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How can studies of 
machine (human) learning inform 

studies of 
human (machine) learning?
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improving performance
at some task

through experience

Learning = 
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Outline
1. Machine Learning and Human Learning

2. Aligning specific results from ML and HL
• Learning to predict and achieve rewards

• TD learning ↔ Dopamine system in the brain
• Value of redundancy in data inputs

• Cotraining ↔ Intersensory redundancy hypothesis

3. Core questions and conjectures
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Machine Learning - Practice

Object recognition
Mining Databases

Speech Recognition

Control learning

• Reinforcement learning

• Supervised learning

• Bayesian networks

• Hidden Markov models

• Unsupervised clustering

• Explanation-based learning

• ....

Text analysis
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Machine Learning - Theory

PAC Learning Theory

# examples (m)

representational 
complexity (H)

error rate (ε)
failure 
probability (δ)

Similar theories for

• Reinforcement skill learning

• Unsupervised learning

• Active student querying

• …

… also relating:

• # of mistakes during learning

• learner’s query strategy

• convergence rate

• asymptotic performance

• …

(for supervised concept learning)
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What We Know About ML
• Excellent algorithms for pure induction

– SVM’s, decision trees, graphical models, neural nets, ...

• Algorithms for dimensionality reduction
– PCA, ICA, compression algorithms, ...

• Fundamental information theoretic bounds relate data and 
biases to probability of successful learning
– PAC learning theory, statistical estimation, grammar induction, ...

• Active learning by querying teacher is much more data-
efficient than random observation

• Algorithms to learn from delayed feedback (reinforcement) 
– Temporal difference learning, Q learning, policy iteration, ...

• ...



8

ML Has Little to Say About

• Learning cumulatively over time 

• Learning from instruction (lectures, discussion)

• Role of motivation, forgetting, curiosity, fear, 
boredom, ...

• Implicit (unconscious) versus explicit (deliberate) 
learning

• ...
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What We Know About HL*

Neural level:

• Hebbian learning: connection between the pre-synaptic and 
post-synaptic neuron increases if pre-synaptic neuron is 
repeatedly involved in activating post-synaptic
– Biochemistry: NMDA channels, Ca2+, AMPA receptors, ... 

• Timing matters:  strongest effect if pre-synaptic action 
potential occurs within 0 - 50msec before postsynaptic 
firing. 

• Time constants for synaptic changes are a few minutes.  
– Can be disrupted by protein inhibitors injected after the training 

experience
* I’m not an expert
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What We Know About HL*

System level:

• In addition to single synapse changes, memory formation involves
longer term ‘consolidation’ involving multiple parts of the brain

• Time constant for consolidation is hours or days: memory of new 
experiences can be disrupted by events occurring after the experience 
(e.g., drug interventions, trauma).
– E.g., injections in amygdala 24 hours after training can impact recall 

experience, with no impact on recall within a few hours

• Consolidation thought to involve regions such as amygdala, 
hippocampus, frontal cortex.  Hippocampus might orchestrate 
consolidation without itself being home of memories

• Dopamine seems to play a role in reward-based learning (and 
addictions)

* I’m not an expert
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What We Know About HL*

Behavioral level:

• Power law of practice: competence vs. training on log-log plot is a 
straight line, across many skill types

• Role of reasoning and knowledge compilation in learning 
– chunking, ACT-R, Soar

• Timing: Expanded spacing of stimuli aids memory, ...

• Theories about role of sleep in learning/consolidation

• Implicit and explicit learning.  (unaware vs. aware). 

• Developmental psychology: knows much about sequence of acquired 
expertise during childhood
– Intersensory redundancy hypothesis 

* I’m not an expert
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Models of Learning Processes

• # of examples
• Error rate
• Reinforcement learning
• Explanations

• Learning from examples
• Complexity of learner’s 

representation
• Probability of success
• Exploitation / exploration
• Prior probabilities
• Loss functions

• # of examples
• Error rate
• Reinforcement learning
• Explanations

• Human supervision
– Lectures
– Question answering

• Attention, motivation
• Skills vs. Principles
• Implicit vs. Explicit learning
• Memory, retention, forgetting

Machine Learning: Human Learning:



13

1.  Learning to predict and achieve rewards

TD learning ↔ Dopamine in the brain
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Reinforcement Learning

...]rγr γE[r(s)V 2t
2

1tt
* +++= ++

[Sutton and Barto 1981; Samuel 1957]
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Reinforcement Learning in ML
r =100

V=100

0

V=72 V=81 V=90

γ = .9

...]rγr γE[r)V(s 2t
2

1ttt +++= ++

S0 S2S1 S3

)V(s γ]E[r)V(s 1ttt ++=

To learn V, use each transition to generate a training signal:
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Reinforcement Learning in ML

