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Abstract—
The current web caching infrastructure, though it has a number of per-

formance benefits for clients and network providers, does not meet pub-
lishers’ requirements. We argue that to satisfy these requirements, caches
should be enhanced in both the data and control planes. In the data plane,
caches will dynamically generate content for clients by running code pro-
vided by publishers. In the control plane, caches will return logs of client
accesses to publishers. In this paper, we introduce Gemini, a system which
has both of these capabilities, and discuss two of its key components: secu-
rity and incremental deployment. Since Gemini caches are deeply involved
in content preparation and logging, ensuring that they perform correctly
is vital. Traditional end-to-end security mechanisms are not sufficient to
protect clients and publishers, so we introduce a new security model which
consists of two pieces: an authorization mechanism and a verification mech-
anism. The former allows a publisher to authorize a set of caches to run its
code and serve its content, while the latter allows clients and publishers
to probabilistically verify that authorized caches are operating correctly.
Because it is unrealistic to assume that Gemini caches will be deployed ev-
erywhere simultaneously, we have designed the system to be incrementally
deployable and to coexist with legacy clients, caches, and servers. Finally,
we describe our implementation of Gemini and present preliminary perfor-
mance results.

I. INTRODUCTION

Web caching, like other forms of caching that occur at var-
ious levels of the memory hierarchy (e.g., hardware, operating
system, application), exploits the reference locality principle to
improve the cost and performance of data access. This has been
especially effective at the Internet level, where large geographic
and topological distances separate the producers and consumers
of content. The direct and tangible benefits of web caching in-
clude: improved access latency, reduced bandwidth consump-
tion, improved data availability, and reduced server load.

The main drawback of today’s cache infrastructure is that it is
network-centric, but not publisher-centric. From the publisher’s
point of view, a number of important features are missing. First,
caches are not equipped to handle dynamically generated con-
tent, an increasingly large portion of all web traffic. Requests for
dynamic content have to be forwarded back to the origin servers,
and the dynamically constructed pages cannot be reused, even
by the same client. Second, caches are unable to furnish re-
ports on access statistics (e.g., hit counts and click-streams) back
to the publishers. This is of particular concern to publishers
who rely on accurate hit counts to justify their advertisement-
driven revenue model, and to publishers who wish to obtain ac-
curate representations of the size and information consumption
behavior of their audience. Finally, caches unilaterally make
local copies of web objects, often without the consent or even
the awareness of the publishers. Publishers have no knowl-
edge of the number and locations of cached copies of their ob-
jects, making object consistency impossible to maintain. As a
result, caches may be serving stale or outdated objects to the
clients. For these reasons, many publishers have resorted to
cache-busting, i.e., bypassing the caches by tagging their objects
’non-cacheable’. This forces the caches to forward all object
requests back to the origin server. While this practice assures
proper dynamic page generation, accurate hit counts, data con-

sistency, and copyright protection, it also forfeits all the benefits
of caching.

We believe that caching is fundamental to the long-term scal-
ability of the web infrastructure, and therefore it is impor-
tant to align the interests of publishers and cache operators.
We propose a publisher-centric web caching infrastructure and
paradigm that will encourage the publishers and cache operators
to cooperate in the distribution and caching of web content. To
accomplish this, we have built Gemini, a publisher-centric web
cache and infrastructure.

The Gemini strategy is to endow cache nodes with commu-
nications, storage and processing capabilities that can be ben-
eficially employed by publishers. A Gemini cache node is de-
signed as a next-generation web cache that can be incrementally
deployed in the current cache infrastructure. It can transparently
substitute for a regular cache, as well as interoperate with exist-
ing cooperative caching schemes. A Gemini cache can support a
variety of publisher-specified functions. In the data plane, it can
support dynamic content generation using filtering, versioning,
and/or other publisher-authored methods based on sandboxed
languages such as Java. In the control plane, a Gemini cache
can support customizable logging and reporting, as well as other
functions such as object consistency control, access control, and
publisher-specified QoS.

Central to our design is the architectural assumption of a het-
erogeneous global web cache infrastructure. Just as the Inter-
net’s routers and links are owned by different administrative do-
mains, we assume that caches belong to many different adminis-
trative domains, and may have different functionalities. This as-
sumption requires an emphasis on security mechanisms to pro-
tect publishers and clients from caches because (a) caches can
transform content and (b) caches are not owned by a single orga-
nization that can be held accountable for any corrupted content.
Also, our system must be incrementally deployable since there
is no way to mandate that every domain must switch over to
Gemini. In this paper, we address the problems of providing
security and an incremental deployment strategy for Gemini.

The Gemini security architecture we introduce is designed to
protect clients, publishers and caches from one another. Clients
and publishers are assured of proper content generation and ac-
curate logging by the cache, while caches are protected from
malicious code from publishers. Our incremental deployment
strategy allows Gemini caches and Gemini-aware servers to be
gradually introduced without disturbing existing clients, servers,
and legacy caches. Gemini caches automatically discover and
use Gemini versions of documents, which legacy caches help to
distribute.

The rest of the paper is organized as follows. Section II de-
scribes the different dynamic content generation techniques and
applications supported by Gemini. Sections III and IV describe
the security architecture and incremental deployment strategy.
The design and prototype implementation of the Gemini node,
based on the open source Squid [1] caching software, are pre-



sented in Section V. We discuss the performance of our im-
plementation in Section VI, and identify related work in Sec-
tion VII before we conclude the paper.

II. GEMINI APPLICATIONS

In this section, we give an overview of the potential set of
applications that can benefit from Gemini. The purpose of this
section is to argue by example that Gemini is relevant and use-
ful. However, the focus of this paper is not on applications, but
on the security and deployment issues associated with building
Gemini.

Traditional caches can only handle static objects such as
HTML pages. Gemini caches, on the other hand, are capable
of storing and processing active documents, including the invo-
cation of any publisher-authored methods based on sandboxed
languages such as Java. This allows the Gemini caches to sup-
port, among a wide range of publisher-centric applications, the
generation and delivery of dynamic content.

