
Cache-sensitive optimization of immutable graph
traversals

(CS745 Project Proposal)

Uri Dekel and Brett Meyer

ABSTRACT
This project tries to improve the cache-locality of programs
which frequently traverse an immutable graph data struc-
ture. In our approach, the compiler generates code to fold
the inherently noncontiguous representation of vertices in a
mutable graph into a more contiguous representation possi-
ble only for immutable graphs. In addition to this internal
reorganization, the generated code will also try to change
the external organization of vertices that are likely to be
accessed sequentially in order to increase the likelihood of
them residing a single cache line. Our implementation plans
include laying the infrastructure, and testing a simple clus-
tering algorithm.

1. INTRODUCTION

1.1 Background
Memory access is a significant bottleneck in modern com-

puting architectures, as memory latency may be longer than
a processor cycle by orders of magnitude. To alleviate this
problem, at least one level of caching is used to bypass these
expensive accesses by retrieving the same data from a much
faster but smaller cache memory.

The effectiveness of caching arises from the principle of lo-
cality, which implies that if a certain object is accessed, then
the probability of accessing the same object in the near fu-
ture increases. Thus, if we just accessed a variable in main
memory, then a subsequent access may be less expensive as
the variable has been placed in the cache during the first
access. If it is still there, then we have a ‘cache hit’. How-
ever, since cache space is limited, an object may be evicted
in deference to others, resulting in an eventual cache miss.

Another implication of the principle of locality is that ac-
cess to one object increases the probability of a subsequent
access to a related object. This implication is the basis
for prefetching, which brings the necessary object from the
long-latency medium before it is absolutely required, in an-
ticipating of its possible future need. Prefetching is practi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

cal in many situations when the number of relevant objects
is roughly linear in the number of active objects. For in-
stance, modern processors assume that if an instruction is
executed, so will the next few following instructions, and
prefetch accordingly. However, prefetching is less practical
for optimizing specific program behaviors, since it requires
hardware and software support for recognizing these oppor-
tunities. At present, few architectures offer programmers
the means to control prefetching into the memory cache.

Nevertheless, an inherent property of cache memory im-
plementations allows programs to indirectly leverage prefetch-
ing on a small but extremely effective scale: Cache memory
is not at the granularity of a single object. Instead, it con-
sists of lines of contiguous memory space which could ac-
commodate multiple objects, and are manipulated as one
unit. Thus, a memory organization that stores an object
and its related objects contiguously increases the likelihood
that when the first object is accessed and its memory block
brought into the cache, one of the related objects will be in
the same cache line. For instance, in languages like C, arrays
are allocated as contiguous blocks of memory. A sequential
scan of the array will thus trigger many cache hits, since the
cache line containing the first member contains several of its
successors, etc.

Unfortunately, many common data structures are not lin-
ear, and use pointers to connect objects scattered around
memory. This nonlinear structure precludes us from naively
benefitting from such implicit prefetching. Nevertheless, not
all is lost, since pointers offer memory transparency, in the
sense that the exact location of an object in memory is un-
known to the programmer. There is therefore nothing to
prevent the compiler or runtime system from shuffling ob-
jects in memory to achieve a similar effect. Accomplish-
ing this is difficult, and demands specialized treatment of
the program and explicit understanding of its behavior and
structure. However, optimizing the memory behavior of cer-
tain data types can yield significant performance gain in
certain applications.

1.2 Goal and Approach
The goal of this project is to optimize the cache-hit rates

for programs which perform frequent traversals of graph
data structures. Graphs play central roles in many appli-
cations in computer science, from compilation to mapping
algorithms to games. Unlike data structures whose primary
goal is to provide efficient access to information, the essence
of a graph’s data is in its structure. Thus, whereas programs
are likely to traverse short paths in data structures like trees
or tries, graph data structures are often traversed in their

entirety, increasing the number of memory accesses.
Improving the memory behavior of graphs is extremely

challenging, because they do not have the inherent organi-
zation of structures such as binary search trees. Instead,
each node can stand by itself or be connected to an un-
limited number of nodes, making optimization choices more
difficult. Furthermore, graphs can be cyclic and their edges
are not ordered, making traversal less predictable then for
some other data structures. Nevertheless, we plan to provide
infrastructure for optimization which could be leveraged to
accommodate a variety of memory organization techniques.

Our motivation is based on an intuition (which follows
personal experiences), that most graph traversals take place
after the graph has been created and its structure stabilized
and becomes immutable For instance, in many compilers we
have different optimizations that traverse the same control-
flow graph of a program, after it has been calculated from
the intermediate representation. Similarly, once a route map
has been built, many traversals may take place to seek opti-
mal paths. Thus, we argue that graphs are mutable as they
are being constructed, but are effectively immutable at the
time of traversal.