• Variants of RL have been used for a variety of 
practical control learning problems  
– Temporal Difference learning
– Q learning  
– Learning MDPs, POMDPs

• Theoretical results too
– Assured convergence to optimal V(s) under certain 

conditions
– Assured convergence for Q(s,a) under certain conditions

)V(s)V(s γr  error training t1tt −+= +
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Dopamine As Reward Signal

[Schultz et al., 
Science, 1997]

t
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Dopamine As Reward Signal

[Schultz et al., 
Science, 1997]

t
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Dopamine As Reward Signal

[Schultz et al., 
Science, 1997]

t

)V(s)V(s γr  error t1tt −+= +
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RL Models for Human Learning
[Seymore et al., Nature 2004]
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[Seymore et al., Nature 2004]
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Human EEG responses to Pos/Neg Reward 
from [Nieuwenhuis et al.]

Response due to 
feedback on timing task 
(press button exactly 1 
sec after sound).

Neural source appears 
to be in anterior 
cingulate cortex (ACC)

Response is abnormal 
in some subjects with 
OCD
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One Theory of RL in the Brain

• Basal ganglia monitor events, predict future rewards
• When prediction revised upward (downward), causes 

increase (decrease) in activity of midbrain 
dopaminergic neurons, influencing ACC

• This dopamine-based 
activation somehow results 
in revising the reward 
prediction function.  
Possibly through direct 
influence on Basal ganglia, 
and via prefrontal cortex

from [Nieuwenhuis et al.]
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Summary: Temporal Difference ML Model 
Predicts Dopaminergic Neuron Acitivity during Learning

• Evidence now of neural reward signals from 
– Direct neural recordings in monkeys
– fMRI in humans (1 mm spatial resolution)
– EEG in humans  (1-10 msec temporal resolution)

• Dopaminergic responses track temporal difference error in 
RL

• Some differences, and efforts to refine HL model
– Better information processing model
– Better localization to different brain regions
– Study timing (e.g., basal ganglia learns faster than PFC ?)
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2. The value of unlabeled multi-sensory data
for learning classifiers

Cotraining ↔ Intersensory redundancy 
hypothesis
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Redundantly Sufficient Features
Professor Faloutsos my advisor
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Co-Training

Answer1

Classifier1

Answer2

Classifier2

Idea:  Train Classifier1 and Classifier2 to:

1. Correctly classify labeled examples

2. Agree on classification of unlabeled
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Co-Training

Answer1

Classifier1

Answer2

Classifier2

I flew to New York today.

Where else might this work?

- learning lexicons and named-
entity recognizers for people, 
places, dates, books, … (eg., 
Riloff&Jones; Collins et al.)

New York I flew to ____ today
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CoEM applied to Named Entity Recognition
[Rosie Jones, 2005], [Ghani & Nigam, 2000]

Update 
rules:

contextNP
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CoEM applied to Named Entity Recognition
[Rosie Jones, 2005], [Ghani & Nigam, 2000]

Update 
rules:
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CoEM applied to Named Entity Recognition
[Rosie Jones, 2005], [Ghani & Nigam, 2000]

Update 
rules:
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Co-Training Theory 
[Blum&Mitchell 98; Dasgupta 04, ...]

Final 
Accuracy

# unlabeled examples

Conditional 
dependence 
among inputs

# labeled examples

Number of 
redundant 
inputs

want inputs less dependent, 
increased number of redundant 
inputs, …

)()()()(,

:
:
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Theoretical Predictions of CoTraining

• Possible to learn from unlabeled examples
• Value of unlabeled data depends on

– How (conditionally) independent are X1 and X2
• The more the better

– How many redundant sensory inputs Xi there are
• Expected error decreases exponentially with this number

• Disagreement on unlabeled data predicts true error

Do these predictions hold for human learners?
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Co-Training

Answer: nail

Classifier1

Answer: nail

Classifier2

Can it work for humans 
learning chinese as a 
second language?

[joint work with Liu, Perfetti, Zi]
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Examples

• Training fonts and 
speakers for “nail”

• Testing fonts and speakers 
for “nail”

Familiar

Unfamiliar
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Experiment: Cotraining in Human Learning

• 44 human subjects learning Chinese as second lanuage
• Target function to be learned: 

– chinese word (spoken / written) english word
– 16 distinct words, 6 speakers, 6 writers = 16x6x6 stimulus pairs

• Training conditions:

• Test: 16 test words (single chinese stimulus), require english label

48 labeled pairs

32 labeled pairs

32 labeled pairs 192 unlabeled pairs

16 labeled pairs

16 labeled pairs

1. Labeled pairs:

2. Labeled pairs plus 
unlabeled singles:

3. Labeled pairs plus 
unlabeled, conditionally 
indep. pairs:

192 unlabeled singles

[with Liu, Perfetti, Zi 2006]
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Results
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Does it matter whether X1, X2
are conditionally independent?