There are two main types of dynamic content. In the first
case, a web page is dynamic because the underlying data source
changes frequently. Examples include stock tickers, news head-
lines, and traffic reports. In the second case, a web page is dy-
namic because it is constructed on the fly on a per request basis.
The exact form and substance of the page may be based on input
from the client, server, and/or cache. Examples include database
or search responses, customized news, and customized page lay-
outs. Using a variety of techniques, Gemini caches can support
both types of dynamic content generation.

When the underlying data source changes frequently, the cost-
effectiveness of caching is dependent on the expected lifetime of
the data. More specifically, the threshold for caching should be
a function of the ratio of read-to-write frequency. For example,
online stock tickers may be updated on a minute-to-minute ba-
sis, but popular tickers may be read multiple times per minute,
justifying caching. In many cases, a dynamic page consists of a
small amount of frequently updated data embedded in a sea of
static data. Instead of treating the entire page as uncacheable,
a Gemini node can cache portions of a page according to pub-
lisher directives. Then it can generate new pages based on mod-
ular and differential page construction techniques. For exam-
ple, delta encoding [2], [3] combines the data already in cache
with any differential updates from the origin server. Other tech-
niques include partial transfers, cache-based compaction [4],
and HTML macros [5].

In the second case, Gemini supports on-the-fly page construc-
tion by running publisher-authored code for filtering and ver-
sioning, etc. Consider the application of filtering to the dy-
namic generation of customized news pages (e.g., MyYahoo).
The publisher code residing at the Gemini cache will apply one
or more filters to construct a customized page on the fly. The
filters may be derived from several sources. First, filters may be
supplied by the user in the form of cookies in the HTTP request
header. For example, a user may specify the news categories
and stock symbols that she wants to keep track of. Second, fil-
ters may be derived from a user profile match that incorporates
her past browsing and purchasing history. This type of filter may
be used for delivery of targeted ad banners, product recommen-
dations and offers. Finally, the publisher code can generate its
own filters by incorporating data that are specific to the local en-
vironment. For example, when the user accesses the URL from
within her home area, the customized page may include local
weather, traffic and sports news. When the user is traveling out-
side her home area, the page may include links to restaurants,
accommodation, and maps for the foreign area instead.

Versioning is also useful for producing customized news

pages. For example, a page may be laid out in different ways
according to user-specified preferences stored in a cookie. The
publisher code may also create different versions of the page for
the same user based on the hardware device (e.g., desktop and
handheld computers have different display capabilities), access
bandwidth, operating system, and browser used to issue the re-
quest.

While we have used the example of a customized news page,
these techniques can also be beneficially employed by other
types of web sites. For example, a consumer e-commerce mer-
chant may tailor web pages to individual customers with prod-
uct recommendations, special offers, etc., based on the customer
profile filter.

III. SECURITY

In traditional distributed communication, end-to-end mecha-
nisms are sufficient to secure data sent between the client and
the publisher because intermediate nodes do not alter content.
In our system, caches are active participants in content genera-
tion, so end-to-end security mechanisms are no longer sufficient.
But it is not only dynamic content that affects the end-to-end
nature of securing content delivery. Caches are now responsi-
ble for logging user hits as well. Publishers need assurances
that caches will log accesses correctly, and that these logs will
be transported back to the publisher intact. To accomplish this,
caches must become fully involved in the system’s security.

As an example, consider a publisher’s digital signature on a
document1. Previously, a client would be able to use the signa-
ture to verify the authenticity of the document. With Gemini,
a cache between the publisher and client might transform the
document according to a publisher’s instructions, but the cache
is unable to alter the publisher’s signature because it does not
possess the publisher’s secret key. The result is that the client is
unable to use the publisher’s signature to verify the version of
the document it receives. The obvious solution to this problem
would be to distribute the publisher’s secret key to caches, but
this has serious ramifications: a cache with the secret key would
be able to sign any content whatsoever on behalf of the pub-
lisher. Even if the cache’s owner is honest enough not to exploit
this, crackers who break into the cache may not be as polite.

Our design is guided by four principles:
Protect the publisher and client—not just the cache. Many pre-
vious systems have focused on protecting caches and clients
from the publisher. However, it is just as important to protect
the publisher and clients from caches.
The main risk to the publisher and client is of content being
altered before it is delivered to the client. An attacking cache
could edit or delete the publisher’s objects, or add entirely new
objects which appear to be from the publisher, so that what a
client receives is not what the publisher intended to send. In ad-
dition to simply altering content, a cache could run a publisher’s
code incorrectly (either corrupting the program’s state or the in-
put given to the program).
Caches can also mishandle a publisher’s content by prematurely
ejecting it, by not respecting the quality of service that the pub-
lisher requested for the content, or by serving a stale version
of the content. The first two of these affect performance but
not correctness, while the last does affect correctness. Finally,
a cache could add, alter, or delete entries from the log of client
accesses recorded by the cache and returned to the publisher.
Publishers decide whom to trust. Like the other hardware in the
Internet, we expect caches to be owned and administrated by a
wide variety of organizations. We cannot expect every publisher
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We consider a “document” to be a single object, rather than a whole “page,”
or group of objects which a browser might display together.



to trust every organization, nor can we even expect all publishers
to agree on which organizations are trustworthy. For this rea-
son, we must let publishers decide which caches store and serve
their content. Further, because some of a publisher’s documents
may be more valuable than others, publishers must be able to
specify trust on a document by document basis. This allows a
publisher to widely distribute less important content while keep-
ing its most vital content in a smaller number of highly trusted
caches.
Each publisher may choose to trust a set of caches,

�
, to serve

a set of documents, � . Any cache not in
�

is not trusted to
correctly run code from the objects in � . The publisher trusts
that any cache which is a member of