Mutable graphs must accommodate uncertainty and are
not memory efficient. For instance, they use non-fixed col-
lections such as linked lists to maintain the adjacencies of
each vertex. Immutable graphs, on the other hand, can be
organized more efficiently. First, the collections are now
fixed in their size, reducing indirection and allowing them
to be stored in new ways. Second, it is now possible to
reorganize the memory ordering of vertices to increase the
chances of multiple vertices being stored on the same cache
line. This would be particularly useful if nodes that are ac-
cessed close to one another in a graph traversal would be on
the same line.

A way to optimize programs that make frequent traversals
of the same graph would be, once the graph has been cre-
ated, to create an immutable version using a more efficient
representation, and then have all traversals utilize this im-
mutable version. At present, however, few programs do this
explicitly, because of the significant required effort. The goal
of our project is to automate this optimization (as much as
possible) by having the compiler make the necessary mod-
ifications to the program, with limited explicit input from
the user.

1.3 Past work
(A more thorough survey of previous work will be pre-

sented in the actual project report)
The idea of reorganizing data to improve cache-performance

is not new. For example, Chilimbri and Larus [2, 3] used
structure splitting to separate ‘hot’ and ’cold’ regions of an
object into different locations. We apply a similar strategy
to separate fields relevant for traversal from those storing ad-
ditional data, thus creating more compact traversal-specific
representations of the vertex that can be packed more effi-
ciently.

In the spring 2003 offering of the 745 course, Chen and
Nikos Hardavellas [1] worked on a similar project, packing
nodes of a binary tree structure into hypernodes. The binary
tries used small nodes that allowed entire subtrees or tree
slices to be stored.

Our project deals with graphs which are less organized,
and therefore necessitate other optimization strategies. In

particular, we fold linked lists, and use heuristics to try and
place nodes together on the same lines.

2. IMPLEMENTATION DETAILS AND LIM-
ITATIONS

The scope of this class project limits the comprehensive-
ness of our solution. It also forces us to pose many lim-
itations on the programs that could be optimized, and in
particular to require direct input from the programmer. In
this section we describe our approach in detail, along with
the requirements and limitations.

2.1 Requirements from the source program
First, we assume the use of a simple C-like language, that

does not use a garbage collector or runtime system to orga-
nize memory, and which supports pointers to actual memory
locations.

Second, we assume that graphs are represented using a
structure which will be described below. Restrictions are in
place on how vertices are accessed, and it is the responsi-
bility of the programmer to adhere to them. In particular,
vertices and edges should only be accessed using appropriate
pointers: one cannot maintain a pointer to internal fields.
Traversal of edges must take place via appropriate library
functions, etc. Also, no modifications may be made to the
structure of an immutable graph, although changes to key
and data fields are allowed.

Third, after a graph has become effectively immutable, we
expect the user to issue a function call to a predefined library
function, specifying the pointer to the graph, and some de-
tails about the architecture and the expected traversal. At
compile time, the compiler will recognize this function call
as the point from which the given graph has become im-
mutable. It will generate the necessary code to build the
immutable graph, and then replace all subsequent opera-
tions having to do with the graph.

2.2 Source representation of graphs
Programs typically represent graphs using adjacency ma-

trices or as a network of independent referencing vertices.
Within the latter representation, two common sub-representations
prevail: The first maintains separate collections of vertices
and edge objects, where edge objects maintain edge prop-
erties and the identifiers or pointers to the vertex objects,
and vertex objects maintain the properties of each vertex.
The other representation does not use edge objects at all.
Instead, each node maintains a collection of its neighboring
nodes, possibly with properties for the edges that connect
them. In this project we are going to focus on this latter
sub-representation, optimizing programs which utilize ver-
tices that maintain their own connections to other vertices.
We assume that all graphs are directed.

More specifically, we restrict ourselves to the representa-
tion which we shall now describe and which is illustrated
in Figure 1. In this representation, an object representing
a vertex with two neighbors is laid in memory as follows:
First, there are several key fields, explicitly indicated by the
user. These key fields contain data that is crucial for traver-
sal of the tree or the calculation which this traversal serves,
such as weights, markings, identifiers, etc. Second, there are
data fields, also indicated by the user. These contain data
that is not crucial for the traversal, such as objects asso-
ciated with the nodes. Third comes the data structure for

P_VERTEX_1

VERTEX_
KEY_1 ... VERTEX_

KEY_N
VERTEX_
DATA_1 ... VERTEX_

DATA_N P_EDGES

EDGE_1_
KEY_1 ... EDGE_1_

KEY_N P_NEXT

P_VERTEX_2EDGE_2_
KEY_M ... EDGE_2_

KEY_N P_NEXT

Figure 1: Layout of a vertex in a mutable graph

holding the adjacency list. In this project, we assume that
vertices maintain their peers using a linked list, and that
the contiguous Vertex object ends with a pointer to the first
member of that list. Each element in the peer list represents
an edge and is stored contiguously. It contains several key
fields of that edge that may be used for traversal purposes
such as weights or markings, and a pointer to the node.