39

Impact of Conditional Independence in 
unlabeled pairs
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Infant Learning and Intersensory Redundancy

• Infants
– 3 month olds attend to amodal properties (tempo of hammer) when 

given multisensory inputs, but not when given single modality input 
[Bahrick et al., 2002]

• Animals
– Quail embryos learned an individual maternal call 4x faster when given 

multisensory data (synchronizing light with rate and rhythm of the 
sound) [Lickliter et al., 2002]
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Intersensory Redundancy and Infant Development

• Intersensory redundancy: “spatially 
coordinated and temporally 
synchronous presentation of the same 
information across two or more 
senses”

• Sight & sound of ball bouncing                        
Amodal property: tempo

[Bahrick & Lickliter, Dev. Psy, 2000]

Intersensory Redundancy Hypothesis [Bahrick & Lickliter]:
1. Learning of amodal properties is facilitated by multimodal 

stimulation
2. Learning of modality-specific properties facilitated by unimodal

stimulation
3. These effects are most pronounced in early development
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Co-Training

Answer1= /va/ .4, /ba/ .6

Classifier1

Answer2= /va/ .9, /ba/ 0.1

Classifier2

Audio Video

Where else might this work?

- learning to recognize 
phonemes/vowels

[de Sa, 1994; Coen 2006]
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heed (i)

hid (ɪ)

head (ε)

had (æ)
hod (α)

hawed (ɔ)

hood (ʊ)

who’d (u)

heard (ɜ)

hud (ʌ)

heed (i)

had (æ)
head (ε)

hid (ɪ)

who’d (u)

heard (ɜ)

hud (ʌ)
hood (ʊ)

hawed (ɔ)

F1

F2

Minor axis

M
aj

or
 a

xi
s

Formant
Data

Lip
Data

Mutual clustering

hod (α)

[Michael Coen, 2006]
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CoTraining Summary
• Unlabeled data improves supervised learning when 

example features are redundantly sufficient and only 
weakly (conditionally) correlated  

• Theoretical results
– If X1,X2 conditionally independent given Y

• PAC learnable from weak initial classifier plus unlabeled data
• disagreement between g1(x1) and g2(x2) bounds final classifier 

error
– Disagreement between classifiers over unlabeled examples 

predicts true classification error

• Aligns with developmental psychology claims about 
importance of multi-sensory input

• Unlabeled conditionally independent pairs improve 
second language learning in humans
– But dependent pairs are also helpful !
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Human and Machine Learning
Additional overlaps:

• Learning representations for perception
– Dimensionality reduction methods, low level percepts
– Lewicky et al.: optimal sparse codes of natural scenes yield 

gabor filters found in primate visual cortex

• Learning using prior knowledge
– Explanation-based learning, graphical models, teaching 

concepts & skills, chunking
– VanLehn et al: explanation-based learning accounts for 

some human learning behaviors

• Learning multiple related outputs
– MultiTask learning, teach multiple operations on the same 

input
– Caruana: patient mortality predictions improve if same 

predictor must also learn to predict ICU status, WBC, etc.
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Some questions and conjectures
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One learning mechanism or many?

• Humans:
– Implicit and explicit learning (unaware/aware)
– Radically different time constants in synaptic changes (minutes)

versus long term memory consolidation (days)
• Machines:

– Inductive, data-intensive algorithms
– Analytical compilation, knowledge + data

Conjecture:
In humans two very different learning processes.
Implicit largely inductive, Explicit involves self-explanation
Predicts: if an implicit learning task can be made explicit, it 
will be learnable from less data
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Can Hebbian Learning Explain it All?

• Humans:
– It is the only synapse-level learning mechanism currently known
– It is also known that new neurons grow, travel, and die

Conjecture:
Yes, much of human learning will be explainable by Hebbian learning, 
just as much of computer operation can be explained by modeling 
transistors.  Even two different learning mechanisms.

But much will need to be understood at an architectural level.  E.g., 
what architectures could implement goal supervised learning in terms of 
Hebbian mechanisms?
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What is Learned, What Must be Innate?

We don’t know.  However, we do know:

• Low level perceptual features can emerge from 
unsupervised exposure to perceptual stimuli [e.g., M. Lewicky].
– Natural visual scenes Gabor filters similar to those in visual cortex
– Natural sounds basis functions similar to those in auditory cortex

• Semantic object hierarchies can emerge from observed 
ground-level facts
– Neural network model [McClelland et al]

• ML models can help determine what representations can 
emerge from raw data.


