
Implementing Access Control to
People Location Information

Urs Hengartner† and Peter Steenkiste†‡
†Department of Computer Science

‡Department of Electrical and Computer Engineering
Carnegie Mellon University

{uhengart,prs}@cs.cmu.edu

ABSTRACT
Ubiquitous computing uses a variety of information for which ac-
cess needs to be controlled. For instance, a person’s current loca-
tion is a sensitive piece of information, which only authorized enti-
ties should be able to learn. Several challenges arise in the specifi-
cation and implementation of policies controlling access to location
information. For example, there can be multiple sources of location
information, the sources can be within different administrative do-
mains, different administrative domains might allow different en-
tities to specify policies, and policies need to be flexible. We ad-
dress these issues in our design of an access control mechanism
for a people location system. Our design encodes policies as dig-
ital certificates. We present an example implementation based on
SPKI/SDSI certificates. Using measurements, we quantify the in-
fluence of access control on query processing time. We also discuss
trade-offs between RSA-based and DSA-based signature schemes
for digital certificates.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection - Access con-
trols; E.3 [Data Encryption]: Standards (e.g., DES, PGP, RSA);
K.4.1 [Computers and Society]: Public Policy Issues - Privacy

General Terms
Security, Performance, Measurement

Keywords
Certificates, Delegation, DSA, Location, RSA, SPKI/SDSI, Trust

1. INTRODUCTION
Ubiquitous computing environments, such as CMU’s Aura [9],

rely on the availability of people location information to provide
location-specific services. Location is a sensitive piece of informa-
tion; releasing it to random entities might pose security and privacy
risks. For example, to limit the risk of being robbed, individuals

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’04, June 2–4, 2004, Yorktown Heights, New York, USA.
Copyright 2004 ACM 1-58113-872-5/04/0006 ...$5.00.

wish to keep their location secret when walking home at night. A
company might want to track the location of its repairmen to in-
crease efficiency, but it would not want competitors to have this
information. In short, only authorized entities should have access
to people location information.

Whereas location information has received increased attention,
its access control requirements have not been studied thoroughly.
Location information is inherently different from information such
as files stored in a file system, whose access control requirements
have been studied widely. Location information is different since
there is no single point at which access can be controlled. Instead,
a variety of sources (e.g., a personal calendar or a GPS device) can
provide location information. Therefore, a system providing loca-
tion information has to perform access control in a distributed way,
considering different sources, potentially administered by different
organizations.

This paper makes the following contributions:

• We discuss challenges that arise when specifying policies
controlling access to location information.

• We present the design of an access control mechanism that
is flexible enough to be deployed in an environment that has
multiple sources of location information. Our design exploits
digital certificates.

• We describe an implementation of the proposed mechanism.
Our implementation is based on SPKI/SDSI certificates [8].

• We quantify the influence of the access control mechanism
on the query processing time of a people location system and
discuss trade-offs between RSA-based and DSA-based sig-
nature schemes for digital certificates.

The outline of the rest of this paper is as follows: We introduce
the architecture of a location system in Section 2. In Section 3, we
discuss several challenges that arise when specifying policies con-
trolling access to people location information. We explain how we
deal with multiple sources of location information in Section 4. In
Section 5, we present the design of our access control mechanism.
In Section 6, we apply our design to an example scenario. We dis-
cuss our prototype implementation in Section 7 and evaluate it in
Section 8. We comment on related work in Section 9 and on our
conclusions and future work in Section 10.

2. PEOPLE LOCATION SYSTEM
In this section, we introduce the architecture of a people location

system that exploits different sources of location information.

GPS

Calendar

Cell Phone

Device Locator

Base StationLaptop

controlled by non−CMU entities

controlled by SCS

controlled by CMU

Device

Service

People Locator

Wi−Fi

Figure 1: Example people location system. The People Locator
service forwards a query for the location of a person to the Cal-
endar service and to the Device Locator service. The Device Lo-
cator service locates a person by locating her devices. It queries
the Wi-Fi service for the location of the person’s laptop and the
GPS service for the location of the person’s cell phone.

We assume that the location system has a hierarchical structure.
The location system consists of multiple location services. Each
location service either exploits a particular technology for gather-
ing location information or processes location information received
from other location services. Figure 1 shows an example of such
a system, as it could be deployed in CMU’s School of Computer
Science (SCS). A client contacts the People Locator service at the
root of the system. This service then contacts other services, which
themselves may also contact other services. Location information
flows in the reverse direction of a request (not shown in the figure).
A location service can be implemented either on a single node or
on multiple nodes to improve scalability and robustness.

There are two groups of location services. The first group con-
sists of services that are aware of the location of people. The sec-
ond group includes services that are aware of the location of de-
vices. These services can locate a user indirectly by locating the
device(s) the user is carrying with her. The People Locator service,
the Calendar service, and the Device Locator service belong to the
first group. The People Locator service aggregates location infor-
mation received from other services. The Calendar service looks
at people’s appointments to determine their current location. The
Device Locator service maps a query for a person to potentially
several queries for her devices and contacts services in the second
group. In our example, this group of services consists of the Wi-
Fi service and the GPS service. The Wi-Fi service keeps track of
the location of wireless devices by identifying the base station(s)
they are connecting to. The GPS service retrieves the location of
GPS-enhanced mobile phones. We believe that our location sys-
tem can easily incorporate other location services (e.g., Microsoft’s
Radar [2] or MIT’s Cricket [19]).

A basic assumption in our work is that different organizations
may administer the various services. In our example, SCS’s com-
puting facilities control the Calendar service, CMU’s computing
facilities maintain the Wi-Fi service, and a phone company runs
the GPS service.

3. LOCATION POLICIES
To prevent location information from leaking to unauthorized en-

tities, we employ location policies. An entity (e.g., an individual or
a service requiring location information) can access a person’s loca-
tion information only if permitted by that person’s location policy.

In this section, we examine location policies and present require-
ments for the access control mechanism.

