitates attention to critical aspects of sensory stimulation,
those that are redundantly specified, and altenuates attention to
nonredundantly specified stimulus properiies. This selective
aliention 15 most Jrron ownced in r'u_lf'ri ey el :"_’rlil'rl'-'!i inetiol od-
vantage to the perceptual processing of, learning of, and
memory for stimulus properties that are redundant, or amodal
fem.,
modda fr'!}.'-sp#f'r:ﬂr prr.lpf-'rfr'f-':i fe.m, color, pr'ff'fi. and timbre) that

can be perceived through only one sense. We review evidence

:-i_\'m'firrm_\'_ rfi_\'ffiru. aurnel r'uH-'u:-ir'f}'j. at  the EXHENSE r.gj"

soand of footsteps foretell the approach of a person, and that the
breaking glass made the sharp crashing sound. How does the infant,
who beging life with no prior knowledge 10 guide attention, make
sense of this How and feews on stimolation that = meaningful, eo
herent, and relevant? What guides and constraing perceplual devel
opment and provides the foundation for the knowledge of the adull
perceiver?

One answer o these questions anses [rom the fact that the senses
piek up overlapping, redundant information for objects and events in
the environment. In a radical move from traditional perceptual theory,

JJ. Gibson (1966) proposed that different fomms of =ensory stimulation




Infant Learning and Intersensory Redundancy

 |nfants

— 3 month olds attend to amodal properties (tempo of hammer) when
given multisensory inputs, but not when given single modality input
[Bahrick et al., 2002]

« Animals

— Quail embryos learned an individual maternal call 4x faster when given
multisensory data (synchronizing light with rate and rhythm of the
sound) [Lickliter et al., 2002]

nnnnnnnnnnnnn
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Intersensory Redundancy and Infant Development
[Bahrick & Lickliter, Dev. Psy, 2000]

“ . Stimulus Property
» Intersensory redundancy: “spatially

coordinated and temporally Amodal Modality-Specific
synchronous presentation of the same

information across two or more

senses = Multimodal +
L g (auditory-visual) -
L]

« Sight & sound of ball bouncing 2 g

Amodal property: tempo 5 g
E pu Unimodal
=5 k= nimodal
= € (auditory or visual) - +
it
73]

Intersensory Redundancy Hypothesis [Bahrick & Lickliter]:
1. Learning of amodal properties is facilitated by multimodal
stimulation
2. Learning of modality-specific properties facilitated by unimodal
stimulation
3. These effects are most pronounced in early development

for bl
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Where else might this work?

Co-Training

- learning to recognize
phonemes/vowels

[de Sa, 1994; Coen 2006]

Answer,= /va/ .4, /ba/ .6 | | Answer,= /va/ .9, /ba/ 0.1

Classifier, Classifier,

FEFFFFEER

Video
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[Michaql Coen, 2000]

Formant ’
Data : '

0.4

Mutual clustering

S R R
MACHINE LEARNING 44
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CoTraining Summary

* Unlabeled data improves supervised learning when
example features are redundantly sufficient and only
weakly (conditionally) correlated

 Theoretical results

— If X1,X2 conditionally independent given Y
» PAC learnable from weak initial classifier plus unlabeled data

» disagreement between g1(x1) and g2(x2) bounds final classifier
error

— Disagreement between classifiers over unlabeled examples
predicts true classification error

* Aligns with developmental psychology claims about
importance of multi-sensory input

* Unlabeled conditionally independent pairs improve
second language learning in humans
— But dependent pairs are also helpful !

||||||||||||||||
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Human and Machine Learning

Additional overlaps:

« Learning representations for perception
— Dimensionality reduction methods, low level percepts

— Lewicky et al.: optimal sparse codes of natural scenes yield
gabor filters found in primate visual cortex

» Learning using prior knowledge

— Explanation-based learning, graphical models, teaching
concepts & skills, chunking

— VanLehn et al: explanation-based learning accounts for
some human learning behaviors

» Learning multiple related outputs

— MultiTask learning, teach multiple operations on the same
iInput

— Caruana: patient mortality predictions improve if same
predictor must also learn to predict ICU status, WBC, etc.

46



Some questions and conjectures

MACHINE LEARNING
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One learning mechanism or many?

« Humans:
— Implicit and explicit learning (unaware/aware)

— Radically different time constants in synaptic changes (minutes)
versus long term memory consolidation (days)

« Machines:
— Inductive, data-intensive algorithms
— Analytical compilation, knowledge + data

Conjecture:
In humans two very different learning processes.
Implicit largely inductive, Explicit involves self-explanation

Predicts: if an implicit learning task can be made explicit, it
will be learnable from less data

||||||||||||||||
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Can Hebbian Learning Explain it All?

 Humans:

— It is the only synapse-level learning mechanism currently known
— It is also known that new neurons grow, travel, and die

Conjecture:

Yes, much of human learning will be explainable by Hebbian learning,
just as much of computer operation can be explained by modeling
transistors. Even two different learning mechanisms.

But much will need to be understood at an architectural level. E.g.,

what architectures could implement goal supervised learning in terms of
Hebbian mechanisms?

NNNNNNNNNNNNNNNN 49
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What is Learned, What Must be Innate?

We don’t know. However, we do know:

* Low level perceptual features can emerge from
unsupervised exposure to perceptual stimuli [e.g., M. Lewicky].
— Natural visual scenes - Gabor filters similar to those in visual cortex
— Natural sounds - basis functions similar to those in auditory cortex

« Semantic object hierarchies can emerge from observed
ground-level facts
— Neural network model [McClelland et al]

ML models can help determine what representations can
emerge from raw data.

for bl
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