2.3 Optimized graphs

P_VERTEX_1VERTEX_
KEY_1 ... VERTEX_

KEY_N

VERTEX_
DATA_1 ... VERTEX_

DATA_N

EDGE_1_
KEY_1 ... EDGE_1_

KEY_N P_VERTEX_2EDGE_2_
KEY_M ... EDGE_2_

KEY_NP_DATA N_EDGES

Figure 2: Layout of a vertex in an immutable graph

Following our optimization, the vertex would be organized
as follows (Figure 2): The object begins with the vertex key
fields since these are essential for traversal. Then comes a
pointer to a separate object which contiguously maintains
the data fields. Since these fields are rarely used in traver-
sal, they are stored elsewhere with a level of indirection.
The compiler will generate the necessary code to access val-
ues in these fields. After this pointer comes a single byte
representing the number of edges associated with the ver-
tex. It is followed by the records for each incident vertex or
edge: several edge property fields followed by a pointer to
the incident vertex.

The primary advantage of this representation is that it al-
lows us to eliminate the levels of indirection associated with
obtaining the incident edges for the given vertex. Such indi-
rection in the original layout is necessary since the number
of edges is mutable; the problem is even more severe if we
use a linked list rather than a dynamically allocated array.

A second advantage of this representation is that it allows
us to move the “heavy” data fields away and maintain a
compact representation of those fields needed for traversal.

This may allow us to store multiple vertices on the same
cache line and even more on the same virtual memory page.

To see why this is possible, consider graphs used for calcu-
lating shortest paths, spanning trees, and similar measures.
To accommodate a variety of such algorithms, let every ver-
tex and every edge have two key fields: one byte for a weight,
and one byte for a marking. Thus, the base vertex object
(without edges) would consist of 7 bytes (2 for keys, 4 for
the data pointer, 1 for the number of edges). Similarly, each
edge would add 6 bytes (of which, 4 are the pointer to the
edge). Thus, a vertex with two neighbors would consume
19 bytes, while one with four neighbors would consume 31.
If nodes are stored consecutively, it is thus quite possible to
store two or even three nodes on the same cache line.

We note that the layout described above is not the most
optimal possible packing of graph vertices, since each pointer
to a neighboring vertex requires 4 bytes. We could, in the-
ory, allocate all vertices as one contiguous memory block,
and then replace vertex pointers with indices into this block.
This, however, not only introduces more complexities, but
also makes it more difficult to make an immutable graph
mutable again without creating a new graph structure. We
note that our optimized structure allows the removal and
redirection of edges and the creation of new vertices, all
without a need to reallocate any object.

In summary,the performance gain of the optimized graph
structure will come from two sources: First, folding the
linked list of connected nodes reduces the levels of indirec-
tion, and the number of disparate memory regions that are
accessed as all the adjacencies of a vertex are traversed. Sec-
ond, splitting the structure and folding indirection allows us
to obtain vertex representations that occupy less than half
a cache line, and we will try to pack nodes accordingly to
increase cache hits. Performance hits originate in the one-
time creation of the optimized graph, and in the extra level
of indirection for accessing

2.4 Evaluation model
We will create benchmark programs that utilize a vari-

ety of common graph algorithms. We will then produce
comparisons of the performance with our two optimizations
(flattening vertices, and placing related vertices on the same
cache lines). In addition to measuring performance, we will
ensure that outputs are the same.

2.5 Platform and language
At present, we have not yet decided on a specific language

which we will optimize, nor on the exact compiler infrastruc-
ture we will use. Evaluating different options is a natural
first step in our plan.

3. PLAN
At present, no work has been done beyond the writing of

this proposal. The following steps will be carried out:

• Decide on an implementation language and compiler
infrastructure

• Define specifics of user input, including exact source
structure and function call.

• Define (in writing) specific transformations that must
take place (e.g., data field accesses)

• Implement compiler extension to identify method call
and source structure

• Implement compiler extension to generate immutable
form

• Apply necessary translations to ensure rest of program
utilizes immutable form

• Run benchmarks on programs with immutable forms

• Modify immutable form generation exception to try
and place multiple vertices on same memory page.

• Run benchmarks again.

4. REFERENCES
[1] S. Chen and N. Hardavellas. Improving performance

through data object fusion - final project report for 745
course, 2003.

[2] T. M. Chilimbi, B. Davidson, and J. R. Larus.
Cache-conscious structure definition. In PLDI ’99:
Proceedings of the ACM SIGPLAN 1999 conference on
Programming language design and implementation,
pages 13–24, New York, NY, USA, 1999. ACM Press.

[3] T. M. Chilimbi and J. R. Larus. Using generational
garbage collection to implement cache-conscious data
placement. In ISMM ’98: Proceedings of the 1st
international symposium on Memory management,
pages 37–48, New York, NY, USA, 1998. ACM Press.

