
Fast and Graceful
Balancing Mobile Robots

Umashankar Nagarajan

CMU-RI-TR-12-16

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Robotics

The Robotics Institute

School of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

July 2012

Thesis Committee

Ralph Hollis, Chair

George Kantor

Howie Choset

Russ Tedrake, MIT

Copyright c© 2012 Umashankar Nagarajan. All rights reserved.

Keywords: Balancing Mobile Robots, Underactuated Systems, TrajectoryPlanning, Shape

Space Planning, Integrated Motion Planning and Control

To my parents

Nirmala Nagarajan and Nagarajan Rangasamy

iv

Abstract

Personal mobile robots will soon be operating and closely interacting with us in

human environments. Balancing mobile robots can be effective personal robots as

they can be tall enough for eye-level interaction and narrowenough to navigate clut-

tered environments, and they also have the dynamic capabilities to move with speed

and grace comparable to that of humans. The work presented inthis thesis enables

balancing mobile robots to achieve fast and graceful navigation in human environ-

ments while handling disturbances and dynamic obstacles. This work particularly

focuses on the ballbot, a human-sized mobile robot that balances on a single ball.

The natural dynamics of balancing mobile robots have to be exploited in or-

der to make them achieve fast and graceful motions. This thesis introducesshape-

accelerated balancing systemsas a special class of underactuated systems to which

balancing mobile robots like the ballbot belong. They have aspecial property wherein

non-zero shape configurations result in accelerations in the position space. This the-

sis presents a trajectory planning algorithm that plans shape trajectories for shape-

accelerated balancing systems, which when tracked will result in optimal tracking

of desired position trajectories. It also presents experimental results of the ballbot

with arms successfully achieving desired position space motions using body lean

motions, arm motions, and combinations of the two, and also handle cases where

the arms are artificially constrained.

This thesis presents an integrated motion planning and control framework based

on sequential composition, which enables balancing mobilerobots to achieve grace-

ful navigation. It presents controllers calledmotion policiesthat are designed to

achieve fast, graceful motions in small domains of the position space that are collision-

free. It introduces thegracefully prepares relationshipthat guarantees a valid se-

quential composition of motion policies to produce overallgraceful motion. It presents

an automatic instantiation procedure that deploys these motion policies to fill a map

of the environment, and also a motion planner that plans in the space of these grace-

fully composable motion policies to achieve desired navigation tasks. This thesis

also presents experimental results of the ballbot successfully achieving different nav-

igation tasks while handling disturbances and dynamic obstacles.

vi

Acknowledgements

I would like to express my deepest gratitude to my advisor, Ralph Hollis, for all

his support and guidance throughout my graduate life. I havelearnt a lot from him,

especially about designing and building robots, and also about presenting research.

I also thank him for all the ohiopyle bike trips, ski trips, and factory visits. I owe

special thanks to his wife, Elizabeth Hollis, for her love and affection, and also for

the tastiest banana nut breads and chocolate-chip cookies Ihave ever had.

I would like to thank my committee members, George Kantor andHowie Choset,

for being in all my committees, and for all their valuable comments and discussions

throughout my graduate life. I really appreciate their timeand effort in helping me

do my best. I would also like to thank my external committee member, Russ Tedrake,

for his useful comments and discussions.

I would like to thank all my friends at Carnegie Mellon University for making my

graduate life both a fun and a learning experience. I would like to especially thank

Brian Becker, Michael Furlong, Siddharth Sanan, Joydeep Biswas, Santosh Div-

vala, Brina Goyette, Prasanna Velagapudi, Pyry Matikainen,Heather Jones, Heather

Justice and Nathan Brooks for helping me remain sane. The dinner trains, coffee

times, eat’n park science sessions, pamela’s brunches, movie nights, and racquetball

sessions are fond memories of my graduate life.

I would like to thank my lab mates Bertram Unger and Hanns Tappeiner for the

many useful conversations we have had. I would also like to thank Jun Xian Leong,

Byungjun Kim, Michael Shomin and Sudhir Katta for their greathelp in conducting

the ballbot experiments.

I would like to thank my wife, Shirpaa Manoharan, for all her love and support,

and also for making my life so much better. Finally, I would like to thank my parents,

Nirmala Nagarajan and Nagarajan Rangasamy, who have always trusted me and

supported me in everything I have done. I would like to dedicate my PhD to my

parents. Without their love and support, this degree would not have been possible.

viii

Contents

Abstract v

Acknowledgements vii

List of Figures xiii

List of Tables xxi

List of Algorithms xxiii

1 Introduction 1

1.1 Motivation. 1

1.2 Thesis Objective . 4

1.3 Challenges. 5

1.4 The Need for Graceful Robot Motion. 6

1.5 Approach . 8

1.5.1 Planning in Shape Space. 8

1.5.2 Graceful Navigation. 8

1.6 Outline . 9

2 Related Work 11

2.1 Balancing Mobile Robots. 11

2.2 Underactuated Systems. 12

2.3 Planning in Shape Space. 13

2.4 Hybrid Control . 13

x CONTENTS

3 The ballbot 17

3.1 History . 17

3.2 System Description. 18

3.2.1 Four-Motor Inverse Mouse-Ball Drive. 19

3.2.2 Yaw Mechanism. 19

3.2.3 Legs. 20

3.2.4 Arms . 20

3.3 Dynamic Models . 21

3.3.1 3D Ballbot without Arms. 21

3.3.2 3D Ballbot with Arms . 25

3.4 Parameter Estimation Experiments. 27

3.4.1 Inertia Measurement. 27

3.4.2 Friction Modeling . 28

3.5 Control Architecture . 30

3.5.1 Balancing Control . 30

3.5.2 Outer Loop Control. 31

3.5.3 Yaw Control . 33

3.5.4 Leg Control. 35

3.6 Human–Ballbot Physical Interaction. 38

3.6.1 Ease of Mobility . 38

3.6.2 Robustness. 39

3.6.3 Human Intent Detection. 39

3.6.4 Learn and Repeat. 39

3.6.5 Ballbot Interface and Teleoperation. 40

3.7 Summary . 41

4 Planning in Shape Space 43

4.1 Underactuated Mechanical Systems. 43

4.1.1 Position and Shape Variables. 44

4.1.2 Shape-Accelerated Balancing Systems. 45

4.1.3 Dynamic Constraints. 48

4.2 Dynamic Constraint-based Shape Trajectory Planner. 50

4.2.1 Shape and position space of equal dimensions. 51

4.2.2 High dimensional shape space. 52

CONTENTS xi

4.2.3 Optimal Shape Trajectory Planner. 53

4.2.4 Planning with Additional Shape Constraints. 55

4.2.5 Control Architecture. 56

4.2.6 Characteristics of Desired Position Trajectories. 57

4.2.7 Choosing Weight Matrices. 58

4.2.8 Performance Comparison against Direct Collocation Methods 58

4.3 Experimental Results with The Ballbot. 59

4.3.1 Pure Body Motion . 60

4.3.2 Pure Arm Motion. 63

4.3.3 Arm and Body Motion. 67

4.3.4 Constrained Arm Motion. 69

4.4 Summary . 73

5 Graceful Navigation 75

5.1 Background. 75

5.1.1 Decoupled Planning and Control. 75

5.1.2 Sequential Composition - A Hybrid Control Approach. 76

5.1.3 Approach towards Graceful Navigation. 78

5.2 Motion Policy Design. 78

5.2.1 Motion Primitives . 79

5.2.2 Motion Policies. 82

5.2.3 Gracefully Prepares Relationship. 84

5.3 Integrated Motion Planning and Control. 86

5.3.1 Automatic Instantiation of Motion Policies. 87

5.3.2 Planning in Motion Policy Space. 88

5.3.3 Hybrid Control . 92

5.3.4 Dynamic Replanning. 93

5.3.4.1 Finding Invalid Motion Policies. 96

5.3.4.2 Finding Motion Policy Nodes to be Updated. 96

5.3.4.3 Update the Motion Policy Nodes. 97

5.4 Experimental Results with The Ballbot. 99

5.4.1 Experimental Setup. 99

5.4.2 Motion Policy Library . 99

5.4.3 Point-Point Motion. 100

xii CONTENTS

5.4.4 Disturbance Handling. 102

5.4.5 Surveillance. 103

5.4.6 Dynamic Replanning. 106

5.5 Summary . 109

6 Conclusions and Future Work 111

6.1 Contributions . 112

6.2 Future Work. 114

6.2.1 Shape Space Planning with Manipulation. 114

6.2.2 Navigating Large Maps. 115

6.2.3 Design of Invariant Motion Policy Domains. 116

6.2.4 Optimal Palette of Motion Policies. 116

6.2.5 Integrated Motion Planning and Control for Graceful Manipulation . . . 116

A Dynamic model for the 3D ballbot with a pair of 2-DOF arms 119

B Verification of properties for shape-accelerated balancing systems 135

B.1 The 3D ballbot without arms. 135

B.2 The 3D ballbot with a pair of 2-DOF arms. 139

C Software architecture 143

D Links to the ballbot videos 145

Bibliography 147

List of Figures

1.1 Approximate sketches of the ballbot and some staticallystable mobile robots: (a)

The ballbot [41], (b) Xavier [116], (c) Nursebot [4], (d) Minerva [127], (e) Juliet

[48]. The rectangle around the ballbot represents a standard house doorway [60].

(Courtesy:Ralph Hollis; Appeared in [60]) . 2

1.2 (a) A statically stable robot can tip over when attempting to lift a heavy weight,

whereas a balancing robot can lean to keep the total center ofmass over the point

of ground support; (b) A statically stable robot could tip when going up or down

slopes, whereas a balancing robot can stay balanced on slopes (Courtesy:Ralph

Hollis; Appeared in [79]).. 3

1.3 (a) The ballbot balancing (Courtesy:Ralph Hollis; Appeared in [75, 77, 78, 79,

80]), and (b) the ballbot with a pair of 2-DOF arms (Courtesy:Michael Shomin;

Appeared in [73]).. 4

1.4 Comparing the results of tracking discontinuous and continuous acceleration tra-

jectories in simulation: (a) Resulting jerk trajectory; (b) Resulting torque rate

trajectory. 7

1.5 A high-level overview of the work presented in this thesis. 10

3.1 The ballbot: (a) CAD drawing with its principal components marked; (b) bal-

ancing; and (b) statically stable with the legs down. (Courtesy: Ralph Hollis;

Appeared in [75, 80]). 18

3.2 Four-motor inverse mouse-ball drive and yaw drive: (a) view showing main drive

arrangement, (b) view showing yaw drive mechanism. (Courtesy:Ralph Hollis;

Appeared in [76, 80]). 19

xiv LIST OF FIGURES

3.3 Leg drive: (a) Various components of the leg drive mechanism, (b) legs com-

pleted retracted, and (c) legs completely deployed. (Courtesy: Ralph Hollis;

Appeared in [74, 80]). 20

3.4 (a) The ballbot with a pair of 2-DOF arms (Courtesy: Michael Shomin; Ap-

peared in [73]), and (b) 2-DOF arm with series-elastic actuators (Courtesy:Ralph

Hollis; Appeared in [73, 81]).. 21

3.5 Planar ballbot model with ball and body configurations shown (Appeared in [74,

76, 78, 79, 80]).. 22

3.6 Planar configurations shown in a planar model of ballbot with arm (Appeared in

[73, 81]). 25

3.7 Torsional pendulum setup with ballbot suspended perpendicular to its length

(Courtesy:Ralph Hollis; Appeared in [76, 80]).. 27

3.8 Damped sinusoidal oscillation used to determine the ballbot’s moments of inertia

(Appeared in [76, 80]).. 28

3.9 Ball rolling on the roller during friction tests (Courtesy:Ralph Hollis; Appeared

in [76, 80]). 29

3.10 Ball response to the ramp current inputs to the ball drivemotors used for de-

terming coulomb and viscous friction terms (Appeared in [80]). 29

3.11 Radial plots as functions of drive directions: (a) Coulomb friction torqueDc

(Nm); (b) Viscous friction coefficientDv (Nms/rad). (Appeared in [80]). 30

3.12 Block diagram for the station keeping controller with the balancing control block

(Appeared in [76, 80]).. 31

3.13 Pitch angle of the ballbot’s body while balancing abouta zero desired body angle

(Appeared in [76, 80]).. 32

3.14 Balancing at a position: (a) ball track on the carpeted floor using only the bal-

ancing controller, (b) operation of the station keeping controller when the body

is pushed off its position. (Appeared in [76, 80]). 33

3.15 Block diagram of the yaw controller (Appeared in [76, 80]). 33

3.16 Selected frames of 360◦ yaw motion video (Appeared in [76, 80]).. 34

3.17 360◦ yaw motion of the ballbot’s body while balancing (Appeared in [76, 80]). . 34

3.18 Block diagram for the legs-adjust controller (Appearedin [76, 80]). 36

3.19 (a) Top view of the ballbot with all three legs deployed; (b) Position of leg 1 as a

function of body pitch. (Appeared in [76, 80]). 36

LIST OF FIGURES xv

3.20 Flow chart for the automatic transition operation (Appeared in [76, 80]).. 37

3.21 Selected frames of the automatic transition from SSS toDSS, and vice versa

(Appeared in [76, 80]).. 37

3.22 Moving the ballbot: (a) with a finger; (b) with a passive lever hand (Appeared in

[75, 80]). 38

3.23 Kicking the ballbot (Appeared in [75, 80]).. 39

3.24 Human Intent Detection (Appeared in [75, 80]).. 40

3.25 Learn-Repeat behavior: (Approximate) (a) Linear and (b) Circular Motion. (Ap-

peared in [75, 80]). 40

4.1 Control architecture with the shape trajectory planner (Appeared in [73]). 56

4.2 Nonlinear function of ball accelerationvs. shape configuration for the ballbot

with arms: (a) Body Angle; (b) Arm Angle. (Appeared in [73]). 58

4.3 Pure Body Motion - Tracking the desired straight line motion (Appeared in [73]). 60

4.4 Pure Body Motion - Planned and compensation body angle trajectories for achiev-

ing the desired straight line ball motion (Appeared in [73]). 60

4.5 Pure Body Motion - Tracking the desired body angle trajectory for achieving the

desired straight line ball motion (Appeared in [73]).. 61

4.6 Pure Body Motion - Tracking the desired straight line motion (Appeared in [73,

81]). 61

4.7 Pure Body Motion - Planned and compensation body angle trajectories for achiev-

ing the desired straight line ball motion (Appeared in [73, 81]). 62

4.8 Pure Body Motion - Tracking the desired body angle trajectory for achieving the

desired straight line ball motion (Appeared in [73, 81]).. 62

4.9 Pure Body Motion - Tracking the desired curvilinear motion (Appeared in [73, 81]).62

4.10 Pure Body Motion - Tracking the desired X body angle trajectory for achieving

the desired curvilinear ball motion (Appeared in [73, 81]).. 63

4.11 Pure Body Motion - Tracking the desired Y body angle trajectory for achieving

the desired curvilinear ball motion (Appeared in [73, 81]).. 63

4.12 Pure Arm Motion - Tracking the desired forward straightline ball motion (Ap-

peared in [73, 81]). 64

4.13 Pure Arm Motion - Planned and compensation left arm angle trajectories for

achieving the desired forward ball motion (Appeared in [73,81]). 64

xvi LIST OF FIGURES

4.14 Pure Arm Motion - Tracking the desired left arm angle trajectory for achieving

the desired forward ball motion (Appeared in [73, 81]).. 64

4.15 Composite frames from a video of the forward ball motion using the arms: (a)

the robot starts at rest; (b) the arms move forward to accelerate; (c) the arms

move backward to decelerate; and (d) the robot comes to rest. (Appeared in [73])65

4.16 Pure Arm Motion - Tracking desired lateral ball motion (Appeared in [73, 81]). . 65

4.17 Pure Arm Motion - Tracking desired right arm angle trajectory for lateral ball

motion (Appeared in [73, 81]).. 66

4.18 Pure Arm Motion - Tracking desired left arm angle trajectory for lateral ball

motion (Appeared in [73, 81]).. 66

4.19 Composite frames from a video of the lateral ball motion using the arms: (a) the

right arms move to accelerate; and (b) the left arms move to decelerate. (Ap-

peared in [73]). 66

4.20 Arm and Body Motion - Tracking the desired straight line ball motion (Appeared

in [73, 81]). 67

4.21 Arm and Body Motion - Planned and compensation body angletrajectories for

achieving the desired straight line ball motion (Appeared in [73, 81]). 67

4.22 Arm and Body Motion - Tracking the desired body angle trajectory for achieving

the desired straight line ball motion (Appeared in [73, 81]). 68

4.23 Arm and Body Motion - Planned and compensation right arm angle trajectories

for achieving the desired straight line ball motion (Appeared in [73, 81]). 68

4.24 Arm and Body Motion - Tracking the desired right arm angletrajectory for

achieving the desired straight line ball motion (Appeared in [73, 81]). 68

4.25 Constrained Arm Motion - Tracking the X arm angle additional constraint tra-

jectory for the left arm (Appeared in [73]).. 69

4.26 Constrained Arm Motion - Tracking the Y arm angle additional constraint tra-

jectory for the right arm (Appeared in [73]).. 69

4.27 Selected frames from a video of the constrained asymmetric arm motion with

four goal configurations (a)−(d) (Appeared in [73]). 70

4.28 Constrained Arm Motion - Tracking the desired X body angle trajectory to achieve

no ball motion (Appeared in [73]).. 70

4.29 Constrained Arm Motion - Tracking the desired Y body angle trajectory to achieve

no ball motion (Appeared in [73]).. 70

LIST OF FIGURES xvii

4.30 Constrained Arm Motion - Ball motion while attempting to keep it stationary

(Appeared in [73]). 71

4.31 Constrained Arm Motion - Tracking the desired straight line ball motion (Ap-

peared in [73]). 71

4.32 Constrained Arm Motion - Tracking the Y arm angle additional constraint tra-

jectory for the left arm (Appeared in [73]).. 72

4.33 Constrained Arm Motion - Planned and compensation body angle trajectories for

achieving the desired straight line ball motion (Appeared in [73]). 72

4.34 Constrained Arm Motion - Tracking the desired body angletrajectory for achiev-

ing the desired straight line ball motion (Appeared in [73]). 72

4.35 Composite frames from a video of the forward ball motion while the arms are

constrained to be horizontal: (a) the body leans back to compensate for the arm

constraint and then leans forward to accelerate; (b) the body leans further back to

decelerate; and (c) the robot comes to rest while the body continues to lean back

to compensate for the arm constraint (Appeared in [73]).. 73

5.1 Prepares relationship represented using funnels (after Burridgeet al. [10]). 77

5.2 Position space motions of a sample of motion primitives for the 3D ballbot model

from a motion primitive set withd = 0.5 m (Appeared in [79]).. 80

5.3 Position space motion of an example motion plan using instantiated motion prim-

itives from Fig. 5.2. The shaded circles represent constantposition trim condi-

tions, while the bars represent constant velocity trim conditions. (Appeared in

[79]) . 81

5.4 The control architecture (Appeared in [78, 79]).. 83

5.5 XY projection of the domain of a sample motion policy designed for the 3D

ballbot model (Appeared in [78, 79]).. 84

5.6 Fast straight line motion: (a) composite frames from a video, (b) plot of body

angle and velocityvs. time in the plane of motion.. 85

5.7 Sharp turning motion: (a) composite frames from a video, (b) plot of the motion

tracked on the floor.. 86

xviii LIST OF FIGURES

5.8 A subset of motion policies from a motion policy libraryL(Π,M), instantiated

from the motion policy paletteΠ(Σ) with the motion primitive setΣ(d) shown

in Fig. 5.2. The lines represent position space motions of the motion primitives,

while the shaded regions show 2D projections of the 4D motionpolicy domains,

including their outer domains. (Appeared in [79]). 88

5.9 An example gracefully prepares graph.. 89

5.10 A subtree of a single-goal time-optimal motion policy tree. The lines represent

position space motions of the motion primitives, while the shaded regions show

2D projections of the 4D motion policy domains, including their outer domains.

(Appeared in [78, 79]) . 92

5.11 (a) Single-goal optimal motion policy tree with the goal motion policy Φ1; (b)

The motion policyΦ3 is invalidated by a new obstacle, and hence the motion

policiesΦ7,Φ8,Φ10 andΦ11 need to be updated; and (c) Updated optimal motion

policy tree. (Appeared in [79]). 94

5.12 Point-Point motion with two obstacles, shown in black (Appeared in [78, 79]).. . 100

5.13 Composite frames from a video of the ballbot achieving the goal from start posi-

tion no. 1 (Appeared in [79]).. 101

5.14 Point-Point motion: Body angle trajectories to achievethe goal from start posi-

tion no. 4 (Appeared in [78]).. 101

5.15 Disturbance Handling (Appeared in [78, 79]).. 102

5.16 Composite frames from a video of the ballbot reaching thegoal while handling

a disturbance (Appeared in [79]).. 103

5.17 Surveillance motion with four goal configurations, shown in green and one ob-

stacle, shown in black (Appeared in [78, 79]).. 104

5.18 Composite frames from a video of the ballbot achieving the surveillance motion

with four goal configurations (Appeared in [79]).. 104

5.19 Body angle trajectories for the surveillance motion with four goal configurations

(Appeared in [78, 79]).. 105

5.20 Surveillance motion with ten goal configurations, shown in green and one obsta-

cle, shown in black (Appeared in [79]).. 105

5.21 Body angle trajectories for the surveillance motion with ten goal configurations

(Appeared in [79]). 106

5.22 Dynamic replanning to reach the goal (Appeared in [79]). 107

LIST OF FIGURES xix

5.23 Composite frames from a video of the ballbot dynamicallyreplanning to avoid

static and dynamic obstacles (Appeared in [79]).. 107

5.24 (a) The base optimal reference motion to the goal; (b) The optimal reference

motion with the static obstacle, and the dynamic obstacle atits first location;

(c) The optimal reference motion when the dynamic obstacle hasmoved to its

second location; (d) The optimal motion when the dynamic obstacle has moved

to its final location. (Appeared in [79]). 108

A.1 Planar configurations shown in a planar model of ballbot with arm (Appeared in

[73, 81]). 119

C.1 A high-level overview of the ballbot’s software architecture. 144

xx LIST OF FIGURES

List of Tables

3.1 System Parameters. 31

4.1 Performance Comparison. 59

A.1 System Parameters for The Ballbot with Arms. 120

xxii LIST OF TABLES

List of Algorithms

5.1 Single-Goal Optimal Motion Policy Tree using Dijkstra’s Algorithm 90

5.2 Dijkstra’s Algorithm with Invalid Nodes. 95

5.3 Find Nodes to be Updated. 96

5.4 Update Optimal Motion Policy Tree. 98

xxiv LIST OF ALGORITHMS

Chapter 1

Introduction

Though the field of robotics has grown significantly over the last few decades, it is still in its

infancy when it comes to personal robotics. As of today, personal robots are restricted to science

fiction movies. There are a lot of challenges in the development of personal robots in all facets

of their operation like perception, intelligence, navigation and interaction. The work presented

in this thesis addresses some of the challenges in navigation for robots operating in human envi-

ronments. In particular, this work focuses on developing balancing mobile robots that navigate

human environments with speed and grace comparable to that of humans.