�
will correctly store and

run code from any object in � . Because there is a chance that a
trusted cache will be compromised by an attacker, the publisher
must still verify that trusted caches are functioning correctly.
A client will trust a publisher to deliver its own content. The
client will also trust a publisher to delegate content delivery.
Thus, if a publisher trusts some cache to deliver some docu-
ment, the client will also trust that cache for that document. For
the same reasons as the publisher, the client needs to verify that
the cache is performing correctly.
A cache also trusts the publisher, and any cache the publisher
trusts, to deliver the publisher’s content. Other caches are com-
pletely untrusted, with one exception: a cache may trust other
caches in the same administrative domain to deliver any docu-
ment. Finally, even if it can be sure which publisher sent a piece
of code, a cache will not trust that code to function correctly.
Publishers/clients find out about attacks eventually. If the pub-
lisher only trusts honest caches which are never compromised,
its content will always be safe. But if trusted caches become
dishonest, the system’s security is endangered. Publishers and
clients must have a way to detect these breaches of trust.
Many applications require that attacks be detected instantly, but
in a caching infrastructure, instant detection is expensive be-
cause it requires the publisher to verify all content delivered.
If we loosen the restriction and increase the amount of time an
attack can go undiscovered, the cost of verification can be re-
duced since it can be done less often. Each publisher should
be allowed to make its own decision about how long an attack
can continue undiscovered since each publisher’s content has a
different value.
We believe that for most content, the value to a publisher of a
single page being served correctly is very small. If a publisher’s
content is temporarily altered or made unavailable, the loss to
the publisher is tolerably small. On the other hand, a publisher
might wish to frequently verify highly valued content since even
a short attack would have a significant cost. In this case, the high
value of the content justifies a higher cost of verification.
The system should be incrementally deployable. The heteroge-
neous nature of the Internet prevents any system from being
universally deployed in a short amount of time. Instead, new
systems must be able to be deployed gradually, and must not in-
terfere with existing systems. On the other hand, the system is
not secure until the whole path from the publisher to the client
is secured.
Neither caches nor client browsers should need to be modified.
The caching infrastructure should be secure from the publisher
all the way to the last cache or browser which has our system
installed. Clients which do not run our system will be as vul-
nerable to attack as they are today since an attacker could alter
content right before it arrives at the unmodified client.

The challenge in securing the cache is to come up with an ap-
proach that is both powerful enough to provide protection and
generally applicable. For example, one approach would be to

require that each cache include a secure coprocessor [6], which
is a processor and memory encased in a secure, tamper-proof
enclosure. The idea is that all parties can trust the coprocessor
to oversee the generation of all content on the cache. Unfor-
tunately, secure coprocessor technology is usually years behind
commodity processor technology and more expensive due to the
additional engineering and certification necessary to make the
device tamper-proof. The resulting lack of performance makes
a secure coprocessor unattractive for use in a web cache.

We employ two techniques to enforce the trust relationships
outlined above: cache authorization and verification. The first is
a way for publishers to explicitly specify which content a cache
can generate. One key feature is that a client can determine that
the content it receives is generated by an authorized cache. The
client is the entity most interested in verifying that the content
it receives has been produced by an authorized cache. And the
client machine is often the least-contended-for resource on the
path from the publisher.

Our second technique is a way for publishers and clients to
verify that authorized caches are performing correctly. This al-
lows the publisher to find out when a cache deemed trustworthy
should not be trusted. We cannot prevent a cache from gener-
ating content or logging accesses incorrectly. Instead, we use
non-repudiation of a cache’s output to make establishing which
cache is at fault easy. Coupled with random sampling tech-
niques, any cache which misbehaves enough will be caught with
high probability. Both publishers and clients can perform sam-
pling to catch crooked caches.

Next, we present the details of our system. We begin by cov-
ering the authorization mechanism and security for content gen-
eration, which together address the first and second design prin-
ciples. We then discuss our verification mechanism, which ad-
dresses the third design principle. Lastly, we consider the other
side of the issue, describing how a cache can be protected from
publishers. The fourth design principle, incremental deploy-
ment, is addressed in the design of all the mechanisms through-
out this section.

A. Authorization

We rely on a public key infrastructure (PKI) to provide key
distribution so that clients, caches, and publishers can check
each other’s digital signatures. There are several different PKI
proposals [7], [8], but they all provide the basic service of asso-
ciating a public key with an identity. This association is recorded
in a certificate, which is a document signed by a certificate au-
thority (CA). Each entity with a certificate can produce more
certificates for other entities by acting as a CA. We assume there
is a global root certificate authority which everyone knows and
trusts.

Each publisher needs a certificate identifying its web site and
public key. The format of the certificate is
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where
�

is the publisher’s name and URL,
� 	

is the publisher’s
public key, from

�*������
to

�����+�������
is the range of time that

the certificate is valid, and
�� 

is the name of the certificate
authority who created the certificate. The certificate is signed
with the certificate authority’s private key (

�-,/.021 ). Note that we
also require each cache to have a public key and a certificate.

A publisher handles cache authorization decisions on an
object-by-object basis. Each object includes an access control
list (ACL) with which the publisher specifies which caches are
allowed to store the object. The format of the ACL is
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where
354�6

is the name of the object and each
� � is a public

key. Each of the keys refers to a cache which is allowed to store
the object. Instead of a list of public keys, the publisher can also
specify a wildcard, indicating that any cache may process the
current document. Observe that an ACL is just a special type of
certificate, with the publisher acting as the CA.

A publisher can use entries in the ACL in two ways. One
way is to authorize a single cache. This is accomplished by
including a cache’s public key in the ACL. The other way is
to delegate the authorization decision to a third party. This is
accomplished through a layer of indirection: the publisher in-
cludes the public key of the third party in the ACL. Then the
third party creates certificates (signed with the key mentioned in
the ACL) for caches it wishes to authorize. For example, a com-
pany such as Underwriters Laboratories might test caches for
functionality and security and might issue certificates (signed
by key

���������	��
�����
) for those models of caches that meet its

criteria. The publisher could mention
�����������
	�����

in its ACL if
it trusts Underwriters Labs’ judgment. A cache that has a cer-
tificate stating that it is a model that has been approved by Un-
derwriters Labs would then be able to store the publisher’s ob-
jects. As another example, consider an ISP with many caches.
Assume the ISP uses the public key

������	
to sign each of its

caches’ public keys. A publisher could mention all of the ISPs’
caches as a group by including

������	
in its ACL.