3.1 Controllable Properties
In general, a location policy states who is allowed to get location

information about someone. For example, Alice’s location policy
might specify that Bob is allowed to locate her. In addition, a loca-
tion policy must support more specific access control. Namely, we
believe that at least the following properties should be controllable:

Granularity. A policy can restrict the granularity of the returned
location information. For example, a policy can state that the
building in which a queried user is staying is returned instead
of the actual room (e.g., “CMU Wean Hall” vs. “CMU Wean
Hall 8220”).

Locations. A policy can contain a set of locations (e.g., buildings
or rooms). The location system will return location informa-
tion only if the queried user is at one of the listed locations.
For example, a policy can state that Bob is allowed to find
out about Alice’s location only if she is in her office.

Time intervals. Location policies can limit time intervals during
which access should be granted. For example, access can be
restricted to working hours.

3.2 Individual vs. Institutional Policies
Depending on the environment, different entities specify location

policies. For some environments, a central authority defines poli-
cies, whereas for others, individuals set them. In addition, some
environments might give both individuals and a central authority
the option to specify policies.

In general, governments and companies probably do not want
the location of their employees or the people in their buildings to
be known to outsiders, whereas this information can be delivered
to (some) entities within the organization. In such cases, a central
authority would establish the location policies such that no infor-
mation is leaked. For other environments, such as a university or
a shopping mall, the institution behind the environment cares less
about where an individual is. For these cases, it should be up to
an individual to specify her location policy. In this paper, we con-
centrate on a university environment. We are also able to apply our
model to environments with horizontal (e.g., military) and vertical
(e.g., hospitals) access control requirements.

In the rest of the paper, we are going to call the entity that speci-
fies location policies the policy maker.

3.3 Transitivity of Access Rights
If Bob is granted access to Alice’s location information, should

he be allowed to forward this access right to Carol? In short, should
access rights to location information be transitive?

There is no simple answer to this question. Again the answer
depends on the environment. For a military environment, access
rights should not be transitive, whereas for a university environ-
ment, individuals defining their location policies should be able to
specify whether they want access rights to be transitive. There-
fore, the location system should let policy makers explicitly state
whether they want access rights to be transitive. Note that even
though an entity might not be allowed to forward its access rights
to other entities, it could still issue queries on their behalf.

4. SERVICE TRUST
As explained in Section 2, a location system can consist of mul-

tiple location services. Some of these services, such as the Peo-
ple Locator service shown in Figure 1, do not generate their own
location information. Instead, they process location information
received from other services. To avoid information leaks, the loca-
tion system must ensure that only services that implement access
control checks are given location information.

One way to implement this condition is to require that a service
is granted access in the location policy of the queried user. Be-
ing granted access means that a service can actively issue requests
for information. This option is appropriate for services that must
be able to issue requests for location information. For example,
the Device Locator service shown in Figure 1 has to generate loca-
tion queries for devices upon receiving a location query for a user.
However, for services such as the People Locator service, this op-
tion gives the services more privileges than they really need to have.
The People Locator service only forwards requests received from
clients to other service providing people location information. By
granting it the right to issue requests, we increase exposure in case
of a break-in. If an intruder issues requests, the location system
will grant access to these requests.

Due to these reasons, we introduce the concept of service trust.
If a service that is not granted access (i.e., it cannot actively issue
requests) is trusted, it is given location information when forward-
ing an authorized request from someone else. The policy maker
responsible for a user’s location policy also identifies this user’s
trusted services. For example, in a university environment, each
user can define her own set of trusted services.

The trust assumption is that the service implements access con-
trol in the following way:

1. In the first step, the service checks whether the policy maker
has granted the entity that issued the request access to the
requested information. Only if this check is successful, the
service will proceed to the second step. Otherwise access is
denied.

2. In the second step, the service checks whether the entity from
which it received the request corresponds to the entity that
issued the request. If it does, access will be granted. If
it does not, the service must have received a forwarded re-
quest. Therefore, the service has to verify that the policy
maker trusts the entity from which it received the request be-
fore access is granted. Otherwise access is denied.

How can we verify that a service fulfills its trust assumption? We
require services to sign whatever location information they return
to achieve non-repudiation. Therefore, an entity trusting a service
can identify misbehaving services and revoke trust in them after the
fact.

5. SYSTEM DESIGN
Based on our discussion in Sections 3 and 4, we now present

the design of our access control mechanism for a people location
system. We build on three main concepts. First, services respond
to a location request only after performing a location policy check
that verifies that the querying entity has access. Second, services
verify that the service from which they receive a forwarded request
is trusted before returning an answer. Third, services can delegate
access control to other services; delegation can be used to eliminate
redundant checks. In this section, we motivate and discuss these
concepts. But first, we discuss digital certificates, which are a basic
building block in our design.

5.1 Digital Certificates
We state policy and trust decisions in digital certificates. In the

rest of this paper, we use the following notation for expressing a
policy or trust decision in a certificate:

A
type−−−→
scope

B.

A is the entity making a decision concerning B. The type of
decision is described above the arrow (“policy” or “trust”). In
decisions of type “policy”, A grants B access to some location
information. In decisions of type “trust”, A specifies that A trusts
service B. The scope of the decision can be limited by stating
the scope below the arrow (i.e., whose location policy or trusted
set of services is specified). The scope can also include a list of
controllable properties, as discussed in Section 3.1. However, for
readability reasons, we refrain from showing them in this section.

A digital certificate is a signed data structure in which the signer
states a decision concerning some other entity. Since certificates
are signed, there is no need to store them in a centralized trusted
database.

There are various kinds of digital certificates. Two examples are
KeyNote [5] and SPKI/SDSI [8] certificates. Our implementation is
based on SPKI/SDSI certificates. Four key features that we rely on
are certificate chains, transitivity control, certificate reduction, and
local names [1, 8]. In Appendix A, we explain these concepts in
the context of a people location system. These features allow us to
implement the various properties and requirements of location poli-
cies discussed in Section 3. (We present some example certificates
in Section 7.1.) By exploiting the concepts of certificate chains and
local names, we can give different entities the right to define lo-
cation policies, as discussed in Section 3.2, and implement more
complex access control strategies like vertical or horizontal access
control. Transitivity control allows an entity to issue non-transitive
access rights, as explained in Section 3.3. In summary, these fea-
tures enable us to employ the same basic mechanisms in different
environments, requiring different access control strategies.

5.2 Location Policy Check
When there is a request, a service must first check whether the

location policy grants access to the issuer of the request. The ser-
vice tries to build a chain of location policy certificates from itself
to the issuer of the request. Each certificate in the chain needs to
give the next entity further down the chain access to the requested
location information. In addition, any constraints listed in the cer-
tificate (e.g., time or location based) must be fulfilled in order to
have the policy check succeed.

We now present an example that illustrates policy checking in
a university environment. To start with, the administrator of the
People Locator service, PL, gives individual users access to their
location information. For example, he issues the following certifi-
cate for user A:

PL
policy−−−−→
A

A. (1)

User A can define her location policy by issuing additional cer-
tificates. For example, she can grant user B access:

A
policy−−−−→
A

B. (2)

If B inquires about A’s location, the People Locator service de-
duces that B has access to A’s location, since it can combine cer-
tificates 1 and 2 in a chain of certificates and conclude

PL
policy−−−−→
A

B.

A location service does not have to be aware of the identity of
the entities that have access rights. If Bob can prove that he has ac-
cess (by presenting a digital certificate), he will be granted access.
This approach makes dealing with unknown users easy. Solutions
proposed earlier (e.g., by Leonhardt and Magee [15]) rely on policy
matrices. In a policy matrix, the rows list all the entities that can
query for location information, and the columns enumerate all the
users whose location can be queried. The location policy for each
combination is specified in the corresponding matrix entry. In such
a solution, the location system needs to be aware of the identity of
entities issuing queries.

Another benefit of digital certificates is that, with the help of
local names, we can grant access rights both to single entities and
to groups of entities. That is, with a single certificate, Alice can,
for example, give all her friends access.

5.3 Service Trust Check
If a service receives a forwarded request, it must also check

whether the service from which it got the request is trusted. Simi-
lar to the location policy check, the service tries to build a chain of
trust certificates from itself to the forwarding service.

We now show how the Device Locator service handles trust deci-
sions. Typically, this service is not directly contacted by users, but
by other services (e.g., the People Locator service). The adminis-
trator of the Device Locator, DL, service gives user A the right to
define her trusted services. User A then states that she trusts the
People Locator service. The issued certificates look as follows:

(a) DL
trust−−−→
A

A (b) A
trust−−−→
A

PL. (3)

When receiving a forwarded request from the People Locator
service, the Device Locator service combines these certificates and
concludes that the People Locator service is trusted.

5.4 Delegation
Certificate chains exploit the concept of delegation, where an

entity grants some other entity a particular right and also allows the
second entity to grant the right to other entities. For example, Alice
grants Bob access to her location information and lets him forward
this access right to other entities. In this section, we elaborate on
two other scenarios where delegation is useful.

5.4.1 Delegating Access Control
Each location service has to implement access control. How-

ever, to reduce overhead or in the case of low processing power, we
do not require each service to build the potentially long certificate
chains required for access control itself. It can delegate this task
to some other service. For example, the Calendar service shown
in Figure 1 is likely to delegate access control to the People Lo-
cator service since both services are run by the same organization
and the People Locator service needs to build a certificate chain for
each request anyway. After validating the chain, the People Loca-
tor service exploits the concept of certificate reduction and issues a
new certificate that directly authorizes the querying entity. It gives
this certificate to the Calendar service, which does not have to val-
idate the entire chain again. We describe this optimization in more
detail in Section 6.

5.4.2 Delegating Service Trust
If there are lots of services available, it is cumbersome for a user

to issue a certificate for each service that she trusts. We assume that
trust in a service is closely tied to the organization that administers
this service. For example, a user might trust all the services run by
her company. Therefore, we give users the possibility to state in
a certificate that they trust all the services in a particular organiza-
tion. The organization then generates a certificate for each of the
services that it runs. In this situation, a user effectively delegates
the decision about which services she trusts to the organization, and
she relies on the organization to do the right thing.

For the university environment, instead of issuing certificate 3(b),
user A would issue the following certificate: (O.services repre-
sents the set of services run by the organization, it is based on the
concept of local names)

A
trust−−−→
A

O.services. (4)

For each service in the organization, the administrator of the or-
ganization issues a “membership certificate” (denoted by 7−→), for
example,

O.services 7−→ PL. (5)

For the example in Section 5.3, the Device Locator service would
now combine certificates 3(a), 4, and 5 to conclude that the People
Locator service is trusted.

6. EXAMPLE SCENARIO
In this section, we present the step-by-step processing of a re-

quest by our location system and list the required certificates. In
our example, Bob inquires about the location of Alice. The system
shown in Figure 2 processes the request. We differentiate between
simply giving someone access to a resource (“access” arrows) and
also allowing the recipient of the access right to delegate this access
right (“delegation” arrows).

In the initial step (not shown), entities in the system grant access
rights to other entities, and they delegate policy decisions:

• The administrators of the People Locator service and the De-
vice Locator service each define a policy certificate that del-
egates the right to decide about Alice’s location policy to Al-
ice. The administrator of the Device Locator service also
establishes a trust certificate saying that it is up to Alice to
specify which services she trusts. The Calendar service is ad-
ministrated by the same organization as the People Locator
service. Therefore its administrator has the People Locator
service run its access control and delegates the right to decide
about Alice’s location policy to the People Locator service.

• The administrator of the Wi-Fi service defines a policy cer-
tificate that lets the owner of Alice’s laptop decide about the
device’s location policy. Alice, as the owner of her device,
uses her device’s private key to re-delegate this right to her-
self in a signed certificate.

• Alice grants Bob access in a policy certificate. She also cer-
tifies that she trusts the People Locator service. In addition,
since the Device Locator service is going to create a request
for her device upon receiving a request for her location, she
needs to give the Device Locator service access to her de-
vice’s location information in a policy certificate.

Device LocatorCalendar

People Locator

Wi−Fi

request

delegation

1

4 43 3

7

2

access

4

8

8

Bob

Alice

Alice’s
Device

5

5

6

6

2

8

Step Required Certificates

2 PL
policy−−−−→
Alice

Alice, Alice
policy−−−−→
Alice

Bob

4 Calendar
policy−−−−→
Alice

PL, PL
policy−−−−→
Alice

Bob

5 DL
policy−−−−→
Alice

Alice, Alice
policy−−−−→
Alice

Bob

6 DL trust−−−−→
Alice

Alice, Alice trust−−−−→
Alice

PL

8 Wi-Fi
policy−−−−−−−−−−→

Alice′s device
Alice’s device,

Alice’s device
policy−−−−−−−−−−→

Alice′s device
Alice,

Alice
policy−−−−−−−−−−→

Alice′s device
DL

Figure 2: Processing of a request, in which Bob inquires about the location of Alice. The location system processes the request in
multiple steps. For each step, we show the certificate chains that the services build and the required certificates for building the chains.

Given this setup, the system processes a request from Bob for the
location of Alice as follows: (The numbers in Figure 2 correspond
to the steps given below.)

1) Bob sends a signed request to the People Locator service in-
quiring about Alice’s location.

2) The People Locator service checks Alice’s location policy by
building a certificate chain. The first element in the chain is the
policy certificate granting Alice access to her location information.
The second element is the certificate issued by Alice to Bob.

3) The People Locator service applies certificate reduction and
issues a certificate that directly grants Bob access to the requested
location information. The service forwards the request to the Cal-
endar service and to the Device Locator service.

4) The Calendar service relies on the People Locator service for
running access control. It builds a certificate chain to Bob using
the policy certificate issued to the People Locator service and the
certificate just generated by the People Locator service. It then
processes the request

5) The Device Locator service checks Alice’s location policy by
building a certificate chain in the same way as the People Locator
service.

6) Since the Device Locator service received a forwarded re-
quest, it needs to verify that the People Locator service is trusted
by Alice. Using its own and Alice’s trust certificates, it builds a
certificate chain to the People Locator service.

7) The Device Locator service determines Alice’s wireless de-
vice. It issues a new request and sends it to the Wi-Fi service.

8) The Wi-Fi service checks the location policy of Alice’s laptop
and builds a certificate chain from its location policy certificate to
the Device Locator. It then processes the request by contacting all
the base stations. The base stations could run access control in a
similar way. However, since they are typically resource limited, we
expect them to be statically configured to return information only
to the Wi-Fi service.

7. PROTOTYPE IMPLEMENTATION
In this section, we illustrate how we encode the policy and trust

decisions introduced in Section 5 as SPKI/SDSI certificates [8]. In
addition, we present a prototype implementation of a people loca-
tion system.

7.1 Application of SPKI/SDSI Certificates
Authentication and authorization based on SPKI/SDSI certifi-

cates [8] do not rely on the existence of a global naming structure
as, for example, the one introduced for ISO’s X.509 certificates.
Instead, the authentication and authorization step are merged, and
a certificate gives access rights directly to a public key. There
are tools that evaluate chains of SPKI/SDSI certificates and decide
whether requests should be granted access.

We demonstrate how certificates 1 and 2 in Section 5.2 can be
implemented with SPKI/SDSI certificates. Keywords are printed
in bold. The certificates have to be accompanied by signatures,
which are not shown here.

In the first certificate, the People Locator service grants Alice
(more specifically, her public key) the right to define her location
policy. (pub key:foo is replaced by the actual public key of foo
in the real implementation.)

(cert
(issuer (pub key:people locator))
(subject (pub key:alice))
(propagate)
(tag (policy alice)))

The keyword propagate states that delegation is allowed. Alice
can thus issue additional certificates that grant other people access
to her location information. Corresponding to the notation intro-
duced in Section 5.1, the entries following the keyword tag specify
the type of the certificate (either policy or trust) and its scope
(e.g., alice).

In the second certificate, Alice gives Bob access to her location
information.

(cert
(issuer (pub key:alice))
(subject (pub key:bob))
(tag (policy alice

(* set
(* prefix world.cmu.wean)
world.cmu.doherty.room1234)

(* set
(monday (* range numeric

ge #8000# le #1200#))
(tuesday (* range numeric

ge #1300# le #1400#)))
coarse-grained)))

Alice grants access to Bob’s public key (pub key:bob). Since
Alice omits the keyword propagate, Bob is not allowed to issue fur-
ther certificates for Alice’s location information. In this certificate,
in addition to specifying the type and scope of the certificate, the
tag section also includes a list of controllable properties. Bob can
locate Alice only if she is either in Wean Hall or in Room 1234
in Doherty Hall and on Monday between 8am and 12pm and on
Tuesday between 1pm and 2pm. We currently support only tempo-
ral constraints of the given form. If necessary, we can extend our
scheme to support more sophisticated constraints, for example, the
ones suggested by Bertino et al. [3]. Finally, Bob has only coarse-
grained access to Alice’s location information.

Trust certificates are implemented in a similar way. The infor-
mation in the tag section needs to be modified accordingly. For
example, tag (trust alice) identifies certificates that declare
Alice’s set of trusted services.

The tag mechanism provided by SPKI/SDSI certificates is pow-
erful. It allows us to implement the properties outlined in Sec-
tion 3.1 within the SPKI/SDSI framework, and we do not have to
resort to implementing a separate specification and verification so-
lution. However, the flexibility of the tag mechanism does have its
limits. It requires all the services in the system to have a common
syntax. This might be difficult to enforce in heterogeneous envi-
ronments. Similarly, extending the given fixed set of constraints to
support very general constraints in location policies is difficult to
achieve using the current tag mechanism.

7.2 Location Service
We have built a subset of the location system shown in Fig-

ure 1. In particular, we have implemented the People Locator ser-
vice, the Device Locator service, the Wi-Fi service, and two Cal-
endar services, which exploit calendar information from the Ical
program [12] and from the centralized Oracle CorporateTime cal-
endar system. In addition, we have implemented a location service
that uses login information to determine a person’s current location.

We achieve authentication of peers and confidentiality and in-
tegrity of transmitted information by using an SSH-like transport
protocol for securing communication between entities. The pro-
tocol has been implemented in previous work [11] and uses RSA
public/private key pairs for authentication and session key estab-
lishment. We have extended the protocol to alternatively use DSA
public/private key pairs [18] for authentication, together with a
Diffie-Hellman session key exchange secured against man-in-the-
middle attacks [7].

Access control to services is based entirely on SPKI/SDSI cer-
tificates. Issuers of requests need to sign their requests so that the
issuer can be identified. To avoid replay attacks, we have the sig-
nature of a request also cover a timestamp. To transmit requests for
location information, actual location information, and SPKI/SDSI
certificates between services, we employ the Aura Contextual Ser-
vice Interface [13], which is a protocol running over HTTP and
which exchanges messages encoded in XML. Our SPKI/SDSI im-
plementation has been implemented in Java and is based on previ-
ous work [11]. The implementation also provides a tool for build-
ing and verifying chains of certificates.

We have built a web server-based frontend to the location system
that lets users specify their location policies and conduct searches
for other users. The frontend makes dealing with certificates trans-
parent to users. Public keys, password-encrypted private keys, and
certificates are stored at the web server. The web server creates
signed requests on behalf of clients and transmits the requests to-
gether with any required certificates to the People Locator service.
Individual users are not given any certificates, therefore, revocation

becomes easy; the web server just deletes the revoked certificates.
When deploying our system in a different environment, we have

to modify only this frontend such that the generated certificates im-
plement the local security policy. The access control checking per-
formed by the location system remains the same.

The users of the web server are supposed to trust the web server.
Users are free to implement their own frontend if they do not trust
the web server provided by an organization. The location system
does not need to trust the web server, because the web server does
not perform any access control decisions on behalf of the location
system. Not having a centralized trusted component that stores lo-
cation policies and makes access control decisions is a key advan-
tage of our system.

8. EVALUATION
In this section, we quantify the influence of access control on

query processing time. In addition, we examine the influence of
delegation on query processing time.

8.1 Methodology
For our measurements, we use a subset of the implemented lo-

cation system. Namely, we have a client query the People Locator
service, which then contacts the Ical-based Calendar service. We
measure the time it takes for a query to finish and report the mean,
µ, and the standard deviation, σ, computed over ten queries. In ad-
dition, to identify bottlenecks, we measure the duration of several
individual steps in query processing. A non-measured query pre-
cedes each run of an experiment so that Java can load any required
class files and compile them to native code.

For some of the measurements, the coefficients of variation are
large (> 100%). We have found that repeating the experiments
with a larger number of runs does not have an influence on the
amount of variation. Most of the observed variation is due to ar-
tifacts of Java, such as garbage collection, and thus not under our
control. However, despite the observed variation, the numbers re-
ported here allow us to reliably quantify the cost of access control.

The client, the People Locator service, and the Calendar service
each run on an unloaded host. The hosts are Pentium III/733 with
256 MB of memory. They run Linux 2.4.17 and Sun’s J2SE 1.4.0.
The issued certificates grant full access to a user’s location infor-
mation and do not list any location- or time-based constraints. All
the RSA and DSA keys have a size of 1024 bit.

8.2 Cost of Access Control
We quantify the influence of access control on query processing

time by examining the case where the client is directly authorized
by the queried user. We assume that the Calendar service does not
delegate access control to the People Locator service. The ’new
session key’ bars in Figure 3 summarize our findings. The overhead
introduced by access control is about 1290ms for RSA and 1150ms
for DSA.

In Table 1, we give a breakdown of the time consumed by various
security operations for RSA and DSA, respectively. The most ex-
pensive operation is setting up a secure connection between two
peers, which takes about 490ms for RSA and about 400ms for
DSA. This operation is performed twice; first the client connects
to the People Locator service, then the People Locator service con-
nects to the Calendar service. Techniques like session key caching
or persistent connections can reduce the overhead of setting up
these connections significantly. In session key caching, an SSH
connection reuses a session key negotiated for an earlier connec-
tion. With persistent connections, a single connection is used for
multiple requests. These techniques make most sense for connec-

new session key cached session key (1x) cached session key (2x)
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ti
m

e
[m

s]

171

1457

1322

171

1101
1030

171

733 706

no security
RSA
DSA

Figure 3: Query processing time if a new session key is created
for each connection, if the People Locator service and the Cal-
endar service cache their session key, and if the client and the
People Locator service also cache their cache session key.

Entity Operation RSA DSA
µ (σ) µ (σ)

Client Signing of request 180 (16) 24 (10)
Connection setup 490 (32) 402 (27)

People Signature verification 16 (13) 43 (3)
Locator Policy proof 25 (10) 57 (9)

Connection setup 501 (48) 398 (11)
Calendar Signature verification 13 (15) 41 (1)

Policy proof 20 (9) 52 (5)
Trust proof 18 (5) 64 (33)

Table 1: Breakdown of performance impact for RSA and
DSA [ms].

tions between peers that exchange location information often. The
connection between the People Locator service and the Calendar
service is such a case since the two services need to establish a
connection for every query. Clients such as a tracking service that
connect often to the People Locator service can also apply the men-
tioned techniques. In Figure 3, we also present the average query
time if only the session key between the People Locator service and
the Calendar service is cached (’cached session key (1x)’) and for
the case where both this and the session key between the client and
the People Locator service are cached (’cached session key (2x)’).
For RSA, caching improves the performance by 24% and 50%. In
the case of DSA, the improvement is 22% and 47%.

Another expensive operation is RSA-based signature generation,
which takes about 180ms. For DSA, generating a signature is less
expensive than its verification, which takes about 40ms. The gen-
eration of DSA-based signatures is 87% less expensive than RSA-
based signatures. For environments with resource-limited clients,
this finding suggests using DSA instead of RSA for signing oper-
ations. The drawback of using DSA for signing is that more load
is pushed to the service. Namely, verifying a DSA signature is 2.5
times as expensive as validating an RSA signature. The expensive
RSA signing operation is the main reason why queries using RSA
key pairs tend to be slower than queries using DSA key pairs (as
shown in Figure 3 ’new session key’). When we omit the signing
operation for setting up the secure connection and instead cache
session keys, the performance of the queries becomes similar (as
shown by the ’cached session key (2x)’ bars).

Proving that an entity is granted access or that a service is trusted
includes verifying the signatures of any certificates needed for the
proof. Therefore, the cost for proving is similar to the cost for ver-

cached proofs cached proofs and cached session key (2x)
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ti
m

e
[m

s]

171

1358

1081

171

699

551

no security
RSA
DSA

Figure 4: Query processing time if the People Locator service and
the Calendar service cache proofs and if they cache both proofs
and session keys.

ifying a signature in the experiments. The cost for proving can be
significantly reduced by caching proofs. Caching is most benefi-
cial when a client issues many queries for a queried person, as in
the case of a tracking service. Figure 4 provides the average query
times when both the People Locator service and the Calendar ser-
vice cache proofs. The figure also presents the results for caching
session keys in addition to proof caching. For DSA, performance
improves by 58% as compared to the non-caching case. For RSA,
the improvement is 52%.

8.3 Influence of Delegation
In the next set of experiments, we explore the influence of del-

egation on the query processing time. Namely, we assume that
the Calendar service delegates access control to the People Locator
service. Upon granting access to a query by validating the certifi-
cate chain, the People Locator service issues a new certificate that
directly grants access to the client at the end of the chain.

Shortening a certificate chain is useful only if there is at least one
intermediate node between the client and the queried user. Without
delegation, the Calendar service would have to check at least two
certificates. (The decision of the Calendar service to authorize ei-
ther the People Locator service or the queried user is stored locally
at the Calendar service and does not require a certificate.) With the
help of delegation, the Calendar service looks only at the certificate
issued by the People Locator service. Figure 5 compares the cost of
query processing with and without delegation when there is exactly
one entity in the certificate chain between the queried user and the
client. Since there is an additional entity in the chain, the cost is
higher than in Figure 3.

The figure shows that in the case of RSA, delegation has a detri-
mental effect on performance, whereas in the case of DSA, perfor-
mance stays about the same. The reason for this behavior is the
high cost of generating a signature for the new certificate by the
People Locator service in the case of RSA. For DSA, the overall
signature generation and checking cost does decrease when using
delegation, however, the decrease tends to disappear in the noise
caused by the other operations.

From Figure 5, one might conclude that delegation does not help
in terms of performance for the case of RSA and has only a minor
influence in the case of DSA. However, this conclusion is wrong.
First, our experiments assume that all the services run on hosts with
similar hardware resources. However, the location services not at
the root of the system could be deployed on resource-constrained
machines or it might not be possible to change a proprietary lo-

RSA DSA
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ti
m

e
[m

s]

1493

1653

1454 1423

w/o delegation
w/ delegation

Figure 5: Query processing time without and with delegation of
the access control check by the Calendar service to the People
Locator service.

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

RSA w/ delegation

RSA w/o delegation

DSA w/ delegation

DSA w/o delegation

Length of certificate chain

Ti
m

e[
m

s]

Figure 6: Overall signature generation and verification cost en-
dured by services, assuming a service depth of size 2, depending
on length of certificate chain.

cation service to make it check a certificate chain. In cases like
these, taking load away from leaf location services and delegating
the policy check to the root location service is more likely to pay
off. Second, the cost of running a policy check actually depends on
the length of the certificate chain that is checked and on the depth
of the tree of contacted services. We now elaborate on this trade-off
for both RSA and DSA.

In the case of RSA, generating a signature takes about 180ms and
checking it about 16ms. We first look at the influence of the length
of the certificate chain on performance. We assume a service depth
of size 2, as it is the case in our experiment. For a certificate chain
of length l, the total cost for checking the signatures is 2 * l * 16ms
if no delegation is used. If there is delegation, the service at the first
level generates a new certificate. The services at the second level
now need to check only one certificate. Thus the total cost becomes
l * 16ms + 180ms + 16ms. Figure 6 presents the cost of the two
cases, as l increases. Note that the shown cost does not include the
client’s cost for signing a request. We conclude that for certificate
chain lengths of at least l = 13, delegation also pays off in the case
of RSA.

Certificate chains of size 13 are probably going to be rare in real
environments. However, the cost of security also depends on the
depth of the tree of contacted services, k. When taking this value
into account, we get a cost of k * l * 16ms for the no delegation
case and a cost of l * 16ms + 180ms + (k - 1) * 16ms for the del-
egation case. This equation assumes that all the services delegate

access control to the People Locator service. Therefore, if l = 5,
delegation pays off if the tree of services has a depth of at least 4.

For DSA, the cost for verifying a certificate is greater than the
cost for generating it. Therefore, as shown in Figure 6, delegation
always pays off for l > 1 and becomes more beneficial the longer
the certificate chain or the service tree depth. Creating a signature
and checking it take about 24ms and 43ms, respectively. Modify-
ing the given formulas for these parameters and setting k and l to
the values where delegation starts to become beneficial for RSA
(k = 4 and l = 5), we conclude that for DSA delegation improves
performance by 480ms.

Our calculations are on the conservative side since delegation
makes query processing faster than indicated. In our calculations,
we do not include the cost caused by transferring certificates be-
tween nodes, which includes time for (de)marshalling and network
transmission. If delegation is used, fewer certificates will be trans-
ferred between nodes, and again performance improves. Finally, it
is possible to amortize the cost of generating a certificate over mul-
tiple requests. For example, the People Locator service can give
the certificate it generates to the client, and the client can use this
certificate for future requests.

Delegation and the concepts of session key caching and persis-
tent connections, as introduced in Section 8.2, are orthogonal to
each other in terms of query processing time. However, there can be
some interaction between delegation and proof caching. Namely,
the cost for generating a certificate can be amortized only if ser-
vices do not cache proofs.

8.4 Discussion
From our measurements, we conclude that the delay introduced

by access control is significant. We now elaborate on how this de-
lay affects clients of our location system. There are two types of
clients: people and services. The first type of clients use our ser-
vice through a web browser. For them, a delay in the range of 1s is
noticeable, but acceptable, since they are used to similar processing
delays when using other web applications. When services access
our location system, these delays become more important. How-
ever, using the optimization techniques discussed before, delays
can be reduced significantly.

Whereas the absolute cost for security tends to be high, it is im-
portant to consider its relative cost, that is, its cost compared to
the cost required for a service to acquire location information. For
the Calendar service based on Ical, this step is cheap and takes
about 100ms. However, for other services, this step becomes much
more expensive. For example, it takes our second Calendar service,
which proxies to a centralized calendar system using the HTTP pro-
tocol, about 1700ms to acquire location information.

9. RELATED WORK
Several location systems, all of them based on only one loca-

tion technology, implemented only within one administrative en-
tity, and/or not addressing the various access control issues men-
tioned in this paper have been proposed [2, 10, 19, 23]. We discuss
two notable exceptions:

Spreitzer and Theimer’s location system [22] is based on mul-
tiple technologies. Each user has her personal agent that gathers
location information about her and that implements access control
to this information. The system is designed to work in an envi-
ronment with different administrative entities, although the actual
implementation runs only within a single entity, and the authors do
not mention how users specify services they trust. Unlike our sys-
tem, the location policy of a user is always specified by the user,
and the system does not have the flexibility offered by digital cer-

tificates. Leonhardt and Magee’s system [15] also suffers from this
weakness. It relies on policy matrices, which make dealing with
unknown users and groups tedious.

KeyNote [5] is another certificate-based framework for autho-
rizing entities. Similar to SPKI/SDSI certificates, KeyNote certifi-
cates directly authorize public keys. KeyNote certificates do not
support local names, and access rights are always transitive.

There has been some earlier work on authorizing intermediate
services, for example, Howell’s quoting gateways [11], Neuman’s
proxy-based authorization [17], and Sollins’ cascaded authentica-
tion [21]. All this work focuses on intermediate services that create
new requests upon receiving a request and thus need to be autho-
rized to issue requests. However, in scenarios like our location sys-
tem, where some services only forward requests, this model gives
too many capabilities to intermediate services. It presents an un-
necessary risk if the intermediate service is broken into. Using our
model of trust, we avoid this risk and clearly define which services
should be given location information and which services should be
allowed to issue requests.

Kagal et al. [14] propose an extended role-based access control
model for ubiquitous computing. The model also supports dele-
gation of access rights. For access control, the proposed system
relies on a centralized trusted entity running a Prolog knowledge
base. The authors do not examine trust in services that are run by
different administrative entities.

Covington et al. [6] enhance role-based access control by “en-
vironment roles”. Environment roles can describe any state of the
system, such as locations or times. Environment roles can be used
to implement controllable properties, as outlined in Section 3.1.
The authors show that environment roles are constraint to similar
issues as traditional subject roles in role-based access control, such
as role activation and revocation, role hierarchies, and separation of
duty considerations.

McDaniel [16] presents a framework for the specification and
instantiation of flexible controllable properties. A service running
access control can contact a remote host for the evaluation of a
property. In our system, we currently support only properties local
to the service running access control.

In our work, we do not examine how users decide which ser-
vices to trust. Acquiring trust has been addressed in related work.
Shand et al. [20] introduce a trust framework in which individuals
compute their trust in information by combining their own trust as-
sumptions with others’ recommendations. Bertino et al. [4] present
a trust negotiation framework, which allows entities to establish
mutual trust on first contact through an exchange of digital creden-
tials.

10. CONCLUSIONS
In this paper, we have analyzed the access control requirements

of a people location system and have presented the design of an
access control mechanism. Our solution relies on several key con-
cepts: services implementing location policy checks, service trust
for dealing with services belonging to different administrative enti-
ties, and delegation for delegating various decisions to other entities
in the system. Some advantages of our design are:

Flexibility. Depending on the environment, users themselves or a
central authority can establish location policies of users.

No bottleneck or trusted centralized node. The services in the sys-
tem run the location policy and trust checks by building chains
of certificates. Certificates do not need to be kept at a cen-
tralized trusted node, and bottlenecks are avoided.

Unknown users. The identity of entities issuing queries does not
have to be known to the system, all the system requires is a
digital certificate granting access.

Group access. With a single certificate, an entire group of entities
can be given access to location information.

Delegation. Access control can be delegated to other services

We have formulated all of our policy and trust decisions using
a single data structure: SPKI/SDSI certificates. These certificates
provide a high degree of flexibility. A ubiquitous computing envi-
ronment poses new challenges on access control that cannot be eas-
ily satisfied by conventional mechanisms. We believe that, due to
their flexibility, SPKI/SDSI certificates are a promising approach.

In future work, we will offer access to our location system to a
bigger community of users, so that we can incorporate their feed-
back on usability into our system. In addition, we plan to investi-
gate whether and how the ideas outlined in this paper can be ap-
plied to protect other kinds of information available in a ubiquitous
computing environment.

Acknowledgments
We thank Adrian Perrig and the anonymous reviewers for their
comments. This research was funded in part by DARPA under con-
tract number N66001-99-2-8918 and by NSF under award number
CCR-0205266.

11. REFERENCES
[1] T. Aura and C. Ellison. Privacy and Accountability in

Certificate Systems. Technical Report A61, Laboratory for
Theoretical Computer Science, Helsinki University of
Technology, April 2000.

[2] P. Bahl and V. Padmanabhan. RADAR: An In-Building
RF-Based User Location and Tracking System. In
Proceedings of IEEE Infocom 2000, pages 775–784, March
2000.

[3] E. Bertino, P.A. Bonatti, and E. Ferrari. TRBAC: A Temporal
Role-based Access Control Model. ACM Transactions on
Information and System Security, 4(3):191–233, August
2001.

[4] E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-χ: An
XML Framework for Trust Negotations. In Proceedings of
Communications and Multimedia Security 2003, pages
146–157, 2003.

[5] M. Blaze, J. Ioannidis, and A. Keromytis. The KeyNote
Trust-Management System Version 2. RFC 2704, September
1999.

[6] M. J. Covington, W. Long, S. Srinivasan, A. Dey,
M. Ahamad, and G. Abowd. Securing Context-Aware
Applications Using Environment Roles. In Proceedings of
6th ACM Symposium on Access Control Models and
Technologies (SACMAT ’01), pages 10–20, May 2001.

[7] W. Diffie, P.C. van Oorschot, and M.J. Wiener.
Authentication and Authenticated Key Exchanges. Designs,
Codes and Cryptography, 2:107–125, 1992.

[8] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. SPKI Certificate Theory. RFC 2693,
September 1999.

[9] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project Aura: Towards Distraction-Free Pervasive
Computing. IEEE Pervasive Computing, 1(2):22–31,
April-June 2002.

[10] A. Harter and A. Hopper. A Distributed Location System for
the Active Office. IEEE Network, 8(1):62–70, January 1994.

[11] J. Howell and D. Kotz. End-to-end authorization. In
Proceedings of 4th Symposium on Operating System Design
& Implementation (OSDI 2000), pages 151–164, October
2000.

[12] ftp://ftp.scriptics.com/pub/tcl/apps/ical/.
[13] G. Judd and P. Steenkiste. Providing Contextual Information

to Ubiquitous Computing Applications. In Proceedings of
IEEE International Conference on Pervasive Computing and
Communications (PerCom 2003), pages 133–142, March
2003.

[14] T. Kagal, L. Finin and A. Josh. Trust-Based Security in
Pervasive Computing Environments. IEEE Computer, pages
154–157, December 2001.

[15] U. Leonhardt and J. Magee. Security Considerations for a
Distributed Location Service. Journal of Network and
Systems Management, 6(1):51–70, March 1998.

[16] P. McDaniel. On Context in Authorization Policy. In
Proceedings of 8th ACM Symposium on Access Control
Models and Technologies (SACMAT 2003), pages 80–89,
June 2003.

[17] B.C. Neuman. Proxy-Based Authorization and Accounting
for Distributed Systems. In Proceedings of International
Conference on Distributed Computing Systems, pages
283–291, May 1993.

[18] National Institute of Standards and NIST FIPS PUB 186
Technology. Digital Signature Standard. U.S. Department of
Commerce, May 1994.

[19] N.B. Priyantha, A. Chakraborty, and H. Balakrishnan. The
Cricket Location-Support System. In Proceedings of the
Sixth Annual International Conference on Mobile Computing
and Networking (MobiCom 2000), August 2000.

[20] B. Shand, N. Dimmock, and J. Bacon. Trust for Ubiquitous,
Transparent Collaboration. In Proccedings of IEEE
International Conference on Pervasive Computing and
Communications (PerCom 2003), pages 153–160, March
2003.

[21] K. R. Sollins. Cascaded Authentication. In Proceedings of
IEEE Symposium on Security and Privacy, pages 156–163,
May 1988.

[22] M. Spreitzer and M. Theimer. Providing Location
Information in a Ubiquitous Computing Environment. In
Proceedings of SIGOPS ’93, pages 270–283, Dec 1993.

[23] A. Ward, A. Jones, and A. Hopper. A New Location
Technique for the Active Office. IEEE Personal
Communications, 4(5):42–47, October 1997.

APPENDIX
A. SPKI/SDSI CONCEPTS

In this section, we explain the SPKI/SDSI concepts of certificate
chains, transitivity control, certificate reduction, and local names [1,
8] in the context of a people location system.

A.1 Certificate Chains / Transitivity Control
Assume the People Locator service grants a person access to her

location information by issuing a certificate to her. In the certificate,
the People Locator service also states that the access right is tran-
sitive and that the person is allowed to issue additional certificates
to other entities. In this way, the People Locator service effectively
delegates its right to decide about the person’s location policy to the

Alice Bob CarolPL Dave

Figure 7: Certificate chain and certificate reduction. Certificates
are combined to a certificate chain. After validating the chain be-
tween Alice and Dave, Alice can reduce it by issuing a certificate
to Dave. (’PL’ denotes the People Locator service.)

person. In turn, the person can also delegate the decision to some
other entity. What we end up with is a chain of certificates starting
at the People Locator service. If the People Locator service receives
a request for location information, it will try to build a certificate
chain from itself to the entity making the request. Each certificate
in the chain (with the exception of the last one) needs to delegate
the access right for the requested information to the next entity in
the chain. An example certificate chain for Alice’s location infor-
mation is given in Figure 7. When Dave wants to access Alice’s
location information, the People Locator service tries to build this
certificate chain to Dave.

A.2 Certificate Reduction
Sometimes, it is difficult for a service to build a certificate chain.

For example, it may have scarce computing resources. A feature
that comes in useful in such a situation is certificate reduction. In
the example shown in Figure 7, Alice tries to build the chain from
herself to Dave. If she succeeds, she will shorten the chain and
issue a new certificate that directly authorizes Dave. The People
Locator service then needs to check only the certificate chain Peo-
ple Locator service-Alice-Dave.

A.3 Local Names
The entity that is granted a right by a SPKI/SDSI certificate is

typically a public key, but it can also be a name rooted at a public
key. For example, assume Bob issues a digital certificate for each
of his friends that binds his friend’s public key to the name ’friend’.
Bob thus creates a local namespace that is rooted at his public key.
If Alice were to give all of Bob’s friends access to her location
information, she would issue a single certificate that grants access
to the name ’friend’ rooted at Bob’s public key, instead of having
to create a certificate for each of Bob’s friends.