1.1 Motivation

Personal robots operating in human environments and interacting with humans do not have to

necessarily look like humans but must move, act and interactlike humans. Therefore, personal

robots must be of human size, in both height and footprint. They must be tall enough for eye-level

interaction and narrow enough to navigate cluttered spaces.

Traditionally, the robotic locomotion platforms are threeor four-wheeled platforms that are

statically stable,i.e., they stand still when powered down. However, human-sized statically

stable mobile robots, shown in Fig.1.1, need wide bases to have large polygons of support,

and a lot of dead weight in their bases to keep their centers ofgravity as low as possible. A

high center of gravity and/or a small polygon of support willcause a statically stable mobile

robot to tip over easily, which is definitely undesirable. Moreover, their chances of tipping over

drastically increase when lifting heavy objects as the net center of gravity can shift outside the

polygon of support as shown in Fig.1.2(a). This tipping behavior can also be caused by large

2 Introduction

acceleration or deceleration, and moving up or down steep slopes as shown in Fig.1.2(b). The

wide bases provide large polygons of support, but make statically stable mobile robots unsuitable

for operation in human environments that are often narrow and cluttered.

Figure 1.1: Approximate sketches of the ballbot and some statically stable mobile robots: (a)
The ballbot [41], (b) Xavier [116], (c) Nursebot [4], (d) Minerva [127], (e) Juliet [48]. The
rectangle around the ballbot represents a standard house doorway [60]. (Courtesy:Ralph Hollis;
Appeared in [60])

The above mentioned drawbacks of statically stable robots can be avoided by building mobile

robots that actively balance, just like humans do. Unlike statically stable mobile robots, balancing

mobile robots are dynamically stable, and can be tall and skinny with high centers of gravity.

They can have small footprints as they are continually balancing, and can accelerate or decelerate

quickly [41]. Balancing mobile robots can also avoid tipping by activelycompensating for the

shift in the center of gravity, and balance accordingly. Forthe tipping scenarios presented in

Fig. 1.2, it can be seen that a balancing mobile robot can maintain balance by leaning back while

carrying a heavy object, and by leaning into the ramp while ascending/descending a steep slope.

Moreover, balancing mobile robots are physically interactive. One can push, nudge and kick a

statically stable robot, but it is not going to respond. Humans have the need to physically interact

with machines in their environments, especially when they are their personal robotic assistants.

Balancing mobile robots are naturally reactive as they inherently detect physical interactions

as disturbances to their balancing behavior. This makes balancing mobile robots responsive to

1.1 Motivation 3

()a

tipping moment

v

v

()b

tipping moment

Figure 1.2: (a) A statically stable robot can tip over when attempting to lift a heavy weight,
whereas a balancing robot can lean to keep the total center ofmass over the point of ground
support; (b) A statically stable robot could tip when going up or down slopes, whereas a balancing
robot can stay balanced on slopes (Courtesy:Ralph Hollis; Appeared in [79]).

human touch [75]. Moreover, balancing mobile robots can also be effective mobile manipula-

tors [13] with the ability to maintain postural stability, generateforces on external objects, and

withstand greater impact forces. All these characteristics make balancing mobile robots ideal

candidates for personal robotic assistants that move, act and interact like humans.

Balancing mobile robots include two-wheeled mobile robots like the Segway [83], one-

wheeled mobile robots like the ballbot [41], and legged robots such as BigDog [97] and MABEL

[31]. The continuous dynamics of all these robots can be represented using simple wheeled

inverted pendulum models, and hence any navigation procedure developed for the simplified

models can be extended to these robots. The work presented inthis thesis focuses on simple,

balancing wheeled locomotion platforms that can be used as personal mobile robots in human

environments. In particular, it focuses on the ballbot [41], a human-sized mobile robot that bal-

ances on a single ball as shown in Fig.1.3(a). It is a 3D omni-directional wheeled inverted

pendulum robot with a cylindrical body atop a ball. The ball is fully actuated, whereas the body

is not. The principle used to balance the ballbot is same as that used for balancing a stick,i.e., if

the robot leans, a balancing controller rolls the ball in thedirection of the lean in order to keep the

robot upright. The ballbot has an inertial measurement unit(IMU), which provides the robot’s

body lean with respect to gravity, and the ball is driven using the inverse of an old-fashioned

mouse-ball drive. Recently, a pair of two degrees of freedom (DOF) arms was added to the

4 Introduction

ballbot as shown in Fig.1.3(b). A detailed description of the ballbot’s hardware is presented

in Chapter3. The ballbot’s dynamic stability enables it to achieve fast, dynamic and graceful

motions, while the ball enables it to achieve omnidirectional motion, which is a key feature for

operation in cluttered human environments.

(a) (b)

Figure 1.3: (a) The ballbot balancing (Courtesy:Ralph Hollis; Appeared in [75, 77, 78, 79, 80]),
and (b) the ballbot with a pair of 2-DOF arms (Courtesy:Michael Shomin; Appeared in [73]).

1.2 Thesis Objective

As discussed in Sec.1.1, balancing mobile robots like the ballbot have the dynamic capabilities

to navigate human environments with speed and grace comparable to that of humans, and this

thesis presents the work done in realizing such motions in a controlled fashion.

The objective of the work presented in this thesis is toenable balancing mobile robots like

the ballbot to achieve fast and graceful navigation in humanenvironments. In an attempt at

realizing the dream of placing fast, graceful balancing mobile robots as personal robots in human

environments, this work answers two major research questions listed below.

RQ 1: How to exploit the natural dynamics of balancing mobile robots to produce fast and

dynamic motions?

RQ 2: How to develop a planning and control framework that will enable graceful navigation of

balancing mobile robots in an obstacle-ridden environmentwhile handling disturbances?

1.3 Challenges 5

1.3 Challenges

The objective of the work presented in this thesis is to enable balancing mobile robots like the

ballbot to achieve fast and graceful navigation in human environments. This section briefly

describes the challenges faced in achieving this objective.

Balancing (dynamically stable) mobile robots are underactuated mechanical systems,i.e.,

systems with fewer independent control inputs than the degrees of freedom [118]. An interesting

and troubling factor in planning and control of such underactuated systems is the constraint on

their dynamics by virtue of underactuation. These constraints are second-order nonholonomic

[99] constraints,i.e., non-integrable acceleration/dynamic constraints. Theseconstraints restrict

the family of trajectories that the configurations can follow. Balancing mobile robots are desta-

bilized by gravitational forces, and hence have to maintainbalance while trying to track arbitrary

trajectories. The underactuation and the resulting unstable dynamics make the navigation a chal-

lenging planning and control task. For example, in the case of the ballbot shown in Fig.1.3(a),

the ball is directly actuated, whereas the body is not. Moreover, there is a strong coupling be-

tween the dynamics of the ball and the body. If the ball is rolled, the body falls; and if the body

is held upright by moving the ball, then the ball is not in its desired position on the floor. Hence,

achieving desired fast, dynamic motions for balancing mobile robots like the ballbot while main-

taining balance is a challenging task.

Traditionally, motion planning and control for mobile robots have been decoupled. On

one hand, the motion planner takes into account the obstacles in the environment and also the

workspace constraints, but does not account for the dynamics of the system and the constraints

on them. It also does not have any knowledge of the limitations of the controller used to achieve

the generated motion plans. On the other hand, the controller does not have any knowledge of

the workspace constraints, the obstacles in the environment or the navigation task it is trying

to achieve. Though it is possible to make dynamic, underactuated balancing systems navigate

environments using these decoupled procedures, they are often sub-optimal and result in jerky

motions that are ungraceful. Moreover, when disturbed, these procedures often either result in

collisions with obstacles or drive the system unstable. Therefore, in order to achieve robust,

fast, graceful and collision-free motions for balancing mobile robots like the ballbot, the motion

planning and control should be integrated such that both themotion planner and the controller

understand the dynamics of the system, the constraints on them, and each other’s details.

6 Introduction

1.4 The Need for Graceful Robot Motion

Balancing mobile robots have the ability to move with speed and grace comparable to that of

humans. The objective of the work presented in this thesis isto enable balancing mobile robots

like the ballbot to achieve graceful navigation in human environments. This section presents the

definition of a graceful robot motion used in this work, and also highlights its importance.

A dictionary defines “a graceful motion to be one that is seemingly effortless and natural”.

Gulati and Kuipers [32] define graceful motion for an intelligent wheelchair to be afast, safe,

comfortable and intuitive motion. A comfortable motion is defined as one whose velocity, accel-

eration trajectories are continuous and bounded with low jerk. The work presented in this thesis

uses a similar definition for graceful motion:Any feasible robot motion is defined to be graceful

if its configuration variables’ position, velocity and acceleration trajectories are continuous and

bounded.

Apart from being visually appealing, a graceful robot motion has a variety of advantages.

Continuous and bounded acceleration trajectories result inlow jerk. Graceful, low jerk motions

result in smoothed actuator loads [57] because jerk is the rate of change of acceleration, and it

is directly proportional to the torque rate of actuators. High jerk motions, on the other hand,

can excite resonant frequencies of the robot, which can drive a balancing system unstable. In

order to better understand the extent to which jerk and torque rate happens, let’s simulate and

compare two cases where the ballbot [61] attempts to track a desired 2 m motion composed of

two trajectories, one with a continuous acceleration trajectory and the other with a discontinuous

acceleration trajectory. The resulting jerk and torque rate trajectories from tracking these motions

are shown in Fig.1.4. The maximum jerk in the discontinuous acceleration case (52.73 m/s3) is

179 times more than that in the continuous acceleration case(0.29 m/s3), while the maximum

torque rate in the discontinuous acceleration case (117.07Nm/s) is 15.25 times more than that in

the continuous acceleration case (7.68 Nm/s).

It has been shown in biomechanics literature that humans tend to move such that their move-

ments minimize jerk over their entire motion [40]. Minimum-jerk models have been proposed

to model arm movements [19], and are used in various rehabilitation and haptic applications [2].

Smoothness is a characteristic of unimpaired human movements, and humans generally asso-

ciate “high jerk” motions to “panic” motions [2, 103]. Therefore, humans are unlikely to feel

comfortable around robots that have high jerk, non-smooth (ungraceful) motions.

1.4 The Need for Graceful Robot Motion 7

Time (s)

Je
rk

(m
/s3

)
(C

on
tin

uo
us

A
cc

el
er

at
io

n)

Je
rk

(m
/s3

)
(D

is
co

nt
in

uo
us

A
cc

el
er

at
io

n)

0 2 4 6 8 100 2 4 6 8 10

−1

−0.5

0

0.5

1

−60

−30

0

30

60

(a)

Time (s)

To
rq

ue
R

at
e

(N
m

/s
)

(C
on

tin
uo

us
A

cc
el

er
at

io
n)

To
rq

ue
R

at
e

(N
m

/s
)

(D
is

co
nt

in
uo

us
A

cc
el

er
at

io
n)

0 2 4 6 8 100 2 4 6 8 10

−30

−15

0

15

30

−120

−60

0

60

120

(b)

Figure 1.4: Comparing the results of tracking discontinuousand continuous acceleration trajec-
tories in simulation: (a) Resulting jerk trajectory; (b) Resulting torque rate trajectory.

Moreover, personal robots in human environments are likelyto engage in physical interac-

tions with humans, wherein high jerk motions can be undesirable as humans interacting with the

robots will experience the same. Certain physical interactions may be more sensitive than others,

for example, guiding a visually-impaired person by hand andhelping an elderly person get up

from a chair undoubtedly require graceful, low jerk motions. Other tasks like carrying an open

container with fluid demand low jerk motions as fluid spillageis again undesirable. Therefore,

in order to build successful personal robots that operate and interact in human environments, it

is important to ensure that they have graceful motions.

8 Introduction

1.5 Approach

This section briefly describes the approaches used in this work to answer the research questions

listed in Sec.1.2.

1.5.1 Planning in Shape Space

This thesis addresses the question of achieving fast, dynamic motions for balancing mobile robots

(RQ 1) by presenting trajectory planning algorithms that plan inthe shape space of the system

to achieve desired fast, dynamic motions in the position space. The configuration space of any

dynamic system can be split intoposition spaceandshape space. Position variables represent

the position of the robot in the world frame, and the dynamicsof mobile robots are independent

of transformations of their position configurations. However, shape variables are those that affect

the inertia matrix of the system, and dominate the system dynamics. There is a strong coupling

between the dynamics of shape and position configurations inbalancing mobile robots like the

ballbot, and this thesis presents procedures that exploit this inherent dynamic coupling to achieve

fast, dynamic motions.

Although navigation tasks are generally posed as desired motions in the position space with-

out any specifications on shape space motions, motions in theshape space cannot be ignored

for balancing mobile robots like the ballbot. Since the shape dynamics dominate the system

dynamics, any desired motion in the position space can be successfully achieved only if an ap-

propriate motion in the shape space is planned and tracked. For example, the ballbot [76] cannot

track fast position trajectories while maintaining an upright position,i.e., zero lean angle (no

shape change) because of the dynamic coupling between the motion of the ball and the body.

Any control attempt to do so will result in jerky motions or drive the system unstable. In order

to achieve fast and dynamic motions, the ballbot must lean. Section4.2 presents planning al-

gorithms that generate shape trajectories (e.g., lean angle trajectories for the ballbot) using just

the dynamic constraint equations for balancing mobile robots, which when tracked will result in

optimal tracking of desired position trajectories.

1.5.2 Graceful Navigation

The shape trajectory planning algorithms presented in Section4.2enable balancing mobile robots

like the ballbot to achieve fast, dynamic motions, but the motions are not scalable for navigation

1.6 Outline 9

purposes. Moreover, since these motions are achieved by tracking trajectories, they are not good

at handling large disturbances. Large disturbances can either make a balancing system unstable

or result in collisions with obstacles in the environment.

This thesis presents an integrated motion planning and control framework to achieve fast and

graceful navigation for balancing mobile robots in an obstacle-ridden environment while han-

dling disturbances and dynamic obstacles (RQ 2). This integrated motion planning and control

framework uses controllers calledmotion policiesthat result in fast, graceful motions in small,

collision-free domains of the position space. Each motion policy consists of: (i) a motion primi-

tive, i.e., feasible state trajectories that result in fast, graceful motions in the position space; (ii)

a feedback control law that tracks the motion primitive; and(iii) a domain for its control law that

is collision-free.

Unlike traditional motion planners that plan in the space ofcells or paths, the motion plan-

ner presented in this thesis plans in the space of motion policies,i.e., controllers. The motion

planner chooses a sequence of gracefully composable motionpolicies to achieve the overall nav-

igation task. Local, valid motion policies that result in fast, graceful and simple motions in small

domains of the position space are sequentially composed to produce a global motion policy that

results in a fast, graceful and complicated motion in the position space. This procedure ensures

that the high-level motion planner has complete knowledge of the low-level controller it uses, and

the low-level controller has knowledge of the environment and the navigation task it achieves,

thereby forming a truly integrated motion planning and control framework that enables balancing

mobile robots like the ballbot to achieve graceful navigation in human environments.

1.6 Outline

Chapter2 presents the related work for this thesis. Chapter3 presents the system descrip-

tion, modeling, control architecture and capabilities of the ballbot. Chapter4 introduces shape-

accelerated balancing systems, a special class of underactuated systems to which balancing mo-

bile robots like the ballbot belong. It then presents an optimal shape trajectory planner that plans

motions in the shape space, which when tracked will result inoptimal tracking of desired motions

in the position space. Chapter5 presents a procedure to design gracefully composable motion

policies, and also presents a motion planner that plans in the space of gracefully composable mo-

tion policies to achieve desired navigation tasks in the presence of static and dynamic obstacles.

Figure1.5depicts a high-level overview of the work presented in this thesis. Chapter6 presents

10 Introduction

Ballbot

Leg
Controller

Yaw
Controller

Arm
Controller

Balancing
Controller

Position
Tracker

Shape
Planner

Shape
Controller

Motion Policy

Motion Policy
Planner

Navigation
Task

Perceived
Environment

Chapter 3

Chapter 4

Chapter 5

Shape FeedbackPosition Feedback

Reference
Position Space

Motion

Desired
Shape

Figure 1.5: A high-level overview of the work presented in this thesis.

the conclusions and contributions of this thesis, and also discusses some future directions of

research.

Chapter 2

Related Work

2.1 Balancing Mobile Robots

There has been a significant growth of interest in developingbalancing mobile robots in the last

decade. Two-wheeled balancing mobile robots ([33], [34], [123], and [12]) became popular af-

ter the introduction of theSegway Robotic Mobility Platform[83]. Rod Grupen and his group

introduced a two-wheeled dynamically stable mobile robot calleduBot [12], which is used as a

mobile manipulation research platform [14]. They showed that balancing robots can be effective

mobile manipulators [12] with the ability to maintain postural stability, generateforces on exter-

nal objects, and withstand greater impact forces. Dean Kamen introducediBot [43], a balancing

wheelchair, and demonstrated the advantages of balancing wheelchairs over the traditional stat-

ically stable ones. Anybots [3] introduced a tele-presence robot that balances on two wheels.

Mike Stilman and his group introducedGolem Krang[122], a two-wheeled balancing mobile

manipulator platform that has the capability of autonomously standing and sitting. They showed

successful control strategies for two-wheeled balancing robots that avoid low ceilings and other

vertical obstacles [126].

Our group introduced the ballbot [61], an omni-directional dynamically stable mobile robot

whose single-wheel design circumvents the limitations associated with kinematic constraints of

two-wheeled robots. Recently, several other groups have begun exploring single-wheel designs

[38, 55, 100]. Masaaki Kumagai developed theBall-IP [55], a ball balancing robot, and demon-

strated that it can be used in cooperative transportation ofwooden frames [56]. A group of

mechanical engineering students at ETH Zurich developed the Rezero[100], and re-emphasized

the dynamic capabilities of ball balancing mobile robots.

12 Related Work

2.2 Underactuated Systems

Balancing mobile robots are members of a class of underactuated systems [118], systems with

fewer independent control inputs than the number of degreesof freedom. Trajectory planning

and control of underactuated mechanical systems has attracted growing attention over the years.

There is a large body of literature on trajectory planning for nonholonomic systems with kine-

matic constraints, ranging from theoretical foundations [58] to practical implementations such as

multi-wheeled mobile vehicles [42, 59, 117]. Underactuated systems with dynamic constraints

have been approached from the controls perspective (e.g., acrobot swing-up [120]) as well as

from the planning perspective (e.g., airship path planning [49]). A detailed analysis of underac-

tuated manipulators (with passive joints) from both the dynamic and control point of view was

presented in [87]. Rathinam and Murray developed methods to determine configuration flatness

of Lagrangian control systems underactuated by one control[98].

Nonlinear control procedures [44, 45] for regulation of underactuated mechanical systems

based on partial feedback linearization were introduced in[118]. In [86], Olfati-Saber intro-

duced explicit cascade normal forms for underactuated mechanical systems with two degrees of

freedom and kinetic symmetry. He also presented different classes of high-order underactuated

mechanical systems and partial feedback linearization [119] techniques for reduction and control.

Underactuated balancing systems have unstable zero dynamics, and are called nonminimum-

phase systems. Accurate tracking of arbitrary configuration trajectories for such systems is not

possible. A variety of nonlinear inversion based approaches [15, 16] have been used in literature

to achieve approximate tracking of desired trajectories for such systems. One such dynamic in-

version method was developed by Neil Getz [29]. Getz and Hedrick [27] developed a nonlinear

controller based on internal equilibrium manifold for nonlinear nonminimum-phase systems that

provided a larger region of attraction over linear regulators, and enabled better output tracking

while maintaining balance [28]. He demonstrated these control procedures on bicycle models

[26], which were extended by Yiet al. to motorcycle models [133, 134]. These dynamic in-

version based approaches are computationally expensive, and cannot be run real-time on robots.

This thesis presents trajectory planning algorithms that are fast enough to run real-time on robots.

Shiriaevet al. [113] presented a constructive tool for generation and orbital stabilization of pe-

riodic solutions for underactuated nonlinear systems witha single passive degree of freedom.

They achieved this using virtual holonomic constraints andtransverse linearization [114]. In

[115], they developed techniques for transverse linearizationand orbital stabilization of periodic

2.3 Planning in Shape Space 13

motions for underactuated systems with arbitrary number ofpassive degrees of freedom. One

of the objectives of the work presented in this thesis is to find functions similar to these virtual

holonomic constraints, which map desired motions in the position space to motions in the shape

space.

2.3 Planning in Shape Space

Ostrowski [89] presented a formulation for undulatory robotic locomotion [91] in mechanical

systems with nonholonomic constraints and symmetries [92]. Geometric mechanics tools were

used to study the effect of internal shape changes on net changes in position and orientation.

He presented mechanical connection and reconstruction equation [7] that relate shape changes to

momentum and position [90]. He presented various gaits for snakeboards [64] and Hirose snakes

[39], and addressed their controllability issues [90]. However, planning procedures that plan for

motions in the shape space to achieve desired motions in the position space were not presented.

Shammaset al. presented a variety of gait design tools for principally kinematic, purely

mechanical systems [108, 111] and dynamic systems with nonholonomic velocity constraints

[109, 110, 112]. They presented tools for generation of both kinematic anddynamic gaits,

unlike just kinematic gait generation techniques introduced in [9] for snakeboards. The gaits

were defined as closed-loop motions in internal shape variables, which produced desired posi-

tion changes in the body coordinate frame, and they were generated usingheight functions[112].

However, these design tools are not applicable to dynamic systems with nonholonomic acceler-

ation constraints. Hatton and Choset [37] used the connection, which relates the body velocity

to internal shape changes, to create a set of vector fields on the shape space calledconnection

vector fields. Each connection vector field corresponds to one component of the body velocity,

and informs how a given shape change will move the system through its position space. The

main advantage of this approach is that it is not restricted to gaits, and can be used for any gen-

eral shape change. However, this procedure was restricted to principally kinematic and purely

mechanical systems [108, 111].

2.4 Hybrid Control

Hybrid control approaches have been primarily used for feedback stabilization of underactuated

systems [1, 135]. Sanfelice and his group [84, 105] presented a “throw-and-catch” hybrid control

14 Related Work

strategy for robust global stabilization of pendubot. Their control strategy combined local feed-

back stabilizers and open-loop controls to steer state trajectories towards desired points in state

space. They also used abootstrapfeedback controller that is capable of steering state trajectories

to a neighborhood of states where feedback stabilizers or open-loop controls can be used.

The work presented in this thesis uses a hybrid control architecture for motion planning.