Altogether, a publisher would give the following to a cache: 5� 6������ ��?�'�������	������� !�#�%'&@ . This is the ACL followed by the
object itself. Note that the document and ACL are signed sep-
arately since the ACL will need to be passed directly on to the
client while the document may be modified by the cache. The� ��'�?�����

field contains the URL and directives to the cache
about how to handle the object (consistency, QoS parameters,
log format, etc.). The

�������
contains code and data which the

cache uses to generate a reply to a client’s request for the object.
Along with its response to the client’s request, the cache in-

cludes the ACL. The client is able to check the signature on the
ACL and use it to verify whether or not the cache is authorized
to produce the requested object. If the cache is not authorized,
the client should reject the document. Unauthorized caches are
unable to convince the client that they are authorized.

B. Content generation

A cache’s reply to the client has the following format:
 �� 6�� ��354�6�� � ��� ���� � ������!#"$��%$�4���&�'��$�(")��
� '+��� � *">���������� !$# %'&(�+-,/.0 9

Except for the ACL, signed by the publisher, the cache signs the
rest of the message: the URL requested, the cache’s name, the
client’s name, a hash of any data sent in the request (e.g. for data
conveyed in an HTTP POST message), the current date, and the
requested content. There are three purposes for the cache’s sig-
nature. First, it enables the client to detect tampering with the
document on the path from the cache to the client. Second, it
tells the client which cache generated the response. This enables
the client to be sure that the author of the response is authorized
by the publisher’s ACL. And third, the cache’s signature pro-
vides non-repudiation, linking the input (the URL and request
data) to the output. The date and the client’s name in the mes-
sage serve to prevent replay attacks, where a third party sends a
client stale data. In addition to the above information, the cache
needs to provide the client with a chain of certificates which es-
tablishes that the cache is authorized by the publisher’s ACL.
This is done because the client cannot always determine which
certificates are needed to link the cache’s public key to one of
the keys mentioned in the ACL.

One vital issue is how the cache can send this security infor-
mation to the client in a manner that does not confuse legacy
clients. Note that standard HTTP/1.1 [9] headers already con-
tain the date, the cache name, and the URL. Further, the client
computes the hash of the request itself. All the cache needs to
send are the ACL, the signature, and certificates. We include
these three items in the HTTP/1.1 Pragma header field. The
HTTP specification states that clients and caches which are un-
able to parse this information will ignore it. Note that certificates
are on the order of thousands of bytes in size. As an optimiza-
tion, replies can contain the names of certificates rather than the
certificates themselves. Certificates can then be cached to save
bandwidth. Clients which do not implement Gemini security do
not have to suffer the overhead of certificate transfer.

The client, after receiving the cache’s response, needs to ver-
ify two things: that the cache is mentioned in the ACL, and that
the cache’s signature is valid. A valid signature implies that the
content was not altered between the cache and client, and that
both the client and cache agree on what the client’s request was.
If there is a problem in any aspect of the response, the client
should discard it.

If the publisher desires, the cache can perform access con-
trol on the content using standard mechanisms such as user-
name/password pairs, a cookie given to the client by the pub-
lisher, or according to the client’s network address or hostname.
If the publisher believes it is necessary, the cache can even re-
quire clients to access private data via SSL [10] or some other
encryption layer. Standard SSL would not allow a cache to
communicate on a publisher’s behalf, but with the publisher’s
signed ACL, the client can be sure that the cache with which
it is communicating is authorized by the publisher. Unlike our
other mechanisms, allowing the cache to act as an SSL endpoint
on behalf of the publisher requires modifications to the client.

C. Verification

Because a cache signs all of its responses to client requests,
it is not able to later deny creating those responses. Any entity
with access to the cache’s certificate can verify the signature on a
response. If a cache were to produce bogus content, its signature
would be tantamount to a confession that it was the culprit. A
client only needs to present the faulty output to the publisher to
prove that the cache misbehaved. Once a publisher is convinced,
it can remove that cache from all of its ACLs, preventing the
cache from mishandling the publisher’s documents in the future.
The same technique works for catching a cache which fails to
report log information. If a client presents the publisher with a
signed response from a cache, the publisher can know to expect
a log entry from the cache for that response. If the cache fails
to return the log entry, the publisher knows that the cache is
cheating.

The challenge is in determining when to question the cache’s
responses. We suggest two schemes: publisher-initiated audit-
ing and client-initiated auditing. Both are based on random sam-
pling so that the more a cache misbehaves, the higher the proba-
bility that it will be caught. In client-initiated auditing, the client
sets a probability of verifying a cache’s response with the pub-
lisher. After each response, the client flips a coin to determine
whether to query the publisher.

Publisher-initiated auditing involves the publisher using a
number of “fake” clients around the network to issue requests
for the publisher’s documents and return the responses to the
publisher. Caches must not know which clients are fake so
that the caches do not change their behavior when dealing with
fake clients. Note that companies such as Keynote (http://
www.keynote.com/) already have such clients set up to monitor
web site performance. The publisher can look at the responses



received by the fake clients to see that the cache has produced
correct output. In addition, the publisher can verify that the
fake client accesses were not over-reported or under-reported by
caches, helping to assure the publisher that caches are perform-
ing logging correctly. In general, this technique cannot stop a
cache from adding fake log entries by carefully inventing re-
quests from non-existent clients. If a publisher is concerned
about this attack, it can have a more trusted set of caches deliver
some objects so it can be more confident about the logs returned.
Another option is for the publisher to make some (small) object
on a page uncacheable so that the publisher can handle all the
logging itself while leaving most of the data distribution to the
caching infrastructure.

Determining how much auditing should be done is a matter of
trading network and cache resources for catching a misbehav-
ing cache more quickly. As the sampling frequency is raised,
caches are caught sooner but more system capacity is lost to the
sampling process. Finding the right point on this continuum is
beyond the scope of this paper.

D. Cache protection

The security mechanisms discussed so far deal with protect-
ing clients and publishers from malicious caches. However, an-
other concern is protecting caches from malicious attackers. For
example, a publisher’s code could attempt to access Gemini doc-
uments from other publishers or the cache’s underlying operat-
ing system. This problem is similar to the problem of protecting
a web browser from malicious Java applet, so we adopt simi-
lar protection mechanisms. All of a publisher’s code is run in-
side a sandboxed Java virtual machine so that a cache can have
strict control over what operations the code is permitted to per-
form. In total, the API exposed to publisher code consists of
functions for performing the following operations: read incom-
ing request headers; write outgoing reply headers; write outgo-
ing data; request arbitrary URLs to be loaded; and generate (a
limited amount of) log info for each request. Another danger
to caches is denial-of-service attacks, that is, code which con-
sumes more than its fair share of resources. To counter a denial
of service attack, the quantity of CPU time, memory, and net-
work bandwidth assigned to a publisher’s code has to be lim-
ited. In our current prototype, we have implemented the API
restrictions, but we have not implemented the resource limits.

IV. INCREMENTAL DEPLOYMENT

Having described Gemini’s security architecture, we now
present our deployment strategy. The Gemini infrastructure is
designed to be incrementally deployable and fully interoperable
with existing caches, servers, and clients. Gemini works with all
types of cooperative caching, including hierarchical cache orga-
nizations. We have the following design principles:
Cache and document heterogeneity. Gemini caches co-exist and
cooperate with legacy caches; not all documents have Gemini
versions.
Transparency to clients. Clients need not be modified (except
to achieve security).
Transparency to legacy caches. Legacy caches do not need to
distinguish between Gemini and regular documents. They can
fetch and cache Gemini documents, thereby assisting in their
distribution. However, legacy caches will never serve Gemini
documents to clients.
Proximity. Gemini content will be served by the authorized
Gemini cache closest to the client, which we call the leaf cache.

Figure 1 shows an example caching hierarchy with a mixture
of regular caches (X,Y,Z) and Gemini caches (G1, G2). For
interoperability the publisher P will have two versions of its ob-
ject, the regular version D and the Gemini version D’. Clients

P
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D,D’
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D’ D D
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Fig. 1. Example caching hierarchy with Gemini caches (shown shaded). The
regular version of the document is called D and the Gemini version is called
D’.

will request and receive D, not D’. In general, clients are never
exposed to Gemini documents. Gemini caches are alerted by
publisher P of the availability of D’ (we describe the mecha-
nism for this later in this section), but legacy caches can remain
completely oblivious to the Gemini scheme and treat D and D’
in identical fashion. Only Gemini caches (and publishers) un-
derstand the association between D and D’.

Let us illustrate Gemini caching by considering object re-
quests by clients C1, C2 and C3 respectively. We assume all
caches are initially empty, but Gemini caches G1 and G2 have
been alerted to the availability of Gemini object D’. In response
to a request for object D by C1, the Gemini cache G2 will per-
form a mapping from D to D’ and issue a request for the Gemini
version, D’. Caches G1 and X will forward the request back to P,
and P returns D’. Caches X, G1, and G2 all make local copies of
D’. Note that the legacy cache X does not know or care that D’
is a Gemini object; it simply treats it as an opaque object. Now
when D’ arrives at cache G2, it is used to dynamically generate
the object D for client C1. Next, client C2 issues a request for
D. A cache miss occurs at the legacy cache Z, but a cache hit
occurs at the Gemini cache G1. Since G1 received a request for
D (not D’) it knows it is the leaf cache. This is true in general:
the cache which translates a request for a regular document into
a request for a Gemini document will be the leaf cache. There-
fore, it executes D’ to dynamically generate D and sends it to
C2. In this case, G2 may (at the publisher’s request) make this
copy of D non-cacheable by Z. Finally, C3 makes a request for
D and it is propagated all the way back to the publisher. P will
send the regular version D and may choose to mark the copy
non-cacheable.

In the rest of this section, we describe how Gemini caches
find out about the existence of Gemini documents. First, we
present a method which utilizes the features of HTTP/1.1. Un-
fortunately, at least one widely deployed brand of web cache
does not implement the features of HTTP on which this method
relies. Therefore, we also present a second method which should
work with every cache.

A. Discovering Gemini documents via HTTP

The HTTP/1.1 standard [9] allows a single URL to stand for
multiple versions of the same document. This allows a server
to offer a document in different languages (English, French,
or Russian), or with a different encoding (JPEG or GIF; com-
pressed, gzip’d, or without compression). We can use this fea-
ture to distribute Gemini and legacy versions of a document by
treating them as alternate encodings of the same URL.

When a Gemini cache forwards a request for a URL
to another cache or the server, it adds a header which



says that it can accept Gemini encodings. For example,
a Gemini cache would add this line to say that it prefers
the Gemini version of a document to any other encoding:
Accept-Encoding: gemini;q=1.0. A server or cache
which receives such a request can either reply with a regu-
lar version of the document or the Gemini version. If the
reply is a Gemini version, then it will contain this header:
Content-Encoding: gemini.

Note that a cache can store both the regular and Gemini ver-
sions of a document. The cache determines which version to
send based on the request’s Accept-Encoding header. Be-
cause a client will never specify that it accepts Gemini-encoded
documents, it will never receive the Gemini version of a doc-
ument. And since these headers are a standard part of HTTP,
legacy caches can participate in Gemini document distribution
without a problem. Unfortunately, some legacy caches ignore
alternate encodings when selecting a document to return to a
client, meaning that the cache could return a Gemini document
to a client or cache not capable of handling the Gemini docu-
ment. Thus, if our system is to be truly reverse-compatible, we
must handle Gemini document discovery in a different way.

B. Second method for discovering Gemini documents

The approach we have chosen to implement is, in brief, to use
different URLs for the legacy and Gemini versions of a docu-
ment. Gemini caches are able to convert the URL of a regular
document into the URL of the regular document’s associated
Gemini document. Legacy caches are unaware of the relation-
ship between the Gemini and regular versions of a document,
and merely send whichever one of the documents is requested.

There are two challenges to this approach. First, we require
a robust way of transforming a regular document’s URL into
a Gemini document’s URL. And second, we need a way for a
server to notify Gemini caches about which of its documents
have Gemini versions. One simple solution to these challenges
would be to define URL naming conventions so that a regular
document’s name would indicate whether or not it had an as-
sociated Gemini document (and what the name of that Gemini
document is). However, this approach is not robust. If a doc-
ument’s URL inadvertently contained the notation indicating it
had an associated Gemini document, a Gemini cache might at-
tempt to load the non-existent Gemini version. This could lead
to increased delay for clients and additional useless requests to
the server.

Our solution is to require the publisher to explicitly notify
Gemini caches about which regular documents have associated
Gemini documents. With each of its replies, a Gemini-aware
server includes a notification in an HTTP Pragma header field.
Legacy caches ignore the pragma, but Gemini caches store the
publisher notifications as soft state. Each notification contains
three pieces of information: a server name, a suffix to match,
and a “tail,” or string of characters, used to convert a regular
document’s URL into the associated Gemini document’s URL.

When a request arrives, a Gemini cache looks at the URL. The
cache finds all notifications with a server name the same as the
server named by the URL. For each of these notifications, the
cache tries to match the end of the path (the piece of the URL
after the server name and port number) in the URL against the
suffix in the notification. A match indicates that there is an asso-
ciated Gemini document. On a match, the Gemini document’s
URL is formed by appending the tail to the URL in the request.

C. Authorization and leaf discovery

The authorization mechanism described in Section III compli-
cates matters slightly when determining which cache is the leaf
cache. Without authorization, the Gemini cache closest to the
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Fig. 2. Node Architecture.

client will be the leaf. But with authorization, only the autho-
rized Gemini cache closest to the client can be the leaf. When
a cache receives a Gemini document, it can examine the ACL
to determine whether it is authorized. But we can optimize this
process slightly to avoid sending documents to caches which are
unable to use them.

When a cache, C, initiates a request for a Gemini document,
it also includes the names of its identification certificates. An
upstream cache (or the publisher) will look at these certificates
to determine whether C is authorized to serve the Gemini docu-
ment. If it is, the document is returned. If not, an error message
will be returned. Note that even if C lies about which certificates
it possesses to acquire a document for which it is unauthorized,
C still cannot produce a valid reply since it does not possess the
proper keys.

D. Discussion

Two properties of our design make it especially scalable. By
coexisting with the current caching infrastructure, we are able to
leverage thousands of legacy caches to help deliver Gemini doc-
uments. Also, observe that the leaf cache’s task of producing
a regular document from a Gemini document, which involves
public key cryptography and possibly running code from the
publisher, is a heavy-weight operation. We push this compu-
tational burden as close to the edge of the network as possible.
Caches in the middle of the network, where resources are under
the most contention, will usually only need to forward docu-
ments.

V. NODE DESIGN AND IMPLEMENTATION

In this section, we discuss the design and implementation of
a Gemini node. The performance of the implementation will be
discussed in Section VI. We have implemented Gemini by ex-
tending an existing web cache, Squid. A block diagram of our
system is shown in Figure 2. On the right is the Squid process,
with three modifications: (i) a lookup table to store soft-state in-
formation on the availability of Gemini document versions, (ii)
ability to fetch documents requested by the Gemini process, and
(iii) forwarding of Gemini request (and document if applicable)
to the Gemini process. On the left is the Gemini process, which
includes a security module and a Java virtual machine (JVM).
All code written by publishers is run inside the JVM. The secu-
rity module is used to verify signatures on incoming documents
and to sign outgoing documents.

A. Node operation

In this section, we describe the operation of the Gemini cache
node, and explain the interactions between the various compo-
nents shown in Figure 2. The Squid front end receives a docu-
ment request, and in the event of a cache hit, satisfies the request
immediately using the cache’s copy to produce a reply for the
client. In the event of a miss, it performs a table lookup (per Sec-



tion IV-B) to determine whether there is a Gemini version. If the
Gemini version exists, and is cached locally, the Squid process
will pass the request over to the Gemini process via IPC. Other-
wise, Squid will initiate a fetch of the object using the standard
caching hierarchy. When the object arrives, the Squid process
stores the document in its cache and hands the Gemini process
a pointer to the document together with the original request.

The Gemini process consists of three types of threads: a sin-
gle dispatcher thread, a pool of checker threads, and a pool of
worker threads. The dispatcher thread receives requests and
documents from Squid and puts them into a request queue and
a document queue, respectively, for subsequent processing. The
checker threads are assigned to documents from the document
queue, and they perform extraction of document parts and signa-
ture verifications. Depending on the Gemini document type, fur-
ther processing is performed. Two types of Gemini documents
are supported: active and non-active Gemini documents. Non-
active Gemini documents are simply regular documents with
appended signatures and the presence of some Gemini head-
ers. These headers indicate, for example, the information to be
logged when the document is requested. After checking the doc-
ument’s signature and parsing headers, non-active documents
are stored by Gemini in its own cache. Active Gemini docu-
ments, on the other hand, may include Java classes in addition
to headers and signatures. These classes are extracted and stored
in a per-document directory.

The worker threads process the requests from the request
queue. The JVM is invoked on the requests for active Gem-
ini documents. It loads the Java class belonging to the docu-
ment and runs it. The output is the document which will be
sent to the client after being signed by the worker thread. The
Java code may also create its own logging string. Alternatively,
the standard Gemini logging facilities will log the request. If the
code fails for a client request (due to programming errors, exces-
sive resource consumption, etc.) the Gemini process will revert
control of this request back to the Squid process. In this case
the Squid process will handle the request as a regular document
without a corresponding Gemini version.

VI. PERFORMANCE EVALUATION

In this section, we present our preliminary performance re-
sults. Our main concern is in measuring the performance impact
of our changes to the cache. We have conducted three experi-
ments to quantify this impact: first, we measure the additional
overhead on document lookups; second, we examine how long
each stage of processing for a Gemini document takes; and third,
we explore the overhead of a Gemini document without code
(security is still in use, though). For all of these experiments, we
use latency as our performance metric because we are interested
in the potential response time degradation due to Gemini.

We have implemented Gemini on top of Squid version
2.2STABLE5 running on Linux (kernel version 2.2.13). For our
Java virtual machine, we use IBM’s Java Development Kit 1.1.8
with native threads. The server, cache, and client are each placed
on separate machines (550 MHz Pentium III’s with 128 MB of
RAM) connected to the same 10BaseT Ethernet hub. All cryp-
tographic algorithms are implemented using the Crypto ��� [11]
library (version 3.1). As an attempt to make the load imposed on
the cache due to cryptography as light as possible, we use two
different signature algorithms. The publisher signs its certifi-
cates and documents using RSA [12], which has the property
that signature verifications are fairly inexpensive. The cache
signs all of its documents using DSA [13], with which signa-
ture production is fairly inexpensive. In all of the evaluation,
the publisher issues a single certificate which explicitly autho-

Ad banner rotation MyYahoo
Mean (Std dev) Mean (Std dev)

Parsing 540 (18.5) 563 (22.9)
Extraction 821 (7.6) 5739 (184.6)
Sig. Check 2005 (10.7) 2079 (142.8)
Total 3926 (104.1) 8911 (173.8)

TABLE I
TIME TO UNPACK AN ACTIVE GEMINI DOCUMENT ( � S).

Ad banner rotation MyYahoo
Mean (Std dev) Mean (Std dev)

IPC 144 (38.2) 144 (29.1)
Parsing 158 (31.1) 165 (30.0)
JVM 27580 (1847.6) 97210 (3682.8)
Signing 7364 (289.2) 7327 (268.9)
Total 37016 (1841.8) 106755 (3678.4)
Logging 178 (8.8) 230 (8.8)

TABLE II
TIME TO PROCESS A REQUEST FOR AN ACTIVE GEMINI DOCUMENT ( � S).

rizes the Gemini cache—no delegation of authorization is used.
The publisher’s certificate is appended to the Gemini document
delivered to the cache. It is assumed that the client machine al-
ready has the publisher’s certificate cached locally, so the cache
sends only its signature along with the document.

A. Lookup overhead

As explained in Section IV-B, Gemini needs to search for a
notification entry in a lookup table for each request received.
Our first experiment is to determine the cost of this operation
for regular documents without associated Gemini versions. We
examine two cases: In the first case, there are no entries in the
lookup table for the server named in the request. In the second
case, there are lookup table entries for the server, but the request
does not match the pattern specified by the entries. For example,
a request might be for a URL ending in “.gif” but the entry’s
pattern only matches URLs ending in “.html”. In both cases, it
takes about 20 � s for Gemini to perform the lookup operation.
Compared with the normal hundreds of microseconds to tens of
milliseconds required to process a document in an unmodified
version of Squid, the penalty imposed by the lookup table is
fairly small.

B. Active Gemini document

Our second experiment shows how long a request spends in
each step during its processing. The processing consists of two
stages: First, unless the document is already in the cache, the
system has to download the requested Gemini document and to
verify its integrity. Second, the reply for the request is generated
by running the Java code in the Gemini document. We instru-
mented Gemini to timestamp the various processing steps, and
we created 10 documents with identical content. To perform a
measurement, we issue requests for all 10 documents, one after
other. We repeat this procedure 10 times for 100 total requests.
The very first request serves as warmup and is excluded from
the results.

Tables I and II list the steps we are most interested in. We
show both the mean and the standard deviation for each of them.
They correspond to tasks of the major components of the Gem-
ini process in Figure 2. Note that for all steps, the standard
deviation is small when compared to the mean.

We issue requests for two active Gemini documents, one con-
taining simple code and the other containing complex code,
in order to illustrate how code complexity affects node perfor-
mance. The simple code (131 lines of Java) randomly inserts the
URL of an advertising banner (from a static list of URLs) into
a template HTML page. The complex code (559 lines of Java)
generates a per-user, customized, MyYahoo-like page. Our im-
plementation of this application is simpler than an actually de-



ployed version would be: all of its required data is distributed in
the Gemini document itself. In reality, certain data (e.g., stock
quotes) would have to be dynamically downloaded by the Java
code for each request and the Gemini document would contain
only its HTML template. However, in our measurements, we
are mainly interested in the time it takes to dynamically compose
and sign a customized document and not in network latency. For
this purpose, our simple implementation is sufficient.

Table I lists the various steps involved in unpacking a newly
downloaded Gemini document. In the “Sig. Check” step, the
system checks the signature attached to the Gemini document
and verifies that the URL used for downloading the document
matches the URL in the publisher’s certificate. The overhead
for this step is constant at about 2 ms, regardless of the type of
Gemini document. Parsing of the reply headers also requires
constant time for both documents, as opposed to the extraction
step, which is much faster for the smaller Ad banner document
(5 KB) than for the larger MyYahoo document (38 KB).

Table II shows the overhead of the single steps during the ac-
tual processing of the request. Running Java code and signing
the freshly generated document are the most expensive steps.
The running time for the code strongly depends on the type of
active document: composing a MyYahoo-like page takes nearly
four times as long as inserting URLs into a template page. The
overhead for the signing operation is almost constant at about 7
ms because signing a document consists of computing a (cheap)
constant-length hash over the whole the document and then per-
forming (expensive) cryptography on the hash. Sending the re-
quest from Squid to Gemini via IPC and parsing of the request
headers by Gemini also require a constant amount of time. The
“Total” line corresponds to the time elapsed between the arrival
of the request in the Squid process and sending the last byte of
the reply by the Gemini process. It does not include logging,
since logging is performed after the reply has been sent. Log-
ging is more expensive for the MyYahoo code than for the Ad
banner code, since the former composes its own logging string,
whereas the latter uses Gemini’s default logging facility.

In general, by optimizing the security operations, (e.g., by
using cryptography routines implemented in hardware), and by
applying more-advanced Java techniques (e.g., compiling Java
byte code to native code as soon as it is downloaded), we expect
the performance penalties due to security and running Java code
to decrease.

C. Non-active Gemini document

Our last experiment shows the latency increase from us-
ing non-active Gemini documents (Gemini documents without
code) rather than regular documents. We evaluate four different
document sizes from 4 KB up to 16 KB with an interval of 4
KB. The non-active Gemini documents are identical to the cor-
responding regular documents. In this experiment, we prepared
100 identical versions of each document, and then fetched these
sequentially for 100 total requests. Figure 3 shows the average
processing time for these requests. The first request serves as
warmup and is excluded from the results.

From Figure 3, we can see that in the case of a cache hit when
the document is already in the cache, the latency for non-active
Gemini documents is about a constant time larger than that for
the regular version. If we examine the times more closely, we
find that the performance degradation is about 8 ms, among
which signing the reply is the most expensive, accounting for�����

of the degradation. However, if there is a cache miss when
the documents need to be fetched from the server first, the over-
all processing time degradation is not constant. While it takes
a constant time to perform the security check, about 2 ms, the
time spent on document extraction varies from 0.6 ms to 2.7 ms,
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depending on the document size.

VII. RELATED WORK

Related work comes from four areas: building distributed
caching systems, web security, active systems (agents, net-
works, and caches), and research on securing active systems.
There has been a large body of literature on web caching archi-
tectures (e.g. hierarchical and cooperative) and performance en-
hancement techniques (e.g. cache routing, push-cache). Gem-
ini caches can work seamlessly in these caching architectures
and most of the techniques are equally applicable to a Gemini-
enhanced caching infrastructure. Within the last year, sev-
eral private infrastructures such as Akamai [14], Adero [15],
and Sandpiper [16] have been built to provide publisher-centric
caching services. At the architectural level, the key difference
between these systems and Gemini is that they assume all caches
are under the same administrative domain, while Gemini as-
sumes an environment where there are heterogeneous admin-
istrative domains and heterogeneous nodes (Gemini and non-
Gemini). Because of this, Gemini has a strong emphasis on
security and incremental deployment issues, which are not ad-
dressed in other systems. In addition, Gemini nodes support
dynamic content, which, to the best of our knowledge, is not
supported in these other systems.

There have been several efforts to bring increased security
to the web. These include SSL [10], S-HTTP [17], [18], and
the Digital Signature Initiative (DSig) [19]. All three of these
protocols provide end-to-end security between the publisher and
client, whereas the thrust of our work is in providing security
even when a third party is generating content.

Gemini can be viewed as a special type of active network [20]
with a focus on content delivery applications. Rather than mak-
ing a router platform active, we make the cache platform active.
In addition, we have a strong emphasis on trust and security is-
sues, and discuss incremental deployment issues in the context
of today’s caching infrastructure. There are two other related
active cache projects. Douglis et al. [5] proposes a highly spe-
cialized “macro” language which attempts to separate static and
dynamic content in an HTML file. Their scheme allows a cache
to store some parts of an HTML file while fetching other parts
from the publisher. In contrast, Gemini uses a general purpose
language, Java, for data plane operations, and also, it allows
publishers to specify control plane behavior. Cao et al. [21] have
also enhanced a web cache with a Java runtime in order to allow
caches to store dynamically-generated content. They emphasize
the cache-centric features of their system: caches can choose
which applets to store and how many resources an applet may
take up. Further, their security model only considers protect-



ing the cache. Our security model seeks to protect the publisher
as well as the cache. Also, we give publishers more control
over when and how their content is cached. Finally, we have
considered how to deploy our solution in the existing caching
infrastructure.

The problem of protecting active content from the host com-
puter on which it is running has been explored, but comprehen-
sive solutions have not been found yet. Moore [22] gives a good
summary of work on software techniques and algorithms. The
driving application for work in this area is on mobile agents.
Work on securing the agent has focused on protecting state ac-
quired at one server from being altered by other servers. In con-
trast, active content in our system does not alter its state as it
moves from one cache to the next. Our main concern is that
each cache should execute the code correctly. This is also a con-
cern in the realm of mobile agents, but our problem is a some-
what easier one. The reason is that a publisher in our system is
able to know what the output of each cache should be while the
owner of an agent cannot know since the purpose of the agent is
to gather previously unknown data. Yee [23] has proposed con-
structing a trusted, secure environment for mobile agents using
tamper-proof hardware. Agents executing inside the environ-
ment can be sure that they will run without interference from
malicious entities. This solution is generally applicable and we
have considered using it in our own work. As we have said in
Section III, the disadvantage of using trusted hardware is that
its price/performance ratio is extremely unattractive due to en-
gineering and construction costs. Building a high performance
web cache using secure coprocessors would be prohibitively ex-
pensive.

The problem of protecting infrastructure from mobile code
has been well studied. Moore [22] also presents a good sur-
vey of work in this area. Approaches come in several fla-
vors: language-level protection and run-time checks [24] and
load-time [25] checks. Our work builds on research from this
area, applying mechanisms developed for mobile agents, or web
browsers, to the domain of protecting caches.

VIII. CONCLUSION

We have introduced Gemini, an enhanced caching infrastruc-
ture which seeks to be publisher-centric. Publishers are given
the ability to dictate how caches treat their content both in the
data plane and the control plane. In the data plane, publishers are
able to ship code to the caches to generate content dynamically.
In the control plane, publishers can specify logging and QoS
parameters. Learning from the success of the Internet’s design,
we adopt an architecture that allows caches with heterogeneous
ownership and functionalities to coexist. To accommodate het-
erogeneity in an environment where content can be modified by
caches, we present a security model which seeks to protect pub-
lishers from malicious caches using two methods: (i) giving the
publisher control over which caches are authorized to gener-
ate content, and (ii) by providing verification mechanisms. In
addition, we describe a deployment mechanism which enables
Gemini to seamlessly interoperate with the existing caching in-
frastructure. We also present a node design which builds upon
an existing cache, Squid, to implement Gemini’s features.

Our preliminary performance evaluation shows that there are
several areas in which Gemini could be optimized, especially
in security. Future work includes implementing these optimiza-
tions as well as adding more features. For example, we wish
to extend the publisher’s control so that it can also specify the
replacement policy for its content. And introducing additional
data types such as streaming media would raise a number of
research questions on topics ranging from quality of service to

security.
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