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1 Past and Ongoing Research

My vision is to design and implement big data analytics system which finds useful patterns and
anomalies in graphs. Graphs are ubiquitous: computer networks, social networks, mobile call
networks, protein regulation networks, and the World Wide Web, to name a few. The large volume
of available data, the low cost of storage and the stunning success of online social networks and
Web2.0 applications all lead to graphs of unprecedented size. Mining large graphs help us discover
patterns and anomalies which can be useful for applications ranging from cyber-security (computer
networks), fraud-detection (phone companies), and spammer detection (social networks). Typical
graph mining algorithms silently assume that the graph fits in the memory of a typical workstation,
or at least on a single disk; the above graphs violate these assumptions, spanning multiple Giga-
bytes, and heading to Tera- and Peta-bytes of data. As a consequence, the vast majority of large
graphs has remained untouched.

My research aims to unleash the potential by making extremely scalable graph mining algo-
rithms on distributed platforms. Toward this goal, I have researched on algorithms for scalable
graph mining and machine learning analysis. These algorithms are designed to work efficiently on
distributed processing platforms including MapReduce and its open source version Hadoop, and
analyze patterns and anomalies on very large graphs with more than billions of nodes and edges.
Specifically, I have worked on the following algorithms.

Structure Analysis. How to find patterns and anomalies in large, real world graphs? Extracting
structural features (e.g. radius, diameter, closeness [5], connected components [3], and PageRank
scores) is crucial for the discovery of patterns and anomalies in graphs. Previous researches focused
on small graphs which fit in a memory or discs of a single machine, but they do not scale to
very large graphs with billions of nodes and edges. My goal is to scale up the structure analysis
algorithms for very large graphs, and to make the algorithms as general as possible so that we do
not reinvent the wheel for similar problems. My approach is to develop an approximation algorithm
to extract features much efficiently with a high accuracy. I developed Hadi algorithm [8, 9], an
approximation algorithm for computing radius and diameter, which provides more than 97% of
accuracy but is much efficient than its exact counterpart. Furthermore, I developed an important
primitive called GIM-V (Generalized Iterative Matrix-Vector multiplication) [10, 11] to unify many
seemingly different feature extraction algorithms. The advantage of the generalization is that an
optimization helps boost the performance of many seemingly different algorithms. For example, my
block encoding and clustering idea [10, 11] improved the performance by more than 5× compared
to the naive algorithm. Figure 1 (a,b) show the GIM-V in action to discover patterns and anomalies
in real graphs. Figure 1 (a) displays that the diameter of a very large web graph with billions of
nodes and edges is very small, while there exist few anomalous ‘whiskers’ with large radii. This is
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(a) Radius plot of (b) Connected components of (c) Triangle counts in
YahooWeb YahooWeb Twitter

Figure 1: Patterns and anomalies in large graphs. (a) Radius plot of YahooWeb graph, a Web
snapshot at year 2002 containing 1.6 billion pages and 6.6 billion edges. Notice the effective diameter
is surprisingly small, and the few whiskers which have large radii. (b) Connected components size
distribution of the YahooWeb. Notice the two anomalous spikes which deviate significantly from
the constant-slope power law line. (c) The degree vs. participating triangles of some ‘celebrities’
in Twitter who follows whom snapshot at year 2009. Also shown are accounts of adult sites which
have smaller degree, but belong to an abnormally large number of triangles. The reason of the large
number of triangles is that adult accounts are often from the same provider, and they follow each
other to form a clique, to possibly boost their rankings or popularity.

the first result of the small world phenomenon on the Web. Figure 1 (b) shows the detection of two
anomalous spikes which deviate significantly from the constant-slope power law line.

Belief Propagation. Inference in graphs is an important problem, which often corresponds,
intuitively, to “guilt by association” scenarios. For example, if a person is a drug-abuser, probably
its friends are so, too. The typical way to handle this is belief propagation (BP). My goal is to
develop a scalable BP algorithm. The challenge is that naively translating the single machine BP
algorithm to distributed streaming algorithm requires a huge, dense matrix. My approach is to
develop a matrix decomposition method to factor the dense matrix into sparse matrices, and use it
to efficiently compute BP on distributed platforms [1, 13]. Thanks to the decomposition, my BP
algorithm on Hadoop enjoys linear scalability on the number of edges of the input graph.

Eigensolver. How can we find near-cliques, the count of triangles [14], and related graph prop-
erties? All of them can be found quickly if we have the first several eigenvalues and eigenvectors
of the adjacency matrix of the graph. In general, spectral analysis is a fundamental tool not only
for graph mining, but also for other areas of scientific computing. My goal is a scalable eigensolver
which can handle matrix with more than billions of rows and columns, which existing eigensolvers
can not manage. A challenge is to efficiently compute a skewed matrix-matrix multiplication. I
believe considering the data distribution is crucial for designing a highly scalable algorithm. My
approach is to exploit the skewness of data distribution to minimize the amount of data transferred.
My skew-aware eigensolver is more than 76× faster than naive algorithms [4]. Eigensolver can be
used to spot anomalous nodes in graphs. For example, I analyzed the Twitter social network us-
ing my eigensolver based triangle counting algorithm, and found anomalous adult advertisers with
many triangles compared to other nodes with similar degrees, as shown in Figure 1 (c).

Graph Indexing and Compression. Efficiently storing, indexing, and compressing graphs are
important to reduce disk storage as well as to answer graph mining queries quickly. My goal is
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a node ordering method which groups nonzero elements together, as well as an indexing method
to minimize query response time. My approach is to exploit the power-law characteristic of real
graphs, as well as dynamically select a small subset of compressed edges which might contain the
relevant edges to queries. My graph edge layout method [2] outperforms all existing competitors in
terms of compression ratio. My graph indexing method [7] provides 50× smaller storage and 14×
faster running time than without it.

Impact. My research on large scale graph mining has attracted significant interests from
academia as well as industries.

• According to Google Scholar, my papers since 2009 have been cited 287 times, with a paper [10]
cited 107 times.

• I have packaged my large scale graph mining algorithms into the open-source Pegasus package
(http://www.cs.cmu.edu/∼pegasus), and released it publicly. Pegasus won the silver award
from the Open Source Software World Challenge at 2010, among 26 participants worldwide.

• Pegasus has been downloaded more than 464 times from 83 countries, and led to 2 U.S.
patent applications as well as 2 best paper awards.

• Pegasus is used as one of the core systems for several DARPA projects including the ADAMS
(Anomaly Detection at Multiple Scales) project.

• Pegasus is officially included in Hadoop for Windows Azure by Microsoft.

2 Future Research

My vision is to design and implement a big data analytics system which finds useful patterns and
anomalies, and thereby transforming large graphs into valuable sources of knowledge. Toward this
goal, I have researched on algorithms for scalable graph mining and machine learning analysis. In
the future, I intend to extend the algorithms and systems to handle time evolving graphs, support
for near-real time analysis, and apply them to solve many real world problems.

Time Evolving Graphs. Many real world data are time evolving graphs which are naturally mod-
eled as tensors, or multi-dimensional arrays. Examples include dynamic social networks changing
over time, hyperlinks and anchor texts in WWW, network traffic over time, and author-conference
time-evolving graphs. I plan to generalize my eigensolver to an efficient multi dimensional tensor
decomposition algorithm.

Near-Real Time Analytics. Many of my previous works on massive data processing platform have
focused on offline batch processing. However some applications (e.g. network attack monitoring)
require near-real time responses to queries. I plan to investigate adding real time query response
capability to my big data analytics system by quickly combining precomputed statistics and new
data.

Big Picture. Finally, I believe my big data analytics system have broad applications beyond
the graphs in the computer science contexts. The algorithms that I worked or plan to work on,
including belief propagation [1], clustering [12], eigensolver [4], fast kernel [6], time series, and tensor,
are fundamental tools useful in various domains of scientific computing. I plan to collaborate with
domain experts in astronomy, biology, accounting, health care, environment monitoring, and cyber
security to find useful patterns and anomalies. The vision is to focus on real-life applications with
massive raw data, and to help extract valuable knowledge.
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