In the last decade, there has been a large body of work on usinghybrid control techniques for

motion planning that will avoid decoupling between planners and controllers. Burridgeet al. [10]

introducedSequential Composition, a controller composition technique that connects a palette of

controllers, and automatically switches between them to generate a globally convergent feedback

policy. They showed that the stability of individual control policies guarantee the stability of the

overall hybrid policy, and showed results on a robot juggling a ping-pong ball with a paddle.

The robustness of this approach to perturbations was also demonstrated. However, they used

a manual sequence of policies, and did not present any planning procedure for obtaining such

a sequence. Moreover, they used a palette of control policies that contained only convergent

policies.

Sequential composition was successfully applied to a variety of systems [46, 50, 96, 102].

In [101], Rizzi used sequential composition to simplify motion programming for an idealized

holonomic second-order dynamical robot. Quaid and Rizzi [96] extended sequential composition

to planar motors with velocity and acceleration bounds. In the control of wheeled mobile robots,

Kantor and Rizzi [46] used sequential composition to navigate a kinematic unicycle robot using

visual servoing control policies with limited field of view.A variable constraint controller was

used to define individual control policies. Patelet al. [93] used sequential composition to define

switching policies for a nonholonomic wheelchair that navigates through doorways using visual

servoing with limited field of view. In both [46] and [93], the defined control policies included

both convergent control policies and control policies thathad exit velocities. Conneret al. [11]

called control policies with exit velocities asflow-throughpolicies.

Conneret al. [11] extended sequential composition to produce an integratedmotion planning

and control procedure to achieve global navigation objectives for convex-bodied wheeled mobile

robots navigating amongst static obstacles. They also presented a sampling-based approach for

partially automating the policy deployment process. Conneret al. [11] primarily dealt with

kinematic wheeled mobile robots with non-circular shapes,and did not deal with systems hav-

ing more complicated dynamics like balancing mobile robots. The control policy domains were

restricted to the configuration space of the system, and the policy deployment process was not

2.4 Hybrid Control 15

fully automated. Moreover, their integrated motion planning and control procedure did not guar-

antee overall graceful motion. The work presented in this thesis extends this integrated motion

planning and control framework to balancing mobile robots,and also guarantees overall graceful

motion.

Beltaet al. [5] presented a hybrid control policy that used piecewise affine control policies

defined over simplices. This approach involved motion planning in the space of simplices, and

the control policies were defined over simplices in order to induce desired closed-loop motions.

These methods were developed for fully actuated kinematic robots with velocity bounds, and

underactuated kinematic unicycles with forward and turning speed bounds. These methods were

not presented for systems with significant dynamics like balancing mobile robots. Moreover, this

procedure did not guarantee overall graceful motion.

Manikondaet al. [67, 68] introducedMDLe, as an extension to motion description language

(MDL) presented in [8]. The robot behaviors were formalized in terms of kinetic state machines,

a motion description language, and the interaction of kinetic state machines with real-time infor-

mation from limited-range sensors. They demonstrated MDLein the area of motion planning for

nonholonomic kinematic unicycles. Sensor based triggers were used to avoid collisions and to

switch behaviors. They used potential function based localplanners to plan collision-free paths

assuming a holonomic robot, and then generated feasible paths that obeyed the configuration

constraints. This provided the sequence of control points to which the robot had to be steered

and then, behaviors that steered the robot to these desired control points were selected. This

approach was still a decoupled one with no integration of planning and control. Moreover, they

used only open-loop controls, and did not account for the domains of controllers.

Marigo and Bicchi [69] developedControl Quantaas a motion planning method for driftless

systems with symmetries. Each control quantum was defined asan open-loop control trajectory

with zero control inputs at the start and the end, and therefore, it only resulted in a rest-to-rest

motion of the system. Kovaret al. [54] introducedMotion Graphsto build complex motions of

animated figures from motion-capture sequences. The motion-capture sequences formed motion

primitives, and given a finite number of motion primitives, amotion graph was constructed as a

directed graph representing rules of their valid sequential composition. They defined two motion

primitives to be sequentially composable if one primitive’s end state was “close enough” to the

start state of the other. Therefore, two motion primitives can be sequentially composed as long

as discontinuities in their state trajectories are not perceivable by the user. However, for purposes

of robot navigation, this approach results in ungraceful motion of the system.

16 Related Work

Frazzoliet al. [20, 21, 24] introducedManeuver Automataas a generalization of control

quanta [69] and motion graphs [54]. They used open-loop maneuvers and steady state (trim)

trajectories as motion primitives, and these motion primitives were concatenated based on pre-

defined relationships. They used algorithms based on Rapidly-exploring Random Trees (RRT)

[62] for motion planning in maneuver space, and demonstrated aggressive maneuvering capa-

bilities of autonomous helicopters in simulation [23, 25]. The algorithm presented did not deal

with coverage but rather, stopped when a sequence of motion primitives to the goal was found.

Therefore, every time the state exited the defined domain, the algorithm had to replan. They also

presentedRobust Hybrid Automata[20, 22] that used closed-loop control for its maneuvers. Al-

though this approach ensured overall stability of the closed-loop system while switching between

motion primitives, it did not ensure closed-loop graceful motion.

Russ Tedrake [124, 125] introducedLQR-trees, a feedback motion planning algorithm that

combines locally valid linear quadratic regulator (LQR) controllers into a nonlinear feedback

policy that globally stabilizes a goal in state space. LQR-trees consist of a sparse set of feasible

trajectories to the goal stabilized by LQR controllers along with conservative estimates of their

basins of attraction. The algorithm probabilistically covers the bounded state space with such

basins and ensures that the initial conditions capable of reaching the goal will stabilize to the goal.

The estimation and verification of stability regions are computationally expensive, and hence do

not allow real-time planning. However, the approaches presented by his group [125, 128] to

estimate invariant domains for control policies can be usedin the design of motion policies

presented in this thesis. Recently, his group presented an offline approach to design a library of

parameterized feedback controllers that can be used for real-time motion planning [65].

Chapter 3

The ballbot

The ballbot is an underactuated, dynamically stable mobilerobot that balances on a single ball.

It is a 3D wheeled inverted pendulum robot that is capable of omnidirectional motion.

3.1 History

In 2005, Ralph Hollis from the Microdynamic Systems Laboratory at Carnegie Mellon Univer-

sity, Pittsburgh, USA built the first successful ballbot [61] shown in Fig.3.1. It was intentionally

built to be of human-size with the vision of developing tall and skinny robots that navigate hu-

man environments. A general discussion on the capabilitiesand advantages of such balancing

robots was presented in [41]. Tom Lauwers and George Kantor were the first to make the ball-

bot successfully balance and stationkeep [60, 61]. The ballbot uses a triad of legs to gain static

stability when powered down as shown in Fig.3.1(c). In 2006, Anish Mampetta [66] explored

different approaches to enable the ballbot to automatically transition from this statically stable

state (Fig.3.1(c)) to the dynamically stable, balancing state (Fig.3.1(b)). In the same year, Eric

Schearer [107] explored the dynamic effects of adding arms to the ballbot in simulation. He also

developed unified arm, balancing and stationkeeping controllers in simulation. Kathryn Rivard,

Suresh Nidhiry and Kalicharan Karthikeyan played a significant role in the development of the

hardware drivers and the initial simulation software for the ballbot. Until 2007, the ballbot was

able to balance, but didn’t do much else.

This thesis presents the work done with the ballbot since 2007. The first contribution of the

work presented in this thesis is to have enabled the ballbot to balance reliably, to be robust to

disturbances, and also to be physically interactive.

18 The ballbot

48 V battery

Computer

Charger

Stiffeners

Legs (3)

Leg
drives (3)

Drive
unit

Frame (3)

IMU

(a) (b) (c)

Figure 3.1: The ballbot: (a) CAD drawing with its principal components marked; (b) balancing;
and (b) statically stable with the legs down. (Courtesy:Ralph Hollis; Appeared in [75, 80])

3.2 System Description

This section presents a detailed description of the ballbot’s hardware designed and built by Ralph

Hollis. The work presented in this thesis does not involve the design of any of the hardware

components described below, but involves the design of controllers for these components, which

are described in Sec.3.5.

The ballbot shown in Fig.3.1 consists of a cylindrical body on top of a ball. Figure3.1(a)

shows the CAD drawing of the robot with its principal components marked. The body consists of

three aluminium channels held together by reconfigurable circular decks and is about 1.5 m tall,

with a diameter of 368 mm and a weight of about 52 kg. The ball consists of a hollow aluminium

sphere of 185 mm diameter coated with polyurethane of 12.7 mmthickness. The robot is self-

contained with all required components for operation on-board. The 48 V lead acid batteries are

on the top deck, and can power the robot for a few hours. The robot’s body also houses a battery

charger on one of its top decks. A Crossbow VG700CA inertial measurement unit (IMU) with

three fiber optic gyroscopes and three micro-electromechanical systems (MEMS) accelerometers

is fixed on one of the lower decks on top of the ball drive unit. It provides Kalman-filtered roll

and pitch angles of the body w.r.t. gravity, and also provides roll, pitch and yaw rates.

3.2 System Description 19

Ball

Ball
transfer

Drive
motor Yaw

bearing

Encoder Belt
tensionerDrive belt

Drive roller

(a)

Yaw absolute
encoder

Yaw motor

Yaw drive
belt

Yaw
encoder
belt

Slip ring
assembly

PWM
amplifier

(b)

Figure 3.2: Four-motor inverse mouse-ball drive and yaw drive: (a) view showing main drive
arrangement, (b) view showing yaw drive mechanism. (Courtesy: Ralph Hollis; Appeared in
[76, 80])

3.2.1 Four-Motor Inverse Mouse-Ball Drive

The ball drive mechanism, shown in Fig.3.2(a), is the inverse of an old-fashioned mouse-ball

drive. It consists of four rollers, a pair each for orthogonal motion directions, actuated by four

individual DC servomotors. The first version of the inverse mouse-ball drive [60] had a pair of

drive and opposing passive rollers. This setup resulted in an undesirable “hopping motion” with

the drive rollers producing an additional upward or downward force on the ball. This problem

is avoided in the current design by actuating all four rollers of the inverse mouse-ball drive

mechanism.

3.2.2 Yaw Mechanism

The ball drive mechanism is attached to the body using a largethin-section bearing, which allows

yaw rotation of the body,i.e., rotation about its vertical axis. The yaw drive mechanism, shown

in Fig. 3.2(b), consists of a DC servomotor with planetary gears driving a pulley assembly at the

center. An absolute encoder attached to the pulley assemblygives the orientation of the body

frame w.r.t. the ball drive unit. A slip ring assembly at the center is used for drive motor currents

and encoder signals, and allows unlimited yaw rotation of the body. The ballbot’s first design in

2005 did not include the yaw drive mechanism, and it was addedonly in 2007.

20 The ballbot

Figure 3.3: Leg drive: (a) Various components of the leg drive mechanism, (b) legs completed
retracted, and (c) legs completely deployed. (Courtesy:Ralph Hollis; Appeared in [74, 80])

3.2.3 Legs

Each aluminium channel on the ballbot’s body houses a leg that can be deployed to achieve static

stability when powered down. The leg drive mechanism, shownin Fig. 3.3, consists of three

independent DC servomotors, each driving a leg of length 0.48 m on a linear screw attached to

the channel. The tip of each leg has a hoof switch, which signals its contact with the floor, and a

ball caster, which allows the robot to roll on the floor when ina statically stable state. The legs

enable the ballbot to switch between the statically stable state, with the legs down as shown in

Fig. 3.1(c) to the dynamically stable state, balancing as shown in Fig.3.1(b).

3.2.4 Arms

In 2011, Ralph Hollis and Byungjun Kim [81] designed and built a pair of 2-DOF arms for the

ballbot as shown in Fig.3.4(a). Each arm is an aluminium tube that is 0.457 m long and 0.89 mm

thick with a changeable dummy weight (up to 2 kg) at its end. The arm attaches to its drive unit

through a shoulder structure shown in Fig.3.4(b).

Each arm is actuated by a pair of series-elastic actuators, each of which consists of a custom

designed helical spring with a torsion coefficient of 16.37 Nm/rad, a brush DC motor with a

3.3 Dynamic Models 21

(a)

Differential

Arm Encoder

Bevel Gears
Gear Box

Helical Spring

DC Motor

Motor Encoder

Arm

Dummy Weight

(b)

Figure 3.4: (a) The ballbot with a pair of 2-DOF arms (Courtesy:Michael Shomin; Appeared
in [73]), and (b) 2-DOF arm with series-elastic actuators (Courtesy:Ralph Hollis; Appeared in
[73, 81]).

torque of 0.12 Nm at 3000 RPM, a 91:1 planetary gear train, and a2000 counts per revolution

(CPR) encoder. Each actuator connects with a pair of bevel gears of gear ratio 1:2, and a 1024

CPR optical encoder is attached to the end of the bevel gear shaft. The differential with three

miter gears combines the torque from each actuator. The entire drive unit is fixed to one of the

top decks just below the batteries. The trajectory trackingcontrollers for the arms were designed

and tested by Byungjun Kim [81].

3.3 Dynamic Models

This section presents the equations of motion of the ballbot, one without arms and another with

arms.

3.3.1 3D Ballbot without Arms

The ballbot without arms shown in Fig.3.1 is modeled in 3D as a rigid cylindrical body on top

of a rigid spherical wheel/ball with the following assumptions: (i) there is no slip between the

22 The ballbot

ball and the floor; and (ii) there is no yaw/spinning motion for both the body and the ball, i.e.,

they have two degrees-of-freedom each. For ease of understanding the ballbot’s configurations,

a planar version of the ballbot with its planar configurations is shown in Fig.3.5.

mbody

r

l

Figure 3.5: Planar ballbot model with ball and body configurations shown (Appeared in [74, 76,
78, 79, 80]).

The origin of the coordinate frame used to derive the dynamicmodel is at the center of the

ball. The body angles (φx, φy) represent the roll and pitch angles of the body respectively w.r.t.

the ball center. The ball angles (θx, θy) are chosen such that thex and y coordinates of the

position of the ball center are given byx = r(θx + φy) andy = r(θy − φx). These ball angles

correspond to the rotation measured by the encoders on the ball motors. The configuration vector

q ∈ R
4×1 is given byq = [θx, θy, φx, φy]

T .

The forced Euler-Lagrange equations of motion along with the friction terms are given by:

d

dt

∂L

∂q̇
−
∂L

∂q
+D(q̇) =

[

τ

0

]

, (3.1)

where,L (q, q̇) = K(q, q̇) − V (q) is the Lagrangian with kinetic energyK(q, q̇) and potential

energyV (q),D(q̇) ∈ R
4×1 is the vector of frictional terms, andτ ∈ R

2×1 is the vector of gener-

3.3 Dynamic Models 23

alized forces. The forced Euler-Lagrange equations can be written in matrix form as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) +D(q̇) =

[

τ

0

]

, (3.2)

where,M(q) ∈ R
4×4 is the mass/inertia matrix,C(q, q̇) ∈ R

4×4 is the Coriolis and centrifugal

matrix, andG(q) ∈ R
4×1 is the vector of gravitational forces. These system matrices are given

below.

M(q)=

















γ1 0 −γ2Sφx
Sφy

γ1+γ2Cφx
Cφy

0 γ1 −γ1−γ2Cφx
Cφy

0

−γ2Sφx
Sφy

−γ1−γ2Cφx
Ixx+γ1+

γ2l

r
+2γ2Cφx

−γ2Sφx
Sφy

Izz+γ1+γ3C
2
φx

γ1+γ2Cφx
Cφy

0 −γ2Sφx
Sφy

+2γ2Cφx
Cφy

















,

(3.3)

C(q, q̇)=

















0 0 −γ2
(

Cφx
Sφy

φ̇x+Sφx
Cφy

φ̇y

)

−γ2
(

Sφx
Cφy

φ̇x+Cφx
Sφy

φ̇y

)

0 0 γ2Sφx
φ̇x 0

0 0 −γ2Sφx
φ̇x γ3Sφx

Cφx
φ̇y

−γ2Cφx
Sφy

φ̇x −
(

γ2Sφx
Cφy

+γ3Sφx
Cφx

)

φ̇x

0 0 −
(

γ2Sφx
Cφy

+γ3Sφx
Cφx

)

φ̇y −γ2Cφx
Sφy

φ̇y

















,

(3.4)

G(q)=













0

0

−γ2g

r
Sφx

Cφy

−γ2g

r
Cφx

Sφy













, (3.5)

where,Si = sin (i),Ci = cos (i), γ1 = Iw+(mb+mw)r
2, γ2 = mbℓr andγ3 = mbℓ

2+Ibyy−I
b
zz.

The other symbols represent system parameters whose names and numerical values are shown in

Table3.1.

24 The ballbot

The vector of frictional termsD(q̇) is given by:

D(q̇) =













Dcsign(θ̇x) +Dvθ̇x

Dcsign(θ̇y) +Dvθ̇y

0

0













, (3.6)

whereDc is the Coulomb friction torque, andDv is the viscous damping friction coefficient,

whose numerical values are presented in Table3.1. The vector of generalized forcesτ ∈ R
2×1 is

given by:

τ = JT

[

τmx

τmy

]

=

[

cos (φy) 0

0 1

][

τmx

τmy

]

, (3.7)

where,J ∈ R
2×2 is the Jacobian matrix,τmx andτmy are the motor torques on the ball.

It is to be noted that the ball angles
(

θx, θy
)

form the actuated variables, whereas the body

angles
(

φx, φy

)

form the unactuated variables. The last two equations of motion in Eq. 3.2,

which correspond to the unactuated degrees of freedom are called dynamic constraints. These

second-order differential equations form non-integrableconstraints [88] on the dynamics of the

system, and are also known assecond-order nonholonomic constraints. The dynamic constraints

for the 3D ballbot model without arms are given by the following two equations:

−γ2Sφx
Sφy

θ̈x−
(

γ1+γ2Cφx

)

θ̈y+
(

Ixx+γ1+
γ2l

r
+2γ2Cφx

)

φ̈x−γ2Sφx
Sφy

φ̈y

−γ2Sφx
φ̇2
x+γ3Sφx

Cφx
φ̇2
y−

γ2g

r
Sφx

Cφy
= 0, (3.8)

(

γ1+γ2Cφx
Cφy

)

θ̈x−γ2Sφx
Sφy

φ̈x+
(

Izz+γ1+γ3C
2
φx
+2γ2Cφx

Cφy

)

φ̈y

−γ2Cφx
Sφy

φ̇2
x−γ2Cφx

Sφy
φ̇2
y−2

(

γ2Sφx
Cφy

+ γ3Sφx
Cφx

)

φ̇xφ̇y−
γ2g

r
Cφx

Sφy
= 0, (3.9)

where,Si = sin (i),Ci = cos (i), γ1 = Iw+(mb+mw)r
2, γ2 = mbℓr andγ3 = mbℓ

2+Ibyy−I
b
zz.

It can be seen from Eq.3.8and Eq.3.9that the dynamic constraint equations are independent of

the position and velocity of the ball,i.e.,
(

θx, θy, θ̇x, θ̇y
)

.

3.3 Dynamic Models 25

3.3.2 3D Ballbot with Arms

The ballbot with arms is modeled as a rigid cylinder on top of arigid sphere with a pair of

massless arms having weights at their ends. The model makes the following assumptions: (i)

there is no slip between the ball and the floor; and (ii) there is no yaw/spinning motion for either

the ball or the body or the arms,i.e., they have two degrees of freedom each. A planar version

of the model along with its planar configurations is shown in Fig. 3.6.

mb

ma

r

lb

la

Figure 3.6: Planar configurations shown in a planar model of ballbot with arm (Appeared in
[73, 81]).

There are eight configuration variables for the 3D ballbot model with arms represented by

q = [θ, αl, αr, φ], where,θ = [θx, θy]
T are configurations of the ball,αl = [αl

x, α
l
y]

T are configu-

rations of the left arm,αr = [αr
x, α

r
y]

T are configurations of the right arm, andφ = [φx, φy]
T are

configurations of the body. The forced Euler-Lagrange equations of motion of the ballbot with

arms can be written in matrix form as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) =

[

τ

0

]

, (3.10)

where,M(q) ∈ R
8×8 is the mass/inertia matrix,C(q, q̇) ∈ R

8×8 is the matrix of Coriolis and

centrifugal terms,G(q) ∈ R
8×1 is the vector of gravitational forces, andτ = [τθ, ταl

, ταr
]T ∈

R
6×1 is the vector of generalized forces. The vector of body and arm configurations is represented

26 The ballbot

asqs = [αl, αr, φ] ∈ R
6×1. These variables are calledshape variables, and their significance will

be explained in Chapter4. The system matrices in Eq.3.10are of the form given below:

M(q) =













Mθθ Mθαl(qs) Mθαr(qs) Mθφ(qs)

Mαlθ(qs) Mαlαl(qs) Mαlαr(qs) Mαlφ(qs)

Mαrθ(qs) Mαrαl(qs) Mαrαr(qs) Mαrφ(qs)

Mφθ(qs) Mφαl(qs) Mφαr(qs) Mφφ(qs)













, (3.11)

C(q, q̇)=













0 Cθαl(qs, q̇s) Cθαr(qs, q̇s) Cθφ(qs, q̇s)

0 Cαlαl(qs, q̇s) 0 Cαlφ(qs, q̇s)

0 0 Cαrαr(qs, q̇s) Cαrφ(qs, q̇s)

0 Cφαl(qs, q̇s) Cφαr(qs, q̇s) Cφφ(qs, q̇s)













, (3.12)

G(q)=













0

Gαl(qs)

Gαr(qs)

Gφ(qs)













, (3.13)

where, eachMij ∈ R
2×2, eachCij ∈ R

2×2 and eachGi ∈ R
2×1. Equations3.11to 3.13show

that the system matrices are independent of the position andvelocity of the ball,i.e., (θ, θ̇), and

are dependent only on the shape variables and their velocities, i.e.,
(

qs, q̇s
)

. The elements of

all the submatrices shown above are presented in detail in AppendixA. It is to be noted that

the body configurationsφ are unactuated, whereas the rest of the configurations are actuated.

The last two equations of motion corresponding to the unactuated variablesφ form thedynamic

constraintequations. These aresecond-order nonholonomic constraintsas they are not even

partially integrable [88]. The dynamic constraint equations in Eq.3.10can be written using the

submatrices as follows:

Mφθ(qs)θ̈ +Mφαl
(qs)α̈l +Mφαr

(qs)α̈r +Mφφ(qs)φ̈+ Cφαl
(qs, q̇s)α̇l

+Cφαr
(qs, q̇s)α̇r + Cφφ(qs, q̇s)φ̇+Gφ(qs) = 02×1. (3.14)

It can be seen from Eq.3.14that the dynamic constraint equations are independent of the position

and velocity of the ball,i.e.,
(

θ, θ̇
)

.

3.4 Parameter Estimation Experiments 27

3.4 Parameter Estimation Experiments

This section presents a variety of experiments that were conducted on the ballbot to estimate

its principal system parameters such that the dynamics of the 3D ballbot model better match

the dynamics of the real robot. The design of these experimental setups, and the successful

estimation of the system parameters are contributions of the work presented in this thesis.

3.4.1 Inertia Measurement

A torsional pendulum setup [132] was used to experimentally estimate moments of inertia of

the body. The ballbot’s body was suspended about its center of mass using a torsional spring

as shown in Fig.3.7, and its oscillations after an initial disturbance were observed. The angular

velocity trajectory of the body obtained from the IMU, shownin Fig. 3.8, was used to find its

frequency of oscillations.

Torsion wire

IMU

Small gap

Support
frame

Figure 3.7: Torsional pendulum setup with ballbot suspended perpendicular to its length (Cour-
tesy:Ralph Hollis; Appeared in [76, 80]).

The torsional spring constant was obtained by performing the same experiment with an I-

beam whose moment of inertia was known. The torsional springconstantK is given by

K = Iω2
n, (3.15)

whereI is the moment of inertia of the suspended object, andωn is its natural frequency of

oscillations. Therefore, the moment of inertia of the body about its center of mass is given by

Ibody = II−beam

ω2
I−beam

ω2
body

. (3.16)

28 The ballbot

A
ng

ul
ar

Ve
lo

ci
ty

(r
ad

/s
)

Time (s)
0 20 40 60 80 100

−2

−1

0

1

2

Figure 3.8: Damped sinusoidal oscillation used to determine the ballbot’s moments of inertia
(Appeared in [76, 80]).

The moments of inertiaIbxx andIbyy of the ballbot’s body were obtained by suspending it perpen-

dicular to its length as shown in Fig.3.7, whereasIbzz was obtained by hanging the ballbot’s body

vertically about its vertical axis. The estimated moment ofinertia values from these experiments

are shown in Table3.1.

3.4.2 Friction Modeling

The Coulomb friction torque and the viscous friction coefficient were experimentally determined

using the setup shown in Fig.3.9, where the ballbot stood on a roller ball with its body con-

strained vertically. A ramp current input of slopem was given to the ball drive motors, and the

angular velocity trajectory of the ball was recorded. The minimum current required to start the

ball rolling is called the breakaway current, which when multiplied by the torque constantKi

of the drive unit gives the Coulomb friction torqueDc. The experiment was repeated with the

current vector at 5◦ intervals.

After breakaway, the equation of motion of the ball can be written as

Iballθ̈ = τ(t)− τv −Dc, θ̇ > 0 (3.17)

= Kimt−Dvθ̇ −Dc, (3.18)

whereτv is the viscous friction torque. The plot of the ball’s angular velocity trajectoryθ̇(t) after

breakaway can be approximated by a line of constant slopec [47] as shown in Fig.3.10. Hence,

3.4 Parameter Estimation Experiments 29

Ballbot ball

Ball castor

Figure 3.9: Ball rolling on the roller during friction tests (Courtesy:Ralph Hollis; Appeared in
[76, 80]).

the angular velocity can be written as

θ̇ = ct− d, θ̇ > 0 (3.19)

θ̈ = c. (3.20)

Solving Eq.3.18−3.20, we get

Dv =
Kim

c
. (3.21)

-d

slope m

slope cLinear Fit

Time (s)

In
pu

tC
ur

re
nt

(A
)

B
al

lA
ng

ul
ar

Ve
lo

ci
ty

(r
ad

/s
)

0 5 10 15 200 5 10 15 20

−2

0

2

4

−2

0

2

4

Figure 3.10: Ball response to the ramp current inputs to the ball drive motors used for determing
coulomb and viscous friction terms (Appeared in [80]).

The radial plots of Coulomb friction torque and viscous friction coefficient in different drive

30 The ballbot

directions are shown in Fig.3.11. Table3.1 presents the average coulomb friction torque and

viscous friction coefficient values that are used in simulation.

0180

330

150

300

120

270

90

240

60

210

30

4
3

2
1

(a)

0180

330

150

300

120

270

90

240

60

210

30

4
3

2
1

(b)

Figure 3.11: Radial plots as functions of drive directions: (a) Coulomb friction torqueDc (Nm);
(b) Viscous friction coefficientDv (Nms/rad). (Appeared in [80])

3.5 Control Architecture

This section provides a brief description of the different controllers used on the ballbot. The

design and successful implementation of these controllersare contributions of the work presented

in this thesis. The videos of the ballbot achieving the experimental results presented in this

section can be found in VideoD.1.

3.5.1 Balancing Control

The balancing controller, for obvious reasons, is the single most important controller on the

robot. The balancing controller takes desired body angles,i.e., the roll and pitch angles of the

body, as inputs, and balances the robot about these desired body angles. The desired body angles

are zero for a pure balancing operation,i.e., standing still. Since the body angles are unactuated,

the balancing controller cannot directly track the desiredbody angles. The balancing controller

indirectly achieves this objective by actuating the ball such that the projection of the body’s

3.5 Control Architecture 31

Table 3.1: System Parameters

Parameter Symbol Value

Z-axis CM from ball center ℓ 0.69 m
Ball radius r 0.106 m
Ball mass mw 2.44 kg
Ball inertia Iw 0.0174 kgm2

Roll moment of inertia about CM Ibxx 12.59 kgm2

Pitch moment of inertia about CM Ibyy 12.48 kgm2

Yaw moment of inertia about CM Ibzz 0.66 kgm2

Body mass mb 51.66 kg
Coulomb friction torque Dc 3.82 Nm
Viscous damping friction coefficientDv 3.68 Nms/rad
Torque constant for the ball drive Ki 2.128 Nm/A

center of mass on the floor tracks the projection of the desired center of mass obtained from

desired body angles as shown in Fig.3.12.

The balancing controller consists of two independent controllers, one for each of the vertical

planes. Each one is a Proportional-Integral-Derivative (PID) controller whose gains were tuned

manually. When the real ballbot balances, the variation of its pitch angle remains within±0.05◦

as shown in Fig.3.13. Similar results were obtained for the roll angle.

Figure 3.12: Block diagram for the station keeping controller with the balancing control block
(Appeared in [76, 80]).

3.5.2 Outer Loop Control

The balancing controller is good at balancing about desiredbody angles but does not achieve any

desired ball position on the floor. This is achieved by using an outer control loop around the bal-

32 The ballbot

 Experimental
Simulation

P
itc

h
(◦

)

Time (s)

0 20 40 60

−0.1

0

0.1

Figure 3.13: Pitch angle of the ballbot’s body while balancing about a zero desired body angle
(Appeared in [76, 80]).

ancing controller, as shown in Fig.3.12. The outer loop controller provides desired body angles

to the balancing controller. This section presents two outer-loop controllers: (i) stationkeeping

control, and (ii) velocity control.

Stationkeeping is the act of balancing at a desired positioneven when disturbed. The station-

keeping controller is a Proportional-Derivative (PD) controller that outputs desired body angles

depending on the error between the ball’s current and desired positions. The PD controller’s angle

outputs are saturated to avoid large lean angles, and its gains were tuned manually. Figure3.14(a)

shows an XY plot of the position of the ball on a carpeted floor.As one can see, the balancing

controller is able to keep the ball close to its starting point on the floor to within about±10-15

mm when the robot is not disturbed. Unlike the balancing controller, the stationkeeping con-

troller keeps the ball close to its starting point even when disturbed. The XY plot of the ball’s

position when the body is pushed in all four directions is shown in Fig.3.14(b).

The velocity controller is a manually tuned Proportional-Integral (PI) controller that outputs

desired body angles depending on the error between the ball’s current and desired velocities.

The velocity controller is concerned only with the ball’s velocity and does not bother about its

position. The velocity controller has two major applications, one as a stopping controller, which

enables the ballbot to slow down and come to rest when subjected to large disturbances; and the

other for teleoperation of the ballbot wherein the user can provide velocity commands using a

joystick. Just like the stationkeeping controller, the angle outputs from the velocity controller are

also saturated to avoid large lean angles.

3.5 Control Architecture 33

Y

Li
ne

ar
P

os
iti

on
(m

)

X Linear Position (m)
−0.02−0.01 0 0.01 0.02

−0.02

−0.01

0

0.01

0.02

(a) Balancing Control

Push

Push

Push

Push

Y
Li

ne
ar

P
os

iti
on

(m
)

X Linear Position (m)
−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

(b) Stationkeeping Control

Figure 3.14: Balancing at a position: (a) ball track on the carpeted floor using only the balancing
controller, (b) operation of the station keeping controller when the body is pushed off its position.
(Appeared in [76, 80])

3.5.3 Yaw Control

In the present control architecture, the yaw controller is decoupled from the balancing controller

for simplicity and ease of control. It consists of two loops:an inner PI control loop that feeds

back the yaw angular velocitẏψ, and an outer PD control loop that feeds back both the yaw angle

ψ and the yaw angular velocitẏψ, as shown in Fig.3.15. The desired angular velocity output

from the outer-loop position controller is saturated to avoid high angular velocities that could

potentially drive the balancing system unstable.

Figure 3.15: Block diagram of the yaw controller (Appeared in[76, 80]).

During the yaw motion, the IMU attached to the body frame rotates, while the ball drive

unit does not. The angle offsetχ between the drive unit and the body frame is given by the

absolute yaw encoder. The balancing controller requires a corresponding rotation transformation

34 The ballbot

to be performed on the roll and pitch angles from the IMU in order to transform them into

the coordinate frame of the ball drive unit. Figure3.16 shows selected frames of the ballbot

performing a 360◦ yaw motion while balancing, and the corresponding yaw angular plot is shown

in Fig. 3.17. The results show the capability of the robot to rotate in place, which will be useful

when the ballbot uses its arms to manipulate objects. This thesis does not present any work on

navigation of the ballbot using the yaw motion. For all the experimental results presented in

Chapter4 and Chapter5, the yaw controller was used to ensure that the body did not yaw while

the ballbot was in motion.

Figure 3.16: Selected frames of 360◦ yaw motion video (Appeared in [76, 80]).

 Experimental
Reference

Y
aw

(◦
)

Time (s)

0 5 10 15 20 25

0

100

200

300

400

Figure 3.17: 360◦ yaw motion of the ballbot’s body while balancing (Appeared in [76, 80]).

3.5 Control Architecture 35

3.5.4 Leg Control

As mentioned in Sec.3.2, the ballbot deploys its three legs to achieve static stability. This implies

that the ballbot has two states in terms of stability: (i) a Dynamically Stable State (DSS), in which

it balances on the ball; and (ii) a Statically Stable State (SSS), in which it rests with all three legs

fully deployed. The ballbot is capable of moving in both these states [66]. In DSS, the ballbot

moves around by balancing on the ball and leaning its body in the desired direction of motion,

whereas in SSS, the robot moves by rolling the ball with all its three legs sliding on the floor.

The ball caster at the tip of each leg makes this sliding possible. However, in SSS, the motion

is restricted to only smooth planar surfaces. The leg control plays a vital role in the automatic

transition between DSS and SSS, which is a requirement for a fully autonomous ballbot.

All three legs have independent controllers for both lifting and deploying operations. The

legs-up controller is a PI velocity controller that stops when the legs hit the body,i.e., the leg

motors stall. The legs-down controller uses two control loops similar to the yaw controller shown

in Fig.3.15. The inner PI control loop feeds back the velocity of the leg,and the outer PD control

loop feeds back both the position and velocity of the leg. Thelegs-down controller stops when

the hoof switches at the tip of the legs hit the floor.

The legs-up controller and the balancing controller can be scheduled to operate together

such that the ballbot transitions from SSS to DSS. This was first demonstrated by Anish Mam-

petta [66]. However, the simultaneous operation of the legs-up controller and the balancing

controller created large transients because the ballbot’sbody is not always vertical (zero body

angles) when the legs are down. In order to achieve smooth transition, the body angles must be

close to zero before lifting the legs up. This is achieved using the legs-adjust controller shown

in Fig. 3.18, which is a contribution of the work presented in this thesis. When all three legs

are fully down, the legs-adjust controller changes the position of the legs to achieve zero body

angles. This is done with the knowledge that the three legs and the body form an overconstrained

spatial linkage [129].

The top view of the ballbot with all three legs deployed is shown in Fig.3.19(a). The spatial

linkage consisting of the ballbot and the three legs attached to the floor with PR joints was

simulated in Open Dynamics Engine. For each leg, the leg nut was moved up and the effect of

the position of the leg nut on the body angles (both roll and pitch) was recorded. In Fig.3.19(a),

it can be seen that the position of leg 1 affects only the pitch(rotation abouty axis) and not the

roll, while the positions of legs 2 and 3 affect both. A graph showing the position of leg 1 as a

function of the body pitch angle is shown in Fig.3.19(b). Similar graphs hold for legs 2 and 3.

36 The ballbot

Figure 3.18: Block diagram for the legs-adjust controller (Appeared in [76, 80]).

(a)

Le
g

P
os

iti
on

(m
)

Pitch (◦)
−6 −4 −2 0

−0.18

−0.16

−0.14

(b)

Figure 3.19: (a) Top view of the ballbot with all three legs deployed; (b) Position of leg 1 as a
function of body pitch. (Appeared in [76, 80])

The legs-adjust controller controls the position of leg 1 toachieve the desired pitch, and

controls the positions of legs 2 and 3 to achieve the desired roll. As can be seen in Fig.3.19(b),

the relationship between the leg positionξ and the body angleφ is approximately linear of the

form ξ = Klegφ + cleg. This relationship was used to create a PID controller that adjusts the

positions of the legs so as to tilt the body to desired roll andpitch angles as shown in Fig.3.18.

This controller facilitates a smooth automatic transitionfrom SSS to DSS as the initial body

angles can be adjusted to be close to zero. While transitioning from DSS to SSS, the balancing

controller is turned off when the hoof switches on the legs contact the floor. A flow chart of this

automatic transition procedure is shown in Fig.3.20. Figure3.21shows selected frames from a

video of the ballbot automatically transitioning from SSS to DSS, and vice versa.

3.5 Control Architecture 37

Figure 3.20: Flow chart for the automatic transition operation (Appeared in [76, 80]).

Figure 3.21: Selected frames of the automatic transition from SSS to DSS, and vice versa (Ap-
peared in [76, 80]).

38 The ballbot

3.6 Human–Ballbot Physical Interaction

Humans are physically interactive with everything in theirenvironments and hence, robots oper-

ating in human environments must handle physical interactions with humans and objects [106].

The dynamic stability of balancing mobile robots like the ballbot naturally enable them to achieve

several interesting physically interactive behaviors [75], some of which are described below. The

videos of the ballbot performing these physically interactive behaviors can be found in VideoD.2.

3.6.1 Ease of Mobility

Humans should be able to physically move a robot operating intheir environments with ease.

The ballbot, while balancing, can be physically moved around with little effort. It is generally a

difficult task to physically move a heavy statically stable mobile robot, whereas the ballbot can

be moved around with just a single finger as shown in Fig.3.22(a). In addition to this, humans

should also be able to physically stop and control a robot operating in their environments with

minimal force. The ballbot can be stopped with little efforteven while it is in motion. It can also

be dragged around using a passive lever hand that is attachedto one of its channels as shown in

Fig. 3.22(b).

()a ()b

Figure 3.22: Moving the ballbot: (a) with a finger; (b) with a passive lever hand (Appeared in
[75, 80]).

3.6 Human–Ballbot Physical Interaction 39

3.6.2 Robustness

Robots operating in cluttered and/or crowded human environments should be robust to distur-

bances, user mistakes, and even ill-treatment to a certain degree. The ballbot is robust to large

disturbances like even shoves and kicks as shown in Fig.3.23. The ballbot can also handle

collisions with furniture and walls.

Figure 3.23: Kicking the ballbot (Appeared in [75, 80]).

3.6.3 Human Intent Detection

The force exerted by a human on the ballbot directly corresponds to its acceleration, which

can be used to detect certain basic intentions. For example,a soft push can be considered as

unintentional, whereas a hard push can be interpreted as a move away command. The ballbot’s

response to such human intentions is shown in Fig.3.24. When given a soft push, the ballbot

continues to stationkeep at its current position1 , whereas given a hard push, it moves away and

stationkeeps at a different position2 on the floor.

3.6.4 Learn and Repeat

One can use physical interactions to teach different tasks to robots. This section presents some

initial results of a learn and repeat behavior using the ballbot. In the learn mode, the human user

physically moves the ballbot in a desired path, and in the repeat mode, the ballbot attempts to

40 The ballbot

1

2

Y
Li

ne
ar

P
os

iti
on

(m
)

X Linear Position (m)

Hard
Push

Soft
Push

Soft
Push

Soft
Push

−0.5 0 0.5

−0.5

0

0.5

Figure 3.24: Human Intent Detection (Appeared in [75, 80]).

track the learned path. The ballbot’s attempts at repeatingapproximate linear and circular paths

learned from the human user are shown in Fig.3.25.

Playback Path
Recorded Path

Y
Li

ne
ar

P
os

iti
on

(m
)

X Linear Position (m)

0 1 2

0

1

2

(a)

Playback Path
Recorded Path

Y
Li

ne
ar

P
os

iti
on

(m
)

X Linear Position (m)

−0.6 −0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

(b)

Figure 3.25: Learn-Repeat behavior: (Approximate) (a) Linear and (b) Circular Motion. (Ap-
peared in [75, 80])

3.6.5 Ballbot Interface and Teleoperation

The ballbot has a highly interactive graphical user interface that allows wireless teleoperation of

the robot using a joystick. A high-level overview of the ballbot’s software architecture for the

3.7 Summary 41

entire work presented in this thesis is shown in Fig.C.1. In addition to the behaviors presented

above [75], the ballbot has been reliably teleoperated at fast walking speeds for hundreds of

meters over surfaces ranging from vinyl tile to carpet to rough concrete to metal gratings. The

ballbot was also successfully teleoperated on ramps with angles up to about 4◦. The ballbot was

able to drive into and out of elevators and over the cracks andmisalignment between elevator

cars and floors with ease. The ballbot was also able to drive upand down a two-story helical

ramp with ease.

3.7 Summary

This chapter introduced the ballbot developed by Ralph Hollis at Carnegie Mellon University,

Pittsburgh, USA. It presented the history of the ballbot, and details of its hardware. It also pre-

sented the dynamic models of the 3D ballbot with and without arms, and the parameter estimation

experiments that were conducted to estimate the principal system parameters. This chapter then

described the control architecture for the ballbot, which used a balancing controller to stabilize

the system, and an outer loop controller for stationkeepingand velocity control. It also described

the controllers developed for yaw control and leg control. In addition to the legs-up and the legs-

down controllers, a controller that adjusts the positions of the legs to enable smooth automatic

transition from the statically stable state to the dynamically stable state was also presented. The

balancing controller enabled the ballbot to be robust to disturbances including pushes, kicks and

even collisions with walls and furniture. It also enabled the ballbot to be physically interactive.

This chapter also presented experimental results demonstrating some interesting human-robot

physical interaction behaviors with the ballbot. The contribution of the work presented in this

thesis is not in the design of the hardware, but in the design of the controllers that enabled the

ballbot to balance and operate reliably.

42 The ballbot

Chapter 4

Planning in Shape Space

Balancing mobile robots like the ballbot are capable of moving with speed and grace comparable

to that of humans because of their dynamic stability. This chapter presents trajectory planning

algorithms that exploit the natural dynamics of balancing mobile robots like the ballbot to achieve

desired fast and dynamic motions (answer toRQ 1). This chapter introduces a special class of

underactuated systems calledshape-accelerated balancing systemsto which balancing mobile

robots like the ballbot belong. It then presents a trajectory planner that plans motions in the

shape space, which when tracked will result in optimal tracking of desired fast and dynamic

motions in the position space.

4.1 Underactuated Mechanical Systems

The forced Euler-Lagrange equations of motion for a mechanical system are given by:

d

dt

∂L

∂q̇
−
∂L

∂q
=

[

τ

0

]

, (4.1)

whereq ∈ R
n is the configuration vector,L (q, q̇) = K(q, q̇) − V (q) is the Lagrangian with

kinetic energyK(q, q̇) and potential energyV (q), and τ ∈ R
m is the vector of generalized

forces.

A mechanical system satisfying Eq.4.1is said to be anunderactuated system[118] if m < n,

i.e., there are fewer independent control inputs than configuration variables. Equation4.1can be

44 Planning in Shape Space

written in matrix form as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) =

[

τ

0

]

, (4.2)

whereM(q) ∈ R
n×n is the mass/inertia matrix,C(q, q̇) ∈ R

n×n is the Coriolis and centrifugal

matrix, andG(q) ∈ R
n is the vector of gravitational forces.

The ballbot without arms, shown in Fig.3.1(b), has four configuration variables given by

q = [θ, φ]T ∈ R
4×1 , whereθ = [θx, θy]

T ∈ R
2×1 are the ball angles, andφ = [φx, φy]

T ∈ R
2×1

are the body angles. The ballbot with a pair of 2-DOF arms, shown in Fig. 3.4(a), has four

additional configuration variables, namely, the left arm anglesαl = [αl
x, α

l
y]

T ∈ R
2×1, and the

right arm anglesαr = [αr
x, α

r
y]

T ∈ R
2×1. The body configurations are unactuated, whereas the

ball and arm configurations are actuated. Therefore, the ballbot without arms has two actuated

and two unactuated configurations,i.e., n = 4 andm = 2, while the ballbot with arms has six

actuated configurations and two unactuated configurations,i.e., n = 8 andm = 6.

4.1.1 Position and Shape Variables

The configuration variablesq ∈ R
n of any dynamic system can be split intoposition variables

qx ∈ R
nx , andshape variablesqs ∈ R

ns , i.e., q = [qx, qs]
T andnx+ns = n. The shape variables

qs are those that appear in the mass/inertia matrixM(q), whereas the position/external variables

qx are those that do not appear in the mass/inertia matrixM(q). This implies thatM(q) is a

function of only the shape variablesqs.

For the ballbot with arms, the ball angles form the position variables,i.e., qx = θ ∈ R
2×1,

whereas the arm and body angles form the shape variables,i.e., qs = [αl, αr, φ]T ∈ R
6×1. It

can be seen that the ballbot with arms has more shape variables than position variables. For the

ballbot without arms, only the body angles form the shape variables,i.e., qs = φ ∈ R
2×1 and

hence, there are equal number of position and shape variables.

Since the mass/inertia matrixM(q) is a function of only the shape variablesqs, it is indepen-

dent of the position variablesqx. This implies that the kinetic energyK(q, q̇) = 1
2
q̇TM(q)q̇ is

also independent of the position variablesqx. In this case, the Lagrangian system is said to have

kinetic symmetry [85]. The system matrices in Eq.4.2can be split into submatrices based on the

4.1 Underactuated Mechanical Systems 45

position and shape variables as follows:

M(qs) =

[

Mxx(qs) Mxs(qs)

Msx(qs) Mss(qs)

]

, (4.3)

C(q, q̇) =

[

Cxx(q, q̇) Cxs(q, q̇)

Csx(q, q̇) Css(q, q̇)

]

, (4.4)

G(q) =

[

Gx(q)

Gs(q)

]

. (4.5)

4.1.2 Shape-Accelerated Balancing Systems

The work presented in this chapter focuses on a special classof underactuated systems called

shape-accelerated balancing systems[72, 73], for which the ballbot is an example. The intro-

duction of shape-accelerated balancing systems and a trajectory planner that exploits the special

properties of such systems to plan motions in the shape spacein order to achieve desired motions

in the position space are contributions of the work presented in this thesis. Shape-accelerated

balancing systems are underactuated mechanical systems that satisfy the following properties:

(a) The number of unactuated variables equals the number of position variablesqx ∈ R
nx , i.e.,

nx = n−m. This implies that the number of dynamic constraint equations equals the num-

ber of position variables.

The work presented in this chapter primarily deals with systems whose position variables

qx ∈ R
nx are actuated, while their shape variablesqs ∈ R

ns contain both actuatedqsa ∈ R
nsa

and unactuated variablesqsu∈ R
nsu , i.e., nsa+nsu= ns, nx+nsa=m andnsu= n−m. For

example, in the case of the ballbot with arms, the ball anglesform the actuated position

variables,i.e., qx = θ ∈ R
2×1, the arm angles form the actuated shape variables,i.e.,

qsa = [αl, αr]T ∈ R
4×1, and the body angles form the unactuated shape variables,i.e.,

qsu = φ ∈ R
2×1. It can be seen that the number of unactuated variables (bodyangles) equals

the number of position variables (ball angles).

However, underactuated mechanical systems with unactuated position variables and actuated

shape variables like the marble-maze robot also form examples of shape-accelerated balanc-

ing systems, and the trajectory planner presented in this chapter can also be applied to such

systems.

46 Planning in Shape Space

(b) The number of shape variables is an integral multiple of the number of position variables,

i.e., ns = k nx, for somek ∈ Z
+, whereZ+ represents the set of positive integers. This

work defines ashape setto be a set ofnx shape variables that can independently affect the

dynamics of all the position variables. Since the number of shape variables in each shape

set equals the number of position variables, a system with actuated and unactuated shape

variables has one unactuated shape set andk − 1 actuated shape sets.

For example, the ballbot with arms has one unactuated shape set formed by its body angles

φ ∈ R
2×1, and two actuated shape sets formed by its left arm anglesαl ∈ R

2×1 and right

arm anglesαr ∈ R
2×1.

(c) The potential energyV (q) is independent of the position variablesqx, which implies that the

vector of gravitational forcesG(q) =
∂V (q)

∂q
∈ R

n×1 is also independent of the position

variablesqx.

Since both kinetic and potential energies are independent of the position variablesqx, the

LagrangianL is also independent of the position variablesqx, i.e., L is symmetric w.r.t.

the position variablesqx.

(d) The vector of Coriolis and centrifugal forces given byC(q, q̇)q̇ is independent of both the

position and velocity of the position variables,i.e., qx andq̇x. Since the mass/inertia matrix

M(q) is independent of the position variablesqx, the Coriolis and centrifugal matrixC(q, q̇),

whose elements are derived from the elements ofM(q), is also independent of the position

variablesqx. The vectorC(q, q̇)q̇ can be independent ofq̇x only if Cxx(q, q̇) = 0 ∈ R
nx×nx ,

Csx(q, q̇) = 0 ∈ R
ns×nx , and the matricesCxs(q, q̇) ∈ R

nx×ns andCss(q, q̇) ∈ R
ns×ns

are both independent oḟqx. These conditions are achieved whenMxx(qs) ∈ R
nx×nx is

constant; andMsx(qs) ∈ R
ns×nx has differentially symmetric rows [85], i.e.,

∂Msx(qs)

∂qis
=

(

∂M i
sx(qs)

∂qs

)T

, whereM i
sx(qs) refers to theith row ofMsx(qs).

SinceM(q),C(q, q̇)q̇ andG(q) are all independent of bothqx andq̇x, the equations of motion

shown in Eq.4.2are independent of bothqx andq̇x. For underactuated systems with actuated

and unactuated shape variables satisfying properties (a)−(d), the matrices in Eq.4.2can be

written as:

M(qs) =







Mxx Mxsa(qs) Mxsu(qs)

Msax(qs) Msasa(qs) Msasu(qs)

Msux(qs) Msusa(qs) Msusu(qs)






, (4.6)

4.1 Underactuated Mechanical Systems 47

C(qs, q̇s) =







0 Cxsa(qs, q̇s) Cxsu(qs, q̇s)

0 Csasa(qs, q̇s) Csasu(qs, q̇s)

0 Csusa(qs, q̇s) Csusu(qs, q̇s)






, (4.7)

G(q) =







0

Gsa(qs)

Gsu(qs)






. (4.8)

(e) The Jacobian linearization of the system is controllable [44] at the origin, where the origin is

the unstable equilibrium. The system in Eq.4.2can be written in state-space form with affine

control asẋ = f(x) + g(x)u, wherex = [q, q̇]T ∈ R
2n is the state vector andu = τ ∈ R

m

is the control vector. The Jacobian linearization at the origin results in a linear model given

by ẋ = Ax + Bu, whereA =
∂f(x)

∂x
at x = 0 andB = g(0). The pair (A,B) must be

controllable [44] at the origin.

(f) The system has unstable zero dynamics [44] at the origin. Systems with actuated and unac-

tuated shape variables whose system matrices are shown in Eq. 4.6−4.8 will have unstable

zero dynamics at the origin if
∂
(

M−1
susu

(qs)Gsu(qs)
)

∂qsu
< 0 ∈ R

nsu×nsu at qs = 0.

According to [29], a system satisfying properties (e) and (f) is called abalance system, and

this work refers to it as abalancing system.

(g) The system has locally strong inertial coupling [118]. Systems with actuated and unactuated

shape variables whose system matrices are shown in Eq.4.6−4.8 will have locally strong

inertial coupling ifrank
([

Msux(qs),Msusa(qs)
])

= n−m = nsu in the neighborhood of the

origin, andrank
(

Msux(qs)
)

= nsu , i.e., Msux(qs)
−1 exists in the neighborhood of the origin.

(h) The Jacobian of the vector of gravitational forces corresponding to the unactuated variables

w.r.t. the shape variablesqs at qs = 0 exists. Moreover, its Jacobian w.r.t. every shape set at

qs = 0 exists and is invertible.

For systems with actuated and unactuated shape variables whose system matrices are shown

in Eq. 4.6−4.8, the Jacobian ofGsu(qs) ∈ R
nsu×1 w.r.t. qs, i.e.,

∂Gsu(qs)

∂qs
∈ R

nsu×ns , at

qs = 0 exists and is invertible only whenns = nsu . Moreover, the Jacobian ofGsu(qs)

w.r.t. every shape set atqs = 0 exists and is invertible. With no loss of generality, let’s

assume that there is just one actuated shape setqsa . Then, both
∂Gsu(qs)

∂qsu
∈ R

nsu×nsu and

48 Planning in Shape Space

∂Gsu(qs)

∂qsa
∈ R

nsu×nsa at qs = 0 exist and are invertible.

(i) For systems with actuated and unactuated shape variables whose system matrices are shown

in Eq.4.6−4.8, the Jacobian ofM−1
sux

(qs)Gsu(qs) ∈ R
nsu×1 w.r.t. qs, i.e,

∂
(

M−1
sux

(qs)Gsu(qs)
)

∂qs
∈

R
nsu×ns , at qs = 0 exists but is invertible only whenqs = qsu. Moreover, the Jacobian

of M−1
sux

(qs)Gsu(qs) w.r.t. every shape set atqs = 0 exists and is invertible. With no

loss of generality, let’s assume that there is just one actuated shape setqsa . Then, both
∂
(

M−1
sux

(qs)Gsu(qs)
)

∂qsu
∈ R

nsu×nsu and
∂
(

M−1
sux

(qs)Gsu(qs)
)

∂qsa
∈ R

nsu×nsa exist and are invert-

ible.

The significance of properties (g)−(i) will be explained in Sec.4.2, where they are used for

designing the shape trajectory planner.

All the above listed properties are verified for the ballbot without arms and the ballbot with

arms in AppendicesB.1 andB.2 respectively. Apart from the ballbot, other examples of shape-

accelerated balancing systems include planar and 3D cart-pole systems with unactuated lean

angles, and planar balancing wheeled robots like the Segway[83] moving in a plane. The marble-

maze robot is also an example of a shape-accelerated balancing system.

4.1.3 Dynamic Constraints

For underactuated systems with actuated and unactuated shape variables whose system matrices

are shown in Eq.4.6−4.8, the lastn−m equations of motion that correspond to their unactuated

degrees of freedom given by

Msux(qs)q̈x+Msusa(qs)q̈sa+Msusu(qs)q̈su+Csusa(qs, q̇s)q̇sa+Csusa(qs, q̇s)q̇su+Gsu(qs)= 0

(4.9)

can be written as:

Φ(qs, q̇s, q̈s, q̈x) = 0. (4.10)

Equations4.9 and4.10are calledsecond-order nonholonomic constraints, or dynamic con-

straintsbecause they are non-integrable [88]. They are not even partially integrable. The dy-

namic constraint equations in Eq.4.10are independent of the position and velocity of the posi-

tion variables,i.e., qx andq̇x, but relate the acceleration of position variablesq̈x to the position,

velocity and acceleration of shape variables,i.e.,
(

qs, q̇s, q̈s
)

. It shows that non-zero shape con-

4.1 Underactuated Mechanical Systems 49

figurations result in the acceleration of position variables, and hence the nameshape-accelerated

balancing systems.

The ballbot with arms shown in Fig.3.4(a) satisfies all properties of shape-accelerated bal-

ancing systems listed in Sec.4.1.2. It has two actuated position configurations given by its ball

anglesθ ∈ R
2×1, four actuated shape configurations given by its left arm anglesαl ∈ R

2×1 and

its right arm anglesαr ∈ R
2×1, and two unactuated shape configurations given by its body angles

φ ∈ R
2×1. The matrices in Eq.4.2for the ballbot with arms are of the form:

M(q) =













Mθθ Mθαl(qs) Mθαr(qs) Mθφ(qs)

Mαlθ(qs) Mαlαl(qs) Mαlαr(qs) Mαlφ(qs)

Mαrθ(qs) Mαrαl(qs) Mαrαr(qs) Mαrφ(qs)

Mφθ(qs) Mφαl(qs) Mφαr(qs) Mφφ(qs)













∈ R
8×8, (4.11)

C(q, q̇) =













0 Cθαl(qs, q̇s) Cθαr(qs, q̇s) Cθφ(qs, q̇s)

0 Cαlαl(qs, q̇s) Cαlαr(qs, q̇s) Cαlφ(qs, q̇s)

0 Cαrαl(qs, q̇s) Cαrαr(qs, q̇s) Cαrφ(qs, q̇s)

0 Cφαl(qs, q̇s) Cφαr(qs, q̇s) Cφφ(qs, q̇s)













∈ R
8×8, (4.12)

G(q) =













0

Gαl(qs)

Gαr(qs)

Gφ(qs)













∈ R
8×1, (4.13)

where, eachMij ∈ R
2×2, eachCij ∈ R

2×2 and eachGi ∈ R
2×1. The matrices in Eq.4.11−4.13

show that the dynamics of the system are independent of both the position and the velocity of

its position variables,i.e., (θ, θ̇). The dynamic constraint equations for the ballbot with arms are

given by

Mφθ(qs)θ̈ +Mφαl(qs)α̈
l +Mφαr(qs)α̈

r +Mφφ(qs)φ̈

+Cφαl(qs, q̇s)α̇
l + Cφαr(qs, q̇s)α̇

r + Cφφ(qs, q̇s)φ̇+Gφ(qs) = 02×1. (4.14)

50 Planning in Shape Space

4.2 Dynamic Constraint-based Shape Trajectory Planner

This section presents a trajectory planner that exploits the special properties of shape-accelerated

balancing systems to plan shape trajectories, which when tracked will result in good approximate

tracking of desired position trajectories. The dynamic constraint equations map shape configu-

rations of the system to its acceleration in the position space, and vice versa. The trajectory

planner presented in this section uses just the dynamic constraint equations to plan shape trajec-

tories, which when tracked result in approximate tracking of desired acceleration trajectories in

the position space. In order to better understand the relationship between shape configurations

and accelerations in the position space, this section first analyzes a simple case where the system

sticks to a constant, non-zero shape configuration,e.g., the ballbot leaning at a constant body

angle.

A constant, non-zero shape configurationqs with q̇s = 0 and q̈s = 0 reduces the dynamic

constraint equationsΦ(qs, q̇s, q̈s, q̈x) in Eq.4.10to Φ′(qs, q̈x) given by

Φ′(qs, q̈x) = Φ(qs, 0, 0, q̈x)

= Msux(qs)q̈x +Gsu(qs). (4.15)

It follows from Eq.4.10that

Φ′(qs, q̈x) = 0. (4.16)

The Jacobian ofΦ′(qs, q̈x) w.r.t. q̈x at (qs, q̈x) = (0, 0) is given by

∂Φ′

∂q̈x

∣

∣

∣

∣

(qs,q̈x)=(0,0)

=Msux(qs)

∣

∣

∣

∣

qs=0

. (4.17)

By the implicit function theorem [70], if the Jacobian in Eq.4.17exists and is invertible then,

there exists a mapΓ′ : qs → q̈x in the neighborhood of the origin such thatΦ′(qs,Γ
′(qs)) = 0.

The property (g) of shape-accelerated balancing systems listed in Sec.4.1.2states thatMsux(qs)

exists and is invertible in the neighborhood of the origin and hence, the mapΓ′ exists as shown

in Eq.4.18.

q̈x = −Msux(qs)
−1Gsu(qs)

= Γ′(qs). (4.18)

4.2 Dynamic Constraint-based Shape Trajectory Planner 51

Given any constant shape configuration,Γ′ will provide the resulting acceleration in the po-

sition space. The Jacobian linearization ofΓ′(qs) in Eq.4.18w.r.t. qs at qs = 0 gives

∂q̈x
∂qs

∣

∣

∣

∣

qs=0

= −
∂
(

Msux(qs)
−1Gsu(qs)

)

∂qs

∣

∣

∣

∣

qs=0

= K0
qs
∈ R

nx×ns , (4.19)

which is a function of only system parameters, and hence it isa constant. Therefore, tracking a

constant shape configuration results in a constant acceleration in the position space given by

q̈x = K0
qs
qs (4.20)

in the neighborhood of the origin.

The Jacobian ofΦ′(qs, q̈x) in Eq.4.15w.r.t. qs at (qs, q̈x) = (0, 0) is given by

∂Φ′

∂qs

∣

∣

∣

∣

(qs,q̈x)=(0,0)

=
∂Gsu(qs)

∂qs

∣

∣

∣

∣

qs=0

. (4.21)

By the implicit function theorem [70], if the Jacobian in Eq.4.21exists and is invertible then, the

mapΓ′ in Eq. 4.18 is invertible,i.e., given any acceleration in the position space, the constant

shape configuration that causes it will be given byΓ′−1. The property (h) of shape-accelerated

balancing systems listed in Sec.4.1.2shows that
∂Gsu(qs)

∂qs
6= 0 ∈ R

nsu×ns at qs = 0 exists but

is invertible only when all shape variables are unactuated,and the shape and position space are

of equal dimensions. This implies that the mapΓ′ in Eq.4.18is invertible only when the shape

and position space are of equal dimensions, and all shape variables are unactuated. Similarly,

the property (i) listed in Sec.4.1.2shows that the linear mapK0
qs

in Eq. 4.19 is also invertible

only when the shape and position space are of equal dimensions, and all the shape variables are

unactuated. For example, in the case of the ballbot without arms, both the mapsΓ′ andK0
qs

exist

and are invertible.

4.2.1 Shape and position space of equal dimensions

Consider shape-accelerated balancing systems with equal number of shape and position vari-

ables,e.g., the ballbot without arms. Here, all shape variables are unactuated,i.e., nsa = 0.

For such systems, the properties (h) and (i) of shape-accelerated balancing systems listed in

52 Planning in Shape Space

Sec.4.1.2show that both the mapΓ′(qs) in Eq.4.18and the linear mapK0
qs

in Eq.4.19exist and

are invertible. This implies that there exists a linear mapK0
qx

given by

K0
qx

= (K0
qs
)−1 ∈ R

ns×nx (4.22)

such that

qs = K0
qx
q̈x, (4.23)

and

Φ′(K0
qx
q̈x, q̈x) = 0 (4.24)

in the neighborhood of the origin.

Equations4.20and4.23show thaẗqx is a constant ifqs is a constant, and vice versa. Therefore

for shape-accelerated balancing systems with equal numberof shape and position variables, a

constant desired accelerationq̈x in the position space is achieved by tracking a constant shape

configurationqs given by Eq.4.23.

4.2.2 High dimensional shape space

Now, let’s consider shape-accelerated balancing systems with more shape variables than position

variables,e.g., the ballbot with arms. For such systems, the properties (h) and (i) of shape-

accelerated balancing systems listed in Sec.4.1.2show that both the mapΓ′(qs) in Eq.4.18and

the linear mapK0
qs

in Eq. 4.19exist but are not invertible. This is obvious because the matrix

K0
qs
∈ R

nx×ns is singular with more columns than rows. This implies that there are infinite

possible shape configurations that can produce the same acceleration in the position space.

However, the matrixK0
qs

can be split into square submatrices corresponding to each shape

set. With no loss of generality, let’s assume there is only one actuated shape set. Therefore,K0
qs

can be written as

K0
qs
= [K0

qsa
K0

qsu
], (4.25)

where,

K0
qsa

= −
∂
(

Msux(qs)
−1Gsu(qs)

)

∂qsa

∣

∣

∣

∣

qs=0

∈ R
nx×nsa , (4.26)

K0
qsu

= −
∂
(

Msux(qs)
−1Gsu(qs)

)

∂qsu

∣

∣

∣

∣

qs=0

∈ R
nx×nsu . (4.27)

4.2 Dynamic Constraint-based Shape Trajectory Planner 53

The property (i) of shape-accelerated balancing systems listed in Sec.4.1.2shows that the ma-

trices shown in Eq.4.26 and Eq.4.27 exist and are invertible. They represent the individual

contributions of each shape set to the acceleration of the system in the position space. Therefore,

these inverses provide the shape configurations, which whentracked will result in the desired

acceleration in the position space. However, the individual inverses assume that the other shape

sets have zero shape configurations.

Therefore, given a constant desired acceleration in the position spacëqx, the constant shape

configurationsqs that must be tracked to achieveq̈x can be chosen as:

qs = WK0
qx
q̈x, (4.28)

where,

W =

[

Wqsa
0

0 Wqsu

]

∈ R
ns×ns , (4.29)

K0
qx

=

[

(K0
qsa

)−1

(K0
qsu

)−1

]

∈ R
ns×nx . (4.30)

The weight matrixW is chosen such thatWqsa
+Wqsu

= Inx
, annx × nx identity matrix. The

weight matrixW allows one to relatively weigh each shape set’s contribution in achieving the

desired acceleration in position space.

A conventional pseudo-inverse ofK0
qs

will return only a single set of shape configurationsqs,

whereas the decoupled inverse using the weight matrixW offers more flexibility, and allows one

to explore the space of infinite possible shape configurations. For example, a pure body motion

or a pure arm motion or any combination of the two can be chosenfor the ballbot with arms in

order to achieve the same desired motion in the position space. This is particularly useful when

certain physically meaningful behaviors with specific shape sets are desired like navigating a

narrow corridor without arm motions.

4.2.3 Optimal Shape Trajectory Planner

Sections4.2.1and4.2.2show that the constant shape configurations needed to achieve the con-

stant desired accelerations in the position space can be obtained from the linear maps in Eq.4.23

and Eq.4.28, while this section presents a shape trajectory planner that ensures optimal track-

54 Planning in Shape Space

ing of any arbitrary desired acceleration trajectory in theposition space. In order to achieve a

non-constant desired acceleration trajectoryq̈x(t), q̇s(t) andq̈s(t) will have to be non-zero.

The Jacobian ofΦ(qs, q̇s, q̈s, q̈x) (Eq.4.10) w.r.t. q̈x at the origin is given by

∂Φ

∂q̈x

∣

∣

∣

∣

(qs,q̇s,q̈s,q̈x)=(0,0,0,0)

=Msux(qs)

∣

∣

∣

∣

qs=0

. (4.31)

The property (g) of shape-accelerated balancing systems listed in Sec.4.1.2shows that the Ja-

cobian in Eq.4.31exists and is invertible. Hence, by the implicit function theorem [70], there

exists a mapΓ : (qs, q̇s, q̈s)→ q̈x given by

Γ(qs, q̇s, q̈s) = −Msux(qs)
−1

(

Msusa(qs)q̈sa +Msusu(qs)q̈su +

+Csusa(qs, q̇s)q̇sa + Csusa(qs, q̇s)q̇su +Gsu(qs)

)

(4.32)

such thatΦ(qs, q̇s, q̈s,Γ(qs, q̇s, q̈s)) = 0 in the neighborhood of the origin. However, the map

Γ is not invertible even for the simple case where the shape andposition space are of equal

dimensions. This implies that there exists no analytical function that maps any arbitrarÿqx(t)

to (qs(t), q̇s(t), q̈s(t)) such that the dynamic constraints in Eq.4.10are satisfied. However, any

desired acceleration trajectory can be approximately tracked.

Given a desired acceleration trajectory in the position space q̈dx(t), the proposed shape trajec-

tory planner finds a linear mapKqx : q̈x → qs, similar to Eq.4.23and4.28, such that the planned

shape trajectoryqps(t) given by

qps(t) = WKqx q̈
d
x(t), (4.33)

when tracked, will result in an acceleration trajectoryq̈px(t) such thatq̈px(t) ≈ q̈dx(t). For the

systems with shape and position space of equal dimensions, the weight matrixW is chosen to

be an identity matrix, whereas for systems with high dimensional shape space, the weight matrix

W is of the form shown in Eq.4.29. The shape trajectory planning procedure is formulated as an

optimization problem, where the elements ofKqx in Eq.4.33are determined with the objective

of minimizing

J =
∥

∥

∥
q̈px(t)− q̈

d
x(t)

∥

∥

∥

2

2
, (4.34)

where,q̈px(t) is obtained by substitutingqps(t) in Eq. 4.33and its first two derivatives intoΓ in

4.2 Dynamic Constraint-based Shape Trajectory Planner 55

Eq.4.32as follows:

q̈px(t)=Γ
(

WKqxq̈
d
x(t),WKqx

...
q d
x(t),WKqx

....
q d

x(t)
)

. (4.35)

This optimization can be solved using nonlinear least-squares solvers like Nelder-Mead sim-

plex [82] and Levenberg-Marquardt [63] algorithms. For a constant desired acceleration,Kqx =

K0
qx

given in Eq.4.22and Eq.4.30will ensure optimality, whereas for any generalq̈dx(t),Kqx =

K0
qx

may not necessarily ensure optimality, but will act as a goodinitial guess for the optimiza-

tion process. The optimality here refers to the minimum deviation of q̈px(t) from the desired

acceleration trajectorÿqdx(t).

The shape trajectory planning procedure presented above deals only with the tracking of a

desired acceleration trajectorÿqdx(t) and not of a desired position trajectoryqdx(t). Though the

acceleration trajectorÿqpx(t) is analytically non-integrable, it can be numerically integrated to ob-

tain the resulting position trajectoryqpx(t) using the initial conditions of the desired acceleration

trajectoryqdx(t). Therefore, with matching initial conditions,qpx(t) approximately tracksqdx(t)

if q̈px(t) ≈ q̈dx(t). The planned shape trajectoryqps(t) and the position trajectoryqpx(t) form the

feasible configuration trajectories that best approximatethe desired motion in the position space.

4.2.4 Planning with Additional Shape Constraints

A system with a high dimensional shape space may need to use a subset of its shape configura-

tions to achieve tasks other than navigation. For example, the ballbot with arms can use its arms

for manipulation, which will constrain the arm angles to some specific trajectories. This section

presents a variant of the shape trajectory planner that can handle these additional shape constraint

trajectories, and still achieve desired motions in the position space using other available shape

configurations. The shape planner assumes that there is at least one shape set available without

additional constraints so as to achieve desired motions in the position space.

With no loss of generality, let’s assume that there is just one actuated shape set, and it is

constrained to some reference trajectory, while the unactuated shape set has no additional con-

straints. The objective here is to plan trajectories for theunactuated shape configurations such

that they achieve the desired motion in the position space, while counteracting the effect of the

additional constraints on the other shape set.

Additional constraint (ac) trajectories for the actuated shape variablesqacsa(t) when tracked

56 Planning in Shape Space

will result in acceleration trajectories̈qacx (t) in the position space given by

q̈acx (t) = Γ
(

qacs (t), q̇acs (t), q̈acs (t)
)

, (4.36)

whereqacs (t) =
[

qacsa(t), 0
]T

, i.e., zero angle trajectories for the unactuated shape configurations

qsu, andΓ is obtained from Eq.4.32. In order to achieve the desired acceleration trajectory

q̈dx(t) in the position space, the unactuated shape configurations have to achieve motions that

compensate for̈qacx (t), and achievëqdx(t). Therefore, in this case, the planned shape trajectory

qps(t) is chosen to be

qps(t) = WKqx q̈
net
x (t), (4.37)

where q̈netx (t) = q̈dx(t) − q̈acx (t) is the net desired acceleration trajectory that the planneruses

for planning unactuated shape trajectories. The linear mapKqx in Eq. 4.37 is obtained using

the optimization procedure described in Sec.4.2.3with the weight matrixW chosen such that

trajectories are planned only for shape variables with no additional constraints. A block diagram

of the shape trajectory planner is shown in the shaded regionof Fig. 4.1.

Shape-Accelerated
Underactuated

Balancing Systems

qx(t)

qs(t)
Shape Tracking

Controller

t(t)qs

d
(t)

+
–

qx

d
(t)

+ Position Tracking
Controller

+

qs

p
(t)

qs

c
(t) +

–

W Kqx

d
2

dt
2

+

qs

ac
(t)G

–

+

qx

d
(t)¨

qx

ac
(t)¨

qx

net
(t)¨

Shape Trajectory Planner

G

qx

p
(t)¨ Numerical

Integration

qx

p
(t)

Figure 4.1: Control architecture with the shape trajectory planner (Appeared in [73]).

4.2.5 Control Architecture

The shape trajectory planner presented above assumes that there exists controllers that can accu-

rately track the planned shape trajectories. Approximate tracking of desired position trajectories

4.2 Dynamic Constraint-based Shape Trajectory Planner 57

qdx(t) by tracking planned shape trajectoriesqps(t) is open-loop as there is no feedback on the po-

sition configurations. This open-loop procedure cannot ensure approximate tracking of desired

position trajectories when the system starts at wrong initial conditions. Moreover, on real robots,

there are more issues such as modeling uncertainties, unmodeled dynamics, nonlinear friction

effects and noise that will inhibit a good position trajectory tracking performance. A feedback

position tracking controller is used to overcome all these issues.

The feedback position tracking controller tracks planned acceleration trajectoriesqpx(t), which

are optimal, feasible approximations to desired position trajectoriesqdx(t). The controller outputs

compensation shape trajectoriesqcs(t), which are added to planned shape trajectoriesqps(t) to

produce desired shape trajectoriesqds (t) that are tracked by shape trajectory tracking controllers

as shown in Fig.4.1. For the ballbot with arms, the shape trajectory tracking controllers include

the balancing controller and the trajectory tracking controllers for the arms, while for the ballbot

without arms, the shape trajectory tracking controller includes only the balancing controller. The

weight matrixW selects and relatively weighs the shape variables used for achieving desired

motions in the position space.

4.2.6 Characteristics of Desired Position Trajectories

The shape trajectory planner presented in this chapter requires that the desired position trajecto-

riesqdx(t) must be at least of differentiability classC2, so that the desired acceleration trajectories

q̈dx(t) exist and are continuous. However, it is preferred to haveqdx(t) be of differentiability class

C4 so that the planned shape trajectoriesqps(t) and their first two derivatives (q̇ps(t), q̈
p
s(t)) that

depend on them exist and are continuous.

Moreover, the desired position trajectories must satisfy acceleration bounds that depend on

the shape configurations used to achieve these motions. The planner plans shape trajectories

that are linearly proportional to desired acceleration trajectories in position space, and will fail

to achieve good approximate tracking if it is outside this linear neighborhood around the origin.

The nonlinear mapΓ′(qs) in Eq. 4.18of the ballbot with arms as a function of the body angle

and the arm angle are shown in Fig.4.2. The acceleration bounds on the desired ball position

trajectories are chosen to be 2 m/s2 for using the body angles, and 0.082 m/s2 for using the arm

angles as shown by the highlighted regions in Fig.4.2. These acceleration bounds correspond to

a maximum body angle of 10◦ and a maximum arm angle of 55◦. The linear approximation of

the nonlinear mapΓ′(qs) works well within these bounded regions. These bounds were used for

all the experimental results presented in Sec.4.3.

58 Planning in Shape Space

Bounded
Region

B
al

l
A

cc
el

er
at

io
n

(m
/s
2
)

Body Angle (◦)
0 5 10 15 20

0

1

2

3

4

5

(a)

Bounded
Region

B
al

l
A

cc
el

er
at

io
n

(m
/s
2
)

Arm Angle (◦)
0 30 60 90

0

0.05

0.1

0.15

(b)

Figure 4.2: Nonlinear function of ball accelerationvs. shape configuration for the ballbot with
arms: (a) Body Angle; (b) Arm Angle. (Appeared in [73])

4.2.7 Choosing Weight Matrices

The shape trajectory planner assumes that a valid weight matrix W is chosen, and the conditions

that determine its validity are as follows: (i) each elementwij of the weight matrixW must be

non-negative,i.e., wij ≥ 0; (ii) the weight matrixW must be of the form shown in Eq.4.29;

and (iii) its constituent submatrices for all shape sets must sum to an identity matrix,e.g., for the

ballbot with arms,Wαl +Wαr +Wφ = I2.

The weight matrix can also be used to account for self-collision constraints, and its elements

can be chosen such that the arm motions do not collide with thebody. Let’s consider the case of

the ballbot achieving a lateral ball motion using just its arms, where a single arm cannot produce

the whole motion as it will result in collision with the body.In such a case, one arm must

be used for the “acceleration-phase”, while the other arm must be used for the “deceleration-

phase”. This can be achieved by using a different weight matrix for each phase, and such a case

is experimentally demonstrated in Sec.4.3.

4.2.8 Performance Comparison against Direct Collocation Methods

Direct collocation methods [35, 130, 131] have emerged as popular numerical techniques to gen-

erate feasible trajectories for nonlinear systems. The state and control trajectories are discretized

into finite collocation points, and the trajectory generation is solved as an optimization problem

subject to nonlinear constraints given by the equations of motion of the system.

4.3 Experimental Results with The Ballbot 59

Table 4.1: Performance Comparison

System Computation Time (s) Speed Factor
(No. of states) PROPT Shape Planner

Planar cart-pole (4) 10.546 0.230 46×
Planar ballbot (4) 8.054 0.142 58×
3D ballbot without arms (8) 11.895 0.466 25×
3D ballbot with arms (16) 584.853 8.398 70×

Table4.1 compares the performance of PROPT [104], a fast optimal control platform for

MATLAB that uses direct collocation methods against that ofthe shape trajectory planner pre-

sented in this chapter on four different shape-acceleratedbalancing systems listed. The trajectory

optimization was performed using the SNOPT solver [30] on PROPT. The shape trajectory plan-

ner presented in this chapter was implemented using thelsqnonlinfunction in MATLAB, which

uses the Levenberg-Marquardt Algorithm (LMA) [63] for optimization. The objective was to

minimize the sum of squared errors (SSE) in tracking a desired straight line position space mo-

tion of 2 m in 10 s with a functional tolerance of<10−3 m2. The PROPT implementation used

100 collocation points (sampling at 10 Hz), which were necessary for generating reasonably

smooth trajectories.

The shape trajectory planner presented in this chapter is able to generate feasible trajectories

at 25−70 times faster speeds than PROPT on a standard Core2-Duo processor. The computation

times listed are average values over 10 runs. This speed is not surprising as the optimization is

performed on a much smaller parameter space compared to thatof the direct collocation method.

Moreover, the shape planner uses only the dynamic constraint equations, whereas PROPT uses

all the equations of motion as constraints. It is to be noted that the computation times presented

in Table4.1are for a MATLAB implementation of the shape trajectory planner. A well optimized

C/C++ implementation can provide the results an order of magnitude faster, which allows real-

time planning on the robot.

4.3 Experimental Results with The Ballbot

The shape trajectory planner and the control architecture presented in Sec.4.2were experimen-

tally validated on the ballbot with arms shown in Fig.3.4(a). The arms had 1 kg weights at

their ends for the experiments presented in this section. The balancing controller was used to

60 Planning in Shape Space

track the desired body angle trajectories. The trajectory tracking controller for the arms used the

computed torque method [71] for feedforward terms and a PID position controller for feedback

control [81]. Different weight matrices were picked to select and relatively weigh the body and

arm motions.

4.3.1 Pure Body Motion

Figure4.3 shows the ballbot without arms successfully tracking a fast, straight line motion of

1.414 m in 4 s, while reaching a peak velocity of 1.18 m/s and a peak acceleration of 1 m/s2. The

planned and compensation body angle trajectories are shownin Fig.4.4. The compensation body

angle trajectory is provided by the feedback position tracking controller, and is summed with the

planned body angle trajectory to produce the desired body angle trajectory that is tracked by the

balancing controller. The resulting body angle trajectoryand the error in tracking the desired

body angle trajectory are shown in Fig.4.5. The video of the ballbot achieiving this motion can

be found in VideoD.3.

Time (s)

T
ra

ck
in

g
E

rr
or

(m
)

B
al

l
P

os
iti

on
(m

)

0 1 2 3 4 50 1 2 3 4 5

−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

Figure 4.3: Pure Body Motion - Tracking the desired straight line motion (Appeared in [73]).

Time (s)

C
om

pe
ns

at
io

n
B

od
y

A
ng

le
(◦)

P
la

nn
ed

B
od

y
A

ng
le

(◦
)

0 1 2 3 4 50 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

−6

−3

0

3

6

Figure 4.4: Pure Body Motion - Planned and compensation body angle trajectories for achieving
the desired straight line ball motion (Appeared in [73]).

4.3 Experimental Results with The Ballbot 61

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

B
od

y
A

ng
le

(◦
)

0 1 2 3 4 50 1 2 3 4 5
−1

−0.5

0

0.5

1

−6

−3

0

3

6

Figure 4.5: Pure Body Motion - Tracking the desired body angletrajectory for achieving the
desired straight line ball motion (Appeared in [73]).

Figure4.6shows the ballbot with arms successfully tracking a desiredstraight line ball mo-

tion of 2 m using just the body angle motions. Here, the weightmatrixW was chosen such that

the shape trajectories were planned only in the space of bodyangles.

Time (s)

T
ra

ck
in

g
E

rr
or

(m
)

B
al

l
P

os
iti

on
(m

)

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

2

Figure 4.6: Pure Body Motion - Tracking the desired straight line motion (Appeared in [73, 81]).

The planned and compensation body angle trajectories are shown in Fig.4.7. The compensa-

tion body angle trajectory is obtained from the feedback position trajectory tracking controller,

and the small compensation angles show the effectiveness ofthe planned shape trajectory. The

planned and compensation body angle trajectories are summed to produce the desired body angle

trajectory, which is tracked by the balancing controller. Figure4.8shows the ballbot’s resulting

body angle trajectory, and the error in tracking the desiredbody angle trajectory by the balancing

controller.

62 Planning in Shape Space

Time (s)

C
om

pe
ns

at
io

n
B

od
y

A
ng

le
(◦)

P
la

nn
ed

B
od

y
A

ng
le

(◦
)

0 5 10 150 5 10 15

−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1

Figure 4.7: Pure Body Motion - Planned and compensation body angle trajectories for achieving
the desired straight line ball motion (Appeared in [73, 81]).

PSfrag

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

B
od

y
A

ng
le

(◦
)

0 5 10 150 5 10 15

−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1

Figure 4.8: Pure Body Motion - Tracking the desired body angletrajectory for achieving the
desired straight line ball motion (Appeared in [73, 81]).

The ballbot with arms tracking a curvilinear ball motion is shown in Fig.4.9. The resulting

body angle trajectories and the tracking errors are shown inFig. 4.10and Fig.4.11. The com-

pensation body angles remained within±0.15◦ for this case. The arms were maintained at zero

angles for both the experiments. The videos of the ballbot with arms achieving the straight line

and curvilinear motions can be found in VideoD.4.

Experimental
Desired

Y
(m

)

X (m)
−1.5 −1 −0.5 0 0.5

−0.5

0

0.5

1

1.5

Figure 4.9: Pure Body Motion - Tracking the desired curvilinear motion (Appeared in [73, 81]).

4.3 Experimental Results with The Ballbot 63

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

B
od

y
A

ng
le

(◦
)

0 10 200 10 20
−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1

Figure 4.10: Pure Body Motion - Tracking the desired X body angle trajectory for achieving the
desired curvilinear ball motion (Appeared in [73, 81]).

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

B
od

y
A

ng
le

(◦
)

0 10 200 10 20
−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1

Figure 4.11: Pure Body Motion - Tracking the desired Y body angle trajectory for achieving the
desired curvilinear ball motion (Appeared in [73, 81]).

4.3.2 Pure Arm Motion

This section presents experimental results of the ballbot with arms achieving desired ball motions

using just the arm motions. The arms of the ballbot are lightweight hollow alumnium tubes with

1 kg massess at the ends. Figure4.12shows the robot tracking a desired straight line motion

of 2 m in the forward direction using just the arm motions. Theplanned and compensation arm

angle trajectories for the left arm are shown in Fig.4.13. The desired arm trajectory tracking

performance is shown in Fig.4.14. Similar results were obtained for the right arm.

Compared to the results in Fig.4.6, Fig. 4.12shows that there is larger ball position tracking

error while using just the arms. This is due to the relativelypoor trajectory tracking performance

of the arm controller as shown in Fig.4.14, which in turn is due to some excessive backlash

in the arm gears. A better arm design will significantly improve these results. The composite

frames from a video of the ballbot achieving this motion is shown in Fig.4.15, and the video can

64 Planning in Shape Space

be found in VideoD.4. The balancing controller maintained the body angles at zero for these

experiments.

Time (s)

T
ra

ck
in

g
E

rr
or

(m
)

B
al

l
P

os
iti

on
(m

)

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

2

Figure 4.12: Pure Arm Motion - Tracking the desired forward straight line ball motion (Appeared
in [73, 81]).

PSfrag

Time (s)
C

om
pe

ns
at

io
n

A
rm

A
ng

le
(◦

)

P
la

nn
ed

A
rm

A
ng

le
(◦

)

0 5 10 150 5 10 15
−15
−10
−5
0
5
10
15

−60
−40
−20

0
20
40
60

Figure 4.13: Pure Arm Motion - Planned and compensation leftarm angle trajectories for achiev-
ing the desired forward ball motion (Appeared in [73, 81]).

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

A
rm

A
ng

le
(◦

)

0 5 10 150 5 10 15
−15
−10
−5
0
5
10
15

−60
−40
−20

0
20
40
60

Figure 4.14: Pure Arm Motion - Tracking the desired left arm angle trajectory for achieving the
desired forward ball motion (Appeared in [73, 81]).

4.3 Experimental Results with The Ballbot 65

()a ()b ()c ()d

Figure 4.15: Composite frames from a video of the forward ballmotion using the arms: (a)
the robot starts at rest; (b) the arms move forward to accelerate; (c) the arms move backward to
decelerate; and (d) the robot comes to rest. (Appeared in [73])

Figure 4.16 shows the robot tracking a desired straight line motion of 1 min the lateral

direction. Here, the arms are moved sideways, and the right arm is used to initiate the motion as

shown in Fig.4.17, whereas the left arm is used to bring the system to rest as shown in Fig.4.18.

The complete motion is not performed on a single arm in order to avoid self-collision. The

weight matrixW can be chosen such that the arm motions do not collide with thebody. Two

different weight matrices are used for this motion, one for the “acceleration-phase” that picks the

right arm, and the other for the “deceleration-phase” that picks the left arm. Figure4.19shows

composite frames of the ballbot achieving the lateral motion using just the arms, and the video

can be found in VideoD.4.

For both forward and lateral motions, the compensation arm angles remained within±5◦ and

the balancing controller maintained the body angles within±0.05◦.

Time (s)

T
ra

ck
in

g
E

rr
or

(m
)

B
al

l(
m

)
P

os
iti

io
n

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

Figure 4.16: Pure Arm Motion - Tracking desired lateral ballmotion (Appeared in [73, 81]).

66 Planning in Shape Space

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

A
rm

(◦
)

A
ng

le

0 5 10 150 5 10 15
−20

−10

0

10

20

−60

−30

0

30

60

Figure 4.17: Pure Arm Motion - Tracking desired right arm angle trajectory for lateral ball
motion (Appeared in [73, 81]).

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

A
rm

(◦
)

A
ng

le

0 5 10 150 5 10 15
−20

−10

0

10

20

−60

−30

0

30

60

Figure 4.18: Pure Arm Motion - Tracking desired left arm angle trajectory for lateral ball motion
(Appeared in [73, 81]).

()a ()b

Figure 4.19: Composite frames from a video of the lateral ballmotion using the arms: (a) the
right arms move to accelerate; and (b) the left arms move to decelerate. (Appeared in [73])

4.3 Experimental Results with The Ballbot 67

4.3.3 Arm and Body Motion

This section presents experimental results for the case where the body and arm motions equally

share (50-50) the effort of tracking a desired line ball motion of 2 m as shown in Fig.4.20. The

planned and compensation trajectories for the body angle and the right arm angle are shown in

Fig. 4.21and Fig.4.23respectively. The trajectory tracking performance for thebody and the

right arm angles are shown in Fig.4.22and Fig.4.24respectively. Similar results were obtained

for the left arm. In this case, the compensation body angles remained within±0.06◦ and the

compensation arm angles remained within±5◦. A video of the ballbot achieiving this motion

can be found in VideoD.4.

Time (s)
T

ra
ck

in
g

E
rr

or
(m

)

B
al

l
P

os
iti

on
(m

)

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

2

Figure 4.20: Arm and Body Motion - Tracking the desired straight line ball motion (Appeared
in [73, 81]).

Time (s)

C
om

pe
ns

at
io

n
B

od
y

A
ng

le
(◦)

P
la

nn
ed

B
od

y
A

ng
le

(◦
)

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

−0.6

−0.3

0

0.3

0.6

Figure 4.21: Arm and Body Motion - Planned and compensation body angle trajectories for
achieving the desired straight line ball motion (Appeared in [73, 81]).

68 Planning in Shape Space

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

B
od

y
A

ng
le

(◦
)

0 5 10 150 5 10 15
−0.2

−0.1

0

0.1

0.2

−0.6

−0.3

0

0.3

0.6

Figure 4.22: Arm and Body Motion - Tracking the desired body angle trajectory for achieving
the desired straight line ball motion (Appeared in [73, 81]).

Time (s)
C

om
pe

ns
at

io
n

A
rm

A
ng

le
(◦

)

P
la

nn
ed

A
rm

A
ng

le
(◦

)

0 5 10 150 5 10 15
−10

−5

0

5

10

−30

−15

0

15

30

Figure 4.23: Arm and Body Motion - Planned and compensation right arm angle trajectories for
achieving the desired straight line ball motion (Appeared in [73, 81]).

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

A
rm

A
ng

le
(◦

)

0 5 10 150 5 10 15

−10

−5

0

5

10

−30

−15

0

15

30

Figure 4.24: Arm and Body Motion - Tracking the desired right arm angle trajectory for achiev-
ing the desired straight line ball motion (Appeared in [73, 81]).

4.3 Experimental Results with The Ballbot 69

4.3.4 Constrained Arm Motion

The ballbot with arms was subjected to additional asymmetric constraint trajectories for the arm

angles shown in Figs.4.25−4.26. Symmetric arm motions do not result in any motion of the

ball, whereas asymmetric arm motions result in the motion ofthe ball. Selected frames from

a video of the ballbot tracking these constraint trajectories, which consist of four different goal

configurations are shown in Fig.4.27, and the video can be found in VideoD.5. These arm

motions were chosen to be asymmetric so that the tracking of these arm trajectories will result

in the motion of the ball, if not compensated for. These arm motions were meant to emulate the

robot waving its arms randomly. Since the arm angles are constrained to these trajectories, they

are unavailable for shape trajectory planning and the shapetrajectories were planned only in the

space of body angles (Figs.4.28−4.29) to keep the ball stationary within±0.04 m of its initial

position as shown in Fig.4.30.

Time (s)
T

ra
ck

in
g

E
rr

or
(◦

)

A
rm

A
ng

le
(◦

)

0 10 20 300 10 20 30
−20

−10

0

10

20

−90

−60

−30

0

30

Figure 4.25: Constrained Arm Motion - Tracking the X arm angleadditional constraint trajectory
for the left arm (Appeared in [73]).

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

A
rm

A
ng

le
(◦

)

0 10 20 300 10 20 30
−20

−10

0

10

20

−100

−50

0

50

100

150

Figure 4.26: Constrained Arm Motion - Tracking the Y arm angleadditional constraint trajectory
for the right arm (Appeared in [73]).

70 Planning in Shape Space

()a ()b ()c ()d

Figure 4.27: Selected frames from a video of the constrainedasymmetric arm motion with four
goal configurations (a)−(d) (Appeared in [73]).

Time (s)
T

ra
ck

in
g

E
rr

or
(◦

)

B
od

y
A

ng
le

(◦
)

0 10 20 300 10 20 30
−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

Figure 4.28: Constrained Arm Motion - Tracking the desired X body angle trajectory to achieve
no ball motion (Appeared in [73]).

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

B
od

y
A

ng
le

(◦
)

0 10 20 300 10 20 30
−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

Figure 4.29: Constrained Arm Motion - Tracking the desired Y body angle trajectory to achieve
no ball motion (Appeared in [73]).

4.3 Experimental Results with The Ballbot 71

Y
(m

)
X (m)

−0.04 0 0.04
−0.04

0

0.04

Figure 4.30: Constrained Arm Motion - Ball motion while attempting to keep it stationary (Ap-
peared in [73]).

Figure4.31shows the ballbot with arms tracking a desired straight linemotion of 2 m while

subjected to the additional constraint of holding both its arms horizontally forward (90◦) as

shown in Fig.4.32. The constraint arm trajectory consists of three motions, namely, moving

the arm from 0◦ to 90◦ in the forward direction, holding it at 90◦ while completing the ball mo-

tion of 2 m and finally, moving the arm back from 90◦ to 0◦. This experiment emulates the robot

navigating while carrying an object.

The planned and compensation body angle trajectories are shown in Fig.4.33and the desired

body angle tracking performance is shown in Fig.4.34. As shown in Fig.4.33and4.34, the body

has to lean back to compensate for the forward held arms, and has to lean forward and backward

about this angle to achieve the desired 2 m ball motion. Composite frames from a video of the

ballbot performing this motion is shown in Fig.4.35, and the video can be found in VideoD.5.

Time (s)

T
ra

ck
in

g
E

rr
or

(m
)

B
al

l
P

os
iti

on
(m

)

0 10 20 300 10 20 30

−0.2

−0.1

0

0.1

0.2

0

0.5

1

1.5

2

Figure 4.31: Constrained Arm Motion - Tracking the desired straight line ball motion (Appeared
in [73]).

72 Planning in Shape Space

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

A
rm

A
ng

le
(◦

)

0 10 20 300 10 20 30

−10

−5

0

5

10

0

30

60

90

Figure 4.32: Constrained Arm Motion - Tracking the Y arm angleadditional constraint trajectory
for the left arm (Appeared in [73]).

Time (s)
C

om
pe

ns
at

io
n

B
od

y
A

ng
le

(◦)

P
la

nn
ed

B
od

y
A

ng
le

(◦
)

0 10 20 300 10 20 30

−0.4

−0.2

0

0.2

0.4

−3

−2

−1

0

1

Figure 4.33: Constrained Arm Motion - Planned and compensation body angle trajectories for
achieving the desired straight line ball motion (Appeared in [73]).

Time (s)

T
ra

ck
in

g
E

rr
or

(◦
)

B
od

y
A

ng
le

(◦
)

0 10 20 300 10 20 30

−0.2

−0.1

0

0.1

0.2

−3

−2

−1

0

1

Figure 4.34: Constrained Arm Motion - Tracking the desired body angle trajectory for achieving
the desired straight line ball motion (Appeared in [73]).

4.4 Summary 73

()a ()b ()c

Figure 4.35: Composite frames from a video of the forward ballmotion while the arms are con-
strained to be horizontal: (a) the body leans back to compensate for the arm constraint andthen
leans forward to accelerate; (b) the body leans further back to decelerate; and (c) the robot comes
to rest while the body continues to lean back to compensate for the arm constraint (Appeared in
[73]).

4.4 Summary

This chapter introduced shape-accelerated balancing systems as a special class of underactuated

systems to which balancing mobile robots like the ballbot belong. This chapter presented a shape

trajectory planning procedure for such systems that uses just the dynamic constraint equations

to plan shape trajectories, which when tracked will result in optimal tracking of desired position

trajectories. User-defined weight matrices were used to select and relatively weigh the contribu-

tion of different shape sets in achieving desired position space motions. The planner was also

able to handle additional constraints on a subset of the shape configurations, and still plan shape

space motions that will achieve desired position space motions. A feedback position trajectory

tracking controller was used in parallel with the shape trajectory planner to achieve better track-

ing of desired position space motions. Successful experimental results on the ballbot with arms

were presented. The ballbot successfully tracked the desired ball motions by tracking pure body

motions, pure arm motions, their combinations, and also handled additional constraints on the

arms.

The optimal shape trajectory planner presented in this chapter was shown to generate fea-

sible state trajectories for shape-accelerated balancingsystems at significantly faster speeds (25

to 70 times) than the trajectory optimization algorithms that use direct collocation methods (see

74 Planning in Shape Space

Table4.1). The shape trajectory planning procedure exploits the special properties of shape-

accelerated balancing systems and plans shape trajectories that are proportional to desired accel-

erations in the position space. Since this approach uses only the dynamic constraint equations

and has a low-dimensional parameter space, it is significantly faster than the direct collocation

methods allowing real-time generation of feasible state trajectories on-board the robot.

Chapter 5

Graceful Navigation

This chapter presents an integrated motion planning and control framework that enables bal-

ancing mobile robots like the ballbot to move gracefully andachieve desired navigation tasks

(answer toRQ 2). Navigation tasks are generally posed as desired motions or states in the posi-

tion space, without any specifications on shape space motions. As presented earlier in Sec.1.4,

this work defines a graceful robot motion to be any feasible robot motion in which its configura-

tion variables’ position, velocity and acceleration trajectories are continuous and bounded with

low jerk.

5.1 Background

5.1.1 Decoupled Planning and Control

Traditionally, motion planning and control have been decoupled. A high-level motion planner

plans a collision-free path and a low-level controller tracks it. The motion planner does not un-

derstand the capabilities and limitations of the controller, while the controller has no knowledge

of the environment and the obstacles in it. This approach works well in achieving navigation

tasks for kinematic mobile robots whose dynamics can be safely ignored. For balancing mo-

bile robots like the ballbot, the shape dynamics dominate the system dynamics and cannot be

ignored. The shape trajectory planning procedure [72, 73, 81] presented in Chapter4 can be

used to generate feasible state (both position and shape) trajectories that optimally achieve de-

sired motions in the position space given by a motion planner. A decoupled approach of using

a motion planner, the shape trajectory planner and the control architecture in Sec.4.2 is capa-

76 Graceful Navigation

ble of achieving desired navigation tasks while taking intoaccount the dynamics of the system.

Moreover, desired position space motions can be chosen suchthat both the resulting position and

shape space motions are graceful,i.e., the configuration, velocity and acceleration trajectories

are continuous and bounded with low jerk. But, when subjectedto large disturbances, they can

result in collisions with obstacles in the environment or even drive the system unstable. This is

primarily because the desired motions are achieved by tracking trajectories, and the controllers

that track these trajectories have no knowledge of the obstacles in the environment.

5.1.2 Sequential Composition - A Hybrid Control Approach

Ideally, one must design control vector fields for the entirebounded state space that covers a

map of the environment such that the desired navigation tasks are achieved and the obstacles

are avoided. This approach will handle large disturbances as all collision-free states (including

states that will result from a large disturbance) that can reach the goal will reach the goal. But

designing these vector fields for high-dimensional systemsthat cover the entire bounded state

space is a challenging task. Moreover, these design procedures are computationally expensive,

and cannot be run real-time on robots.

Alternatively, one can approximately cover the bounded state space using a library of control

policies generated from a small collection of pre-defined control policies using the symmetries

in the system dynamics. Conneret al. [11] used such an approach to integrate motion planning

and control to achieve navigation tasks for kinematic wheeled robots. This approach is based

on sequential compositiondeveloped by Burridgeet al. [10]. Given a set of control policies

U = {Φ1, · · ·Φn}, each with a domainD(Φi) and a goal setG(Φi). A control policyΦ1 is said

to prepareΦ2, denoted byΦ1 � Φ2, if the goal of the control policyΦ1 lies inside the domain of

the control policyΦ2, i.e., G(Φ1) ⊂ D(Φ2). Theprepares relationshipbetween control policies

can be represented using cascading funnels, where one control policy leads to the other as shown

in Fig. 5.1.

If the position space covered by the union of the domains of the control policies inU covers a

map of the environment of interest, and if the union of their goal sets covers the desired navigation

configurations, then any desired navigation task can be achieved using these control policies.

Conneret al. [11] presented a semi-automated approach to generate the set ofcontrol policiesU

that fill a map of the environment from a smaller collection ofcontrol policies. A directed graph

known as theprepares graphis generated for the set of control policiesU, where each directed

edge fromΦi ∈ U to Φj ∈ U represents the prepares relationship. If the start stateS lies in

5.1 Background 77

C

B

A

Goal

Figure 5.1: Prepares relationship represented using funnels (after Burridgeet al. [10]).

the domain of at least one control policy,i.e., ∃i ∈ [1, n], s.t. S ∈ D(Φi), and if the overall

goalG lies in the goal set of at least one control policy,i.e., ∃j ∈ [1, n], s.t. G ∈ G(Φj), then

the navigation problem becomes a graph search problem, where the optimal sequence of control

policies to reach the navigation goal can be found. The original sequential composition approach

[10] defined the control policy domains in the state space of the system, whereas Conneret

al. [11] defined the domains in the configuration space of the system.The problem of defining

these domains in the high dimensional state space for balancing mobile robots like the ballbot

remains a challenging problem.

In our previous work [77], the sequential composition based integrated planning and control

approach was extended to balancing mobile robots like the ballbot. It used the shape trajectory

planner and the control architecture presented in Chapter4. The control architecture transforms

all desired position space motions into desired shape spacemotions to the balancing controller,

and hence allowed the domains for the control policies to be defined only in the position state

space, which has lower dimensions than the whole state space. For example, both the ballbot

without arms (8 states) and the ballbot with arms (16 states)have only 4 position states. Although

these approaches [10, 11, 77] ensured stability and convergence of a sequential composition of

control policies, and also resulted in a robust system that can navigate a map with obstacles under

disturbances, the robot did not achieve graceful motion.

In summary, the decoupled planning and control using the shape space planner can produce

graceful motion but is not good at handling disturbances andobstacles, whereas the sequential

78 Graceful Navigation

composition approaches presented in [10, 11, 77] are good at handling disturbances and obstacles

but do not result in graceful motion. This chapter presents an approach that combines the best of

both worlds,i.e., an integrated motion planning and control framework that enables balancing

mobile robots like the ballbot to move gracefully and achieve desired navigation tasks while

handling disturbances and obstacles.

5.1.3 Approach towards Graceful Navigation

This chapter presents an integrated motion planning and control framework based on sequential

composition [10, 11, 77] that enables balancing mobile robots like the ballbot to achieve de-

sired navigation tasks while moving gracefully. The approach presented in this chapter consists

of two phases: (i) an offline controller design phase, and (ii) an online planning phase. In the

offline controller design phase, controllers calledmotion policiesthat track feasible state trajec-

tories calledmotion primitivesare designed. A palette of motion policies is designed such that

the individual motion policies result in graceful motion, and there exist combinations of motion

policies that are gracefully composable. When two motion policies are gracefully composable,

they guarantee graceful switching between them, thereby resulting in an overall graceful motion.

In the online planning phase, a motion policy library is generated by automatically instantiat-

ing motion policies from the palette to fill a map of the environment. A motion planner plans

in the space of these collision-free, gracefully composable motion policies to achieve desired

navigation tasks.

5.2 Motion Policy Design

This section describes an offline procedure of designing a palette of control policies calledmotion

policiesfor shape-accelerated balancing mobile robots like the ballbot using the optimal shape

trajectory planner [72, 81] and the control architecture shown in Fig.5.4. A motion policyΦi

consists of a reference state trajectory called amotion primitiveσi(t), a time-varying feedback

trajectory tracking control lawφi(t), and a time-varying domainDi(t) that is verified to be

asymptotically convergent [77]. All these components of a motion policy are described below.

5.2 Motion Policy Design 79

5.2.1 Motion Primitives

Motion primitivesσ(t) are elementary, feasible state trajectories that produce motions in small

domains of the position space, and they can be combined sequentially to produce more compli-

cated trajectories. Motion primitives are feasible state trajectories, and hence by definition satisfy

the constraints on the dynamics of the system. In this work, the motion primitives are defined

such that they result in graceful motion,i.e., their position, velocity and acceleration trajectories

are continuous and bounded. Moreover, any valid sequentialcomposition of motion primitives

must also result in an overall graceful motion.

This work follows Frazzoliet al. [24] to define two classes of motion primitives:

(i) Trim primitives: Trim primitives are motion primitives that correspond to steady-state con-

ditions and they can be arbitrarily trimmed (cut),i.e., the time duration of the trajectory can

be arbitrarily chosen. In this work, the trim primitives arerestricted to constant position or

velocity trajectories in the position space, which impliesthat they have zero acceleration

in the position space and also have zero shape configurations.

(ii) Maneuvers: Maneuvers are motion primitives that start and end at steady-state conditions

given by the trim primitives. Unlike trim primitives, maneuvers have fixed time durations

and non-zero accelerations in the position space, which implies that they achieve non-

zero shape configurations. However, maneuvers start and endat trim conditions, which

correspond to zero shape configurations. Maneuvers can be any arbitrary feasible state

trajectories as long as they satisfy the trim conditions.

Here, the zero shape configurations correspond to any set of shape configurations that produce

zero acceleration in the position space. The motion primitives in [24] consisted of both feasible

state and control trajectories, whereas the motion primitives in this work include only feasible

state trajectories. Motion primitives can represent several different motions in the position space

like straight line, turning, circular, S-curve or figure-8 motions.

A collection of motion primitives with a distance parameterd is defined as amotion primitive

setΣ(d), wherein each motion primitive produces a net∆x and∆y motion in position space such

that∆x and∆y are integral multiples of the distance parameterd. Figure5.2presents a sample

of motion primitives for the 3D ballbot model from a motion primitive setΣ(d) with d = 0.5 m.

It is important to note that the motion primitives for the 3D ballbot model consist of motions in

8D state space, while Fig.5.2shows only the corresponding 2D position space motions.

The procedure used in this work to design a motion primitive set for balancing mobile robots

80 Graceful Navigation

End3

End2 End1

Start

Y
(m

)

X (m)
0 0.5 1

0

0.5

1

Figure 5.2: Position space motions of a sample of motion primitives for the 3D ballbot model
from a motion primitive set withd = 0.5 m (Appeared in [79]).

like the ballbot, including the ones shown in Fig.5.2, is described below. A number of unique,

desired position space motions with a distance parameterd were chosen in the first quadrant of

the XY−plane. The optimal shape trajectory planner [72, 81] presented in Sec.4.2 was used

to obtain the feasible position and shape trajectories thatbest achieve these desired position

space motions. The desired trajectories in the position space were defined as nonic polynomials,

i.e., polynomials with degree nine, satisfying the desired boundary conditions. These boundary

conditions represent trim conditions with zero acceleration in the position space. The desired

trajectories were chosen such that they satisfy all characteristics of desired position trajectories

presented in Sec.4.2.6, and also satisfy all requirements of a graceful motion,i.e., the position,

velocity and acceleration trajectories are continuous andbounded with low jerk.

The motion primitives presented in Fig.5.2may strike a strong resemblance to state lattices

[94, 95] and path sets [51, 52] used by the motion planners in unmanned ground vehicles. State

lattices and path sets are defined as reference motions in only the position space, and the motion

planners plan in the space of these reference position spacemotions to achieve desired navigation

tasks. However, the motion primitives presented in this thesis are defined as feasible state space

motions that include both position and shape space motions,and the motion planner plans in

the space of motion policies, which are controllers designed around these motion primitives as

will be described in Sec.5.2.2. State lattices [94, 95] and path sets [51, 52], however, can be

5.2 Motion Policy Design 81

used to determine the reference position space motions for generating the motion primitive sets

presented in this thesis.

Each motion primitive in a motion primitive set can be rotated and translated in the position

space to achieve a variety of different motions, and this process of setting the initial position and

orientation of a motion primitive is calledinstantiation. This is possible because the dynamics of

mobile robots are invariant to transformations of their position variables. A motion primitive set

Σ(d) is designed such that for each motion primitiveσ1(t) ∈ Σ(d), there exists an instantiation

that makesσ1(t) gracefully composable with at least one other motion primitiveσ2(t) ∈ Σ(d). A

motion primitiveσ1(t) is gracefully composable with another motion primitiveσ2(t) if and only

if σ1(tfi) = σ2(0) and σ̇1(tf1) = σ̇2(0), i.e., the final position, velocity and acceleration ofσ1
match the initial position, velocity and acceleration ofσ2. Figure5.3shows an example motion

in the position space resulting from a graceful compositionof appropriately instantiated motion

primitives from a motion primitive setΣ(d) with d = 0.5 m.

Goal

Start

Y
(m

)

X (m)
0 1 2 3

0

1

2

3

Figure 5.3: Position space motion of an example motion plan using instantiated motion primitives
from Fig. 5.2. The shaded circles represent constant position trim conditions, while the bars
represent constant velocity trim conditions. (Appeared in[79])

82 Graceful Navigation

5.2.2 Motion Policies

The motion primitives presented in Sec.5.2.1are feasible state trajectories that satisfy the dy-

namic constraints of the system, and also produce graceful motion by construction. Any dynamic

system requires control effort to track these feasible state trajectories. In [24], open-loop control

trajectories were used as part of the motion primitives. But in a real world, especially for robots

operating in human environments, where there are environment uncertainties and perturbations,

one needs to use closed-loop control. This section presentsmotion policiesthat contain motion

primitives and feedback controllers that stabilize them.

A motion policyΦi consists of a motion primitiveσi(t), a time-varying feedback tracking

control lawφi(t), and a time-varying domainDi(t), all defined for timet ∈ [0, tfi]. Since the

entire motion policy execution is time parameterized, eachmotion policyΦi also contains a timer

Ti that starts at zero and ticks till the durationtfi of the motion primitiveσi(t). A motion policy

that consists of a trim primitive is called atrim policy, while a motion policy that consists of

a maneuver is called amaneuver policy. Given a motion primitive setΣ(d), one can design

a motion policy paletteΠ(Σ) such that each motion policyΦi ∈ Π(Σ) constitutes a motion

primitive σi ∈ Σ(d).

In this work, the motion policies defined for shape-accelerated balancing mobile robots like

the ballbot use the control architecture shown in Fig.5.4(shown earlier in Fig.4.1). It exploits the

strong coupling between the dynamics of position and shape variables to achieve desired motions

in the position space. The ability of this control architecture to successfully track desired motions

in the position space has been experimentally verified on theballbot [78, 81]. Since the control

architecture of the motion policy achieves motions in the position space by controlling shape

space motions, the motion policy domain definitions are restricted to the 4D position state space,

i.e., (x, y, ẋ, ẏ).

The time-varying domainsD(t) are defined as 4D hyper-ellipsoids centered around the time-

varying desired position states of the motion primitivesσ(t). Each time-varying domainD(t)

has a start domainS = D(0) and a goal domainG = D(tf). Each domainD(t) is verified to

be asymptotically convergent, similar to the ones defined in[77]. This implies that each domain

D(t) has another domainD′(t) defined such thatD(t) ⊂ D′(t) ∀t ∈ [0, tf], and any position

state trajectory starting inS will remain in D′(t) until it reachesG ∀t ∈ [0, tf]. The overall

domains for a motion policy are given byD =

tf
⋃

t=0

D(t) andD′ =

tf
⋃

t=0

D′(t). The domainD′

is used for checking collisions with obstacles in the environment and hence, their geometric

5.2 Motion Policy Design 83

Shape-Accelerated
Balancing Systems

Position

Shape

Balancing
Controller

Motor
Input

Desired
Shape

+
-

Desired
Position

+

-
Feedback Position

Tracking Controller

Optimal Shape
Trajectory Planner

+

Planned
Shape

Compensation
Shape +

Figure 5.4: The control architecture (Appeared in [78, 79]).

definitions make it easier to verify the validity of their motion policies. Figure5.5shows the XY

projection of a sample motion policy domain for the ballbot.

The motion policy domains presented here were verified to be asymptotically convergent [77]

by simulation. The 3D ballbot model along with the control architecture in Fig.5.4was simulated

from finitely many states in the start domainSi of each motion policyΦi. The closed-loop

position state trajectory from each of these start states was verified to remain inside the domain

D′

i(t) ∀t ∈ [0, tf], and was also verified to reach the goal domainGi at t = tf . Additionally,

the resulting closed-loop shape trajectory was also verified to remain within the domain of the

balancing controller that tracks it. Several system identification experiments (Sec.3.4) were

conducted on the ballbot to estimate its system parameters such that the dynamics of the model

better match the real ballbot dynamics. When a motion policyΦi is deployed on a map of the

environment, the verification guarantees that the resulting closed-loop motion of the system in

the position state space will remain within its domainD
′

i. Hence, if the domainD′

i is collision-

free, then the motion policyΦi is guaranteed to produce a collision-free closed-loop motion of

the system.

The process of deploying a motion policy on a map is called instantiation, just like in the

case of a motion primitive. A motion policy instantiation involves the instantiation of its motion

primitive and its feedback control law. The condition for two motion primitives to be gracefully

composable was presented in Sec.5.2.1. Here, a time-varying feedback control lawφ1(t) is

defined to be gracefully composable with another time-varying feedback control lawφ2(t) if

φ1(tf1) = φ2(0), i.e., the final control law ofφ1 matches the initial control law ofφ2. These

84 Graceful Navigation

G

D
′

D

S

Y
(m

)

X (m)
0 0.5 1

0

0.5

1

Figure 5.5: XY projection of the domain of a sample motion policy designed for the 3D ballbot
model (Appeared in [78, 79]).

conditions will be used in Sec.5.2.3to define the graceful composition of motion policies.

5.2.3 Gracefully Prepares Relationship

This section introduces thegracefully prepares relationshipthat guarantees graceful sequential

composition of two motion policies. A motion policyΦ1 is said togracefully prepareΦ2, denoted

byΦ1 �G Φ2, if and only if all the conditions listed below are satisfied.

(i) The goal domain of the motion policyΦ1 is contained in the start domain of the motion

policyΦ2, i.e., G1 ⊂ S2.

(ii) The motion primitiveσ1(t) of the motion policyΦ1 is gracefully composable with the mo-

tion primitive σ2(t) of the motion policyΦ2, i.e., σ1(tf1) = σ2(0) and σ̇1(tf1) = σ̇2(0),

which ensures that the overall reference position, velocity and acceleration trajectories are

continuous. A motion primitiveσ(t) is a state trajectory, which includes position and

velocity trajectories. Therefore, its derivativeσ̇(t) includes velocity and acceleration tra-

jectories.

(iii) The time-varying feedback control lawφ1(t) of the motion policyΦ1 is gracefully com-

posable with the feedback control lawφ2(t) of the motion policyΦ2, i.e., φ1(tf1) = φ2(0),

which ensures that the overall control trajectory is continuous.

5.2 Motion Policy Design 85

The first condition satisfies the prepares relationship [10], while the next two conditions

reduce it to a gracefully prepares relationship. Hence, a gracefully prepares relationship is by

definition a prepares relationship,i.e., Φ1 �G Φ2 ⇒ Φ1 � Φ2, but not vice-versa. Since the

reference position, velocity and acceleration trajectories along with the control trajectory are

continuous, the resulting closed-loop motion of the systemunder the action of a sequence of

gracefully composable motion policies is graceful.

A good candidate for a motion policy paletteΠ(Σ) satisfies the design features listed below.

(i) For each motion primitiveσ1 ∈ Σ(d), at least one other motion primitiveσ2 ∈ Σ(d) is

designed such thatσ1 is gracefully composable withσ2.

(ii) For each pair of motion primitivesσ1, σ2 ∈ Σ(d) whereσ1 is gracefully composable with

σ2, their corresponding motion policiesΦ1,Φ2 ∈ Π(Σ) are designed such thatΦ1 grace-

fully preparesΦ2.

Figures5.6 and 5.7 show the experimental results of the ballbot achieving fast, graceful

motions while switching between gracefully composable motion policies. The ballbot achieves

a fast, graceful straight line motion in Fig.5.6 that is composed of three different motions. The

ballbot achieved a peak velocity of 1.16m/s, a peak acceleration of 1.1m/s2, and a maximum

lean of 6.75◦ in the plane of motion. In Fig.5.7, the ballbot makes three sharp left turns by

gracefully switching between nine gracefully composable motion policies. The videos of the

ballbot performing both these motions can be found in VideoD.6.

Time (s)

V
el

o
ci

ty
 (

m
/s

)

B
o
d
y

A
n
g
le

 (
d
eg

)

()a ()b

1 2 3 4 5 6

1

2

3 4

5

6

Figure 5.6: Fast straight line motion: (a) composite frames from a video, (b) plot of body angle
and velocityvs. time in the plane of motion.

86 Graceful Navigation

1

2

3

X (m)

Y
(m

)

1

2

3

()a ()b

Figure 5.7: Sharp turning motion: (a) composite frames from a video, (b) plot of the motion
tracked on the floor.

The sequence of gracefully composable motion policies usedfor the experimental results

shown in Fig.5.6and Fig.5.7were manually chosen, and the switching operation was also per-

formed manually. Section5.3will present automated approaches towards autonomous planning

in the space of gracefully composable motion policies to achieve desired navigation tasks. It will

also present a hybrid control architecture that successfully executes the motion plan.

5.3 Integrated Motion Planning and Control

An offline procedure to design a palette of gracefully composable motion policies was presented

in Sec.5.2. This section presents the online procedures that run on-board the robot to achieve

graceful navigation using this palette of gracefully composable motion policies. An automatic

motion policy instantiation procedure is presented, whichuses the motion policy palette to gen-

erate a library of instantiated motion policies whose domains fill an obstacle-free map of the

environment. A motion planner that plans in the space of these gracefully composable motion

policies, and a hybrid control architecture that executes agenerated motion plan are presented. A

dynamic replanning algorithm that actively replans in the space of gracefully composable motion

policies to avoid dynamic obstacles is also presented.

5.3 Integrated Motion Planning and Control 87

5.3.1 Automatic Instantiation of Motion Policies

Here, an automatic instantiation procedure that uniformlydistributes motion policies both in po-

sition and in orientation on a 2D map of the environment is presented. Given a mapM and a

motion policy paletteΠ(Σ), every motion policyΦi ∈ Π(Σ) is instantiated at different instanti-

ation points that uniformly discretize the mapM. These instantiation points are separated by a

distanced along both X and Y directions, whered is the distance parameter of the motion primi-

tive setΣ(d). At every instantiation point on the mapM, the motion policies are also instantiated

in different orientations. The uniform discretization in orientation space depends on the position

space motions produced by motion policies in the motion policy palette. The motion policies

presented here produce motions in the first quadrant of the position space as shown in Fig.5.2,

and hence the orientation spacing is chosen to be 90◦ so that their instantiations can cover all

four quadrants of the position space.

The automatic instantiation procedure generates a motion policy library L(Π,M), which is

a collection of valid instantiations of motion policies from the motion policy paletteΠ(Σ) on a

mapM of the environment. A subset of valid instantiated motion policies from a motion policy

library on a map with static obstacles is shown in Fig.5.8. An instantiated motion policyΦi is

considered valid if and only if the following conditions aresatisfied:

(i) The motion policy domainsDi andD′

i must be obstacle-free in order to guarantee that the

closed-loop motion resulting from the execution of the motion policy will remain collision-

free.

(ii) For motion policies that start at non-stationary trim conditions, the adjacent cell in the

direction opposite to its motion must be obstacle-free. Such motion policies, if included

in the motion policy library, will become orphan motion policies as other valid motion

policies cannot prepare them.

(iii) For motion policies that end at non-stationary trim conditions, the adjacent cell in the

direction of its motion must be obstacle-free. Such motion policies, if included in the

motion policy library, will result in collisions as they cannot prepare valid motion policies.

The percentage of the bounded position state space covered by the start domains of the motion

policies in the motion policy library represents the coverage of the motion policy library. The

coverage percentage is calculated by uniformly sampling the bounded position state space and

verifying its existence in the union of the start domains of the motion policies in the motion policy

library. If the desired coverage is not achieved then the grid spacing for the instantiation points

88 Graceful Navigation

Y
(m

)

X (m)
0 1 2 3

0

1

2

3

Figure 5.8: A subset of motion policies from a motion policy libraryL(Π,M), instantiated from
the motion policy paletteΠ(Σ) with the motion primitive setΣ(d) shown in Fig.5.2. The lines
represent position space motions of the motion primitives,while the shaded regions show 2D
projections of the 4D motion policy domains, including their outer domains. (Appeared in [79])

is halved, and the automatic instantiation procedure is repeated until either the desired coverage

or the maximum number of such iterations is achieved. If 100%coverage is not achieved, then it

indicates that there are certain states within the positionstate space that cannot be handled by the

motion policies in the motion policy library. These position states are not reached under normal

circumstances, but can be reached when the robot is subjected to large disturbances. A backup

emergency controller is used to handle such cases. In this work, the ballbot switches to a simple

balancing mode when such a situation is encountered.

5.3.2 Planning in Motion Policy Space

Given a mapM and a motion policy paletteΠ(Σ), the automatic instantiation procedure pre-

sented in Sec.5.3.1generates a motion policy libraryL(Π,M). The gracefully prepares rela-

tionship between every pair of motion policies (Φi,Φj) in the motion policy libraryL(Π,M) is

verified using the conditions presented in Sec.5.2.3, and a directed graph called thegracefully

prepares graphΩ(L) is generated, an example of which is shown in Fig.5.9. Each node in

Ω(L) represents a valid instantiated motion policyΦi ∈ L, and each directed edge fromΦi toΦj

5.3 Integrated Motion Planning and Control 89

represents the gracefully prepares relationship,i.e., Φi �G Φj. The gracefully prepares graph

is similar to the prepares graph presented in [11], but differs from the fact that the edges rep-

resent the gracefully prepares relationship and not just the prepares relationship as explained in

Sec.5.2.3. Unlike in the prepares graph, the switching between motionpolicies in the gracefully

prepares graph is guaranteed to result in overall graceful motion. Therefore, the gracefully pre-

pares graphΩ(L) contains all possible graceful motions that the robot can achieve on the mapM

using motion policies in the motion policy libraryL(Π,M).

This work assumes that any navigation task can be formulatedas a motion between trim mo-

tion policies,i.e., motion policies with trim motion primitives, and hence any navigation task

can be formulated as a graph search problem on the gracefullyprepares graph. This assumption

is valid since any navigation task can be formulated as either a point-point motion or a surveil-

lance motion or a combination of the two. A point-point motion can be formulated as a motion

between trim motion policies that have constant position trajectories as trim primitives, while

a surveillance motion can be formulated as a motion between trim motion policies that have

constant velocity trajectories as trim primitives.

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7 Φ8

Φ9 Φ10

Φ11

Φ12 Φ13

Φ14

Figure 5.9: An example gracefully prepares graph.

Traditionally, graph search algorithms have been used to plan in the space of discrete cells

or paths. But, in this work, graph search algorithms are used to plan in the space of gracefully

composable motion policies,i.e., controllers. The graph search algorithms now provide a motion

plan that consists of a sequence of gracefully composable motion policies that achieve the overall

navigation task. In this work, the Dijsktra’s algorithm [17] shown in Algorithm5.1 is used to

solve the single-goal optimal navigation problem. The candidates for the optimality criterion

include fastest time and shortest path. Unlike other heuristic-based graph search algorithms like

A∗ [36], the Dijsktra’s algorithm uses a dynamic programming approach and optimizes over the

90 Graceful Navigation

actual cost funtion without the use of any heuristics.

Algorithm 5.1: Single-Goal Optimal Motion Policy Tree using Dijkstra’s Algorithm
input : Gracefully Prepares GraphΩ

Goal Motion Policy NodeG

output: Optimal Motion Policy TreeΓ

1 begin

2 Γ← ∅

3 foreach i ∈ Node(Ω) do

4 Cost2Goal(i)←∞

5 Next2Goal(i)← ∅

6 Γ← Γ ∪
(

i, Cost2Goal(i), Next2Goal(i)
)

7 end

8 Cost2Goal(G)← 0

9 Q← Γ

10 while Q 6= ∅ do

11 j ← MinCostNode(Q)

12 if Cost2Goal(j) =∞ then

13 break

14 end

15 Q← Q− {j}

16 foreachk ∈ Parent(j) do

17 c← Cost2Goal(j) + EdgeCost(k, j)

18 if c< Cost2Goal(k) then

19 Cost2Goal(k)← c

20 Next2Goal(k)← j

21 end

22 end

23 end

24 end

Given a goal position state, the Euclidean distance metric is used to find the closest trim mo-

tion policy whose goal domain contains it, and its corresponding node in the gracefully prepares

graphΩ forms the goal motion policy nodeG. Algorithm 5.1 generates a single-goal optimal

motion policy treeΓ(Ω, G), which contains optimal paths from all motion policy nodes in the

5.3 Integrated Motion Planning and Control 91

gracefully prepares graphΩ to the goal motion policy nodeG. Each motion policy nodei in the

optimal motion policy treeΓ(Ω, G) contains a motion policyΦi, its cost to reach the goal motion

policy node given byCost2Goal(i), and a pointer to the next optimal motion policy node given

by Next2Goal(i). The algorithm begins with resetting theCost2Goalvalues and theNext2Goal

pointers for all the motion policy nodes in the optimal policy treeΓ except for the goal motion

policy nodeG whoseCost2Goalvalue is set to zero (lines3 − 7). A list of unoptimized nodes

Q is created and iterated over (lines10− 23). At each iteration, the motion policy node with the

minimumCost2Goalgiven byMinCostNode(Q) is removed fromQ, and theCost2Goalvalues

and theNext2Goalpointers of its parents are updated (lines16−22). The functionEdgeCost(k, j)

returns the cost of switching from motion policyΦk to Φj. This iteration continues until all un-

optimized nodes are optimized or all remaining motion policy nodes inQ do not have a path to

the goal motion policy nodeG, which is indicated by infiniteCost2Goal(lines12− 14).

The optimal motion policy treeΓ(Ω, G) represents all optimal graceful motions that the robot

can achieve in order to reach the goal motion policy nodeG. However, the optimality is limited

by motion policies in the motion policy library. Any motion policy node that has a path to the

goal motion policy node will reach the goal motion policy node by switching between an optimal

sequence of motion policies that guarantee overall graceful motion by construction. Figure5.10

presents a subtree of a single-goal time-optimal motion policy tree obtained using Algorithm5.1.

It shows XY projections of optimal motion policy sequences along with their 4D domains from

a number of different initial positions on a map with static obstacles. Since the optimal motion

policy tree contains the optimal sequence of gracefully composable motion policies from all

trim conditions to the goal motion policy node, replanning is unnecessary when the robot’s start

position changes. However, the optimal motion policy tree has to be regenerated when the goal

motion policy node changes.

Since the planning is done in the space of motion policies,i.e., controllers, Algorithm5.1

essentially generates an optimal control vector field for the bounded position state space covered

by the motion policy library. The resulting closed-loop vector field optimally drives each valid

position state to the goal position state. However, the optimality is limited by motion policies in

the motion policy library.

This section presented a motion planner that plans in the space of gracefully composable

motion policies (controllers), and explicitly accounts for both the dynamics of the system and

the domains of the controllers. Each motion policy knows theexact motion it achieves in the

environment and also knows that it is collision-free. Therefore, in this framework, the motion

92 Graceful Navigation

Y
(m

)

X (m)

GOAL

0 1 2 3

0

1

2

3

Figure 5.10: A subtree of a single-goal time-optimal motionpolicy tree. The lines represent
position space motions of the motion primitives, while the shaded regions show 2D projections
of the 4D motion policy domains, including their outer domains. (Appeared in [78, 79])

planner has knowledge of the system dynamics, and capabilities and limitations of the underlying

controllers used to achieve the motion plans. The controllers, on the other hand, have knowledge

of the environment constraints and also the motions that they produce, thereby, forming a truly

integrated motion planning and control framework.

5.3.3 Hybrid Control

The optimal path to the goal motion policy node from any startmotion policy node in the optimal

motion policy tree is obtained by following itsNext2Goalpointer until the goal motion policy

node is reached. A hybrid controller is used as a master/supervisory controller to ensure success-

ful execution of the optimal sequence of motion policies. The hybrid controller starts executing

a motion policyΦi and resets its timer only if the robot’s position state is inside its start domain

Si. It continues executing the motion policyΦi only if the robot’s position state lies inside its

domainDi
′(t) ∀t ∈ [0, tf], and the motion policy execution is stopped when its timer runs out

and the robot’s position state reaches its goal domainGi. The switch to the next motion policy

Φj happens naturally as the goal domain ofΦi lies inside the start domain ofΦj, i.e., Gi ⊂ Sj

by construction of the gracefully prepares graph.

5.3 Integrated Motion Planning and Control 93

The feedback control lawφi(t) of a motion policyΦi is capable of handling small distur-

bances and uncertainties. But when subjected to large disturbances, the robot’s position state can

exit the domainD′(t), for somet ∈ [0, tf]. Since the hybrid controller checks for the validity

of the motion policy∀t ∈ [0, tf], it detects the domain exit, stops the execution of the current

motion policy, finds another motion policyΦk whose start domainSk contains this exiting posi-

tion state, and switches to the new motion policyΦk. If there exists a path from the new motion

policyΦk to the goal, then the optimal motion policy treeΓ(Ω, G) already contains the sequence

of gracefully composable motion policies that lead the motion policyΦk to the goal motion pol-

icy nodeG. If the automatic instantiation procedure guaranteed 100%coverage, then there will

always exist a motion policyΦk in the motion policy library whose start domain will capturethe

robot’s exiting position state. But if 100% coverage was not guaranteed and if there is no motion

policy in the motion policy library whose start domain captures the robot’s exiting position state,

then the hybrid controller executes the backup emergency controller. In this work, the hybrid

controller switches to a simple balancing mode when such a scenario is encountered. It is to be

noted that the switching from the motion policyΦi to the new motion policyΦk or the backup

emergency controller is discrete and is not graceful as the disturbance added to the robot that

caused the domain exit is discontinuous.

5.3.4 Dynamic Replanning

While navigating human environments, it is inevitable that new static obstacles or dynamic ob-

stacles are encountered. In such cases, a dynamic replanning procedure is necessary that will

avoid motion policies that result in collisions with the newobstacles.

Figure5.11(a) shows an example optimal motion policy tree with a goal motion policyΦ1.

The optimal motion policy tree accounts for the known staticobstacles in the environment, and

hence each motion policyΦi represents a collision-free motion policy in the known environ-

ment. However, the introduction of new static and dynamic obstacles can invalidate some of

these motion policies, for example, the motion policyΦ3 in Fig. 5.11(b) is invalidated by a new

obstacle. In such cases, the optimal motion policy tree mustbe updated to avoid these invalid

motion policies as shown in Fig.5.11(c).

94 Graceful Navigation

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

Φ9

Φ10 Φ11

Φ12

(a)

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

Φ9

Φ10 Φ11

Φ12

(b)

Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8

Φ9

Φ10 Φ11

Φ12

(c)

Figure 5.11: (a) Single-goal optimal motion policy tree with the goal motion policyΦ1; (b) The
motion policyΦ3 is invalidated by a new obstacle, and hence the motion policiesΦ7,Φ8,Φ10 and
Φ11 need to be updated; and (c) Updated optimal motion policy tree. (Appeared in [79])

The simplest approach to account for the new obstacles is to regenerate the entire optimal

motion policy tree while ignoring the invalid motion policynodes as shown in Algorithm5.2.

Unlike Algorithm 5.1, Algorithm 5.2optimizes only the valid motion policy nodes given by the

Valid() function (lines 17 − 23). In this approach, every time there is a change in the validity

of motion policy nodes, the optimal motion policy tree has tobe regenerated. For example, the

motion policy nodesΦ7,Φ8,Φ10,Φ11 shown in Fig.5.11(b) are the only nodes that had to be

updated, whereas the other nodes did not require any updates. It is computationally inefficient to

5.3 Integrated Motion Planning and Control 95

regenerate the entire motion policy tree when only a subset of the motion policy nodes need to be

updated. Therefore, this section presents an efficient dynamic replanning algorithm that updates

only the motion policy nodes that need to be updated. This algorithm consists of the following

three steps: (i) finding invalid motion policies, (ii) finding motion policy nodes to be updated,

and (iii) updating the motion policy nodes.

Algorithm 5.2: Dijkstra’s Algorithm with Invalid Nodes
input : Gracefully Prepares GraphΩ

Goal Motion Policy NodeG
output: Optimal Motion Policy TreeΓ

1 begin
2 Γ← ∅
3 foreach i ∈ Node(Ω) do
4 Cost2Goal(i)←∞
5 Next2Goal(i)← ∅
6 Γ← Γ ∪

(

i, Cost2Goal(i), Next2Goal(i)
)

7 end
8 Cost2Goal(G)← 0
9 Q← Γ

10 while Q 6= ∅ do
11 j ← MinCostNode(Q)
12 if Cost2Goal(j) =∞ then
13 break
14 end
15 Q← Q− {j}
16 foreachk ∈ Parent(j) do
17 if Valid(k) then
18 c← Cost2Goal(j) + EdgeCost(k, j)
19 if c< Cost2Goal(k) then
20 Cost2Goal(k)← c
21 Next2Goal(k)← j
22 end
23 end
24 end
25 end
26 end

96 Graceful Navigation

5.3.4.1 Finding Invalid Motion Policies

The motion planner uses occupancy grids [18] to find the invalid cells in a finely discretized 2D

map of the environment. The mapping from an occupancy cell toa motion policy in the motion

policy library is obtained during the automatic motion policy instantiation procedure described

in Sec.5.3.1. Each occupancy cell has a list of motion policies whose domains cover it, and

this list is updated for every valid motion policy instantiation. Therefore given a list of occupied

cells, a simple look-up operation provides the list of invalid motion policy nodesI.

Algorithm 5.3: Find Nodes to be Updated
input : Base Optimal Motion Policy TreeΓ0

Goal Motion Policy NodeG
Set of Invalid NodesI

output: Set of Nodes to be UpdatedU
1 begin
2 U ← ∅
3 foreach i ∈ I do
4 U ← U ∪ i
5 end
6 Q← G
7 while Q 6= ∅ do
8 i← Pop(Q)
9 foreach j ∈ TreeParent(Γ0, i) do

10 if i ∈ U then
11 U ← U ∪ j
12 end
13 Q← Q ∪ j

14 end
15 end
16 end

5.3.4.2 Finding Motion Policy Nodes to be Updated

Figure5.11(b) shows that the motion policy nodes that need to be updated belong to the subtree

with the invalid motion policy node as its head. Any valid motion policy that reaches the goal

motion policy via an invalid motion policy must be updated. This subtree of motion policy nodes

can be found by traversing down the optimal motion policy tree of the base case,i.e., the map

5.3 Integrated Motion Planning and Control 97

with all known static obstacles and no new obstacles. The algorithm used to find the motion

policy nodes to be updated is shown in Algorithm5.3. The base optimal motion policy treeΓ0 is

the best possible motion policy tree that can be generated, and is generated using Algorithm5.1.

Each motion policy nodei has a list of motion policy nodes that point to it (parents) inthe base

optimal motion policy treeΓ0 given byTreeParent(Γ0, i). All invalid motion policy nodes are

added to the list of nodes to be updatedU (lines3 − 5), and the search for nodes to be updated

begins with the goal motion policy nodeG and traverses down the entire base optimal motion

policy treeΓ0 in a breadth-first search manner (lines6− 15). If a motion policy nodei is marked

to be updated, then all its parents in the base optimal treeΓ0 given byTreeParent(Γ0, i) are added

to the list of nodes to be updatedU (lines10− 12).

5.3.4.3 Update the Motion Policy Nodes

The procedure to update the optimal motion policy treeΓ is presented in Algorithm5.4. Every

time the optimal motion policy treeΓ is to be updated, it is reset to the base optimal motion policy

treeΓ0, and theCost2Goalvalues andNext2Goalpointers for all motion policy nodes in the list

of nodes to be updatedU are reset (lines3− 6). For each valid motion policy nodei in the listU

given byValid(i), its Next2Goalpointer is initialized to its valid child motion policy nodewith

the minimumCost2Goal(lines9 − 17). The children of each motion policy node are obtained

from the gracefully prepares graphΩ. The invalid motion policy nodes are removed from the

list U , while the valid motion policy nodes with the initializedCost2Goalvalues andNext2Goal

pointers are added to the list of unoptimized nodesQ. The procedure to optimize theCost2Goal

values for just these motion policy nodes (lines25 − 40) is same as that in Algorithm5.1 (lines

10− 23) and in Algorithm5.2(lines10− 25).

The dynamic replanning algorithm presented above is used only when the validity of a motion

policy in the motion policy library changes. When such a change is detected, the current set

of invalid motion policy nodesI is determined, and Algorithm5.3 is used to find the motion

policy nodes in the base optimal motion policy treeΓ0 that need to be updated. The optimal

motion policy treeΓ is then reset toΓ0 and updated using Algorithm5.4. Since all the motion

policy nodes are updated whenever a change in validity of themotion policy nodes is detected,

this dynamic replanning algorithm ensures that the resulting optimal control vector field for the

bounded position state space covered by the motion policy library is always valid.

98 Graceful Navigation

Algorithm 5.4: Update Optimal Motion Policy Tree
input : Base Optimal Motion Policy TreeΓ0

Goal Motion Policy NodeG
Set of Nodes to be UpdatedU

output: Updated Optimal Motion Policy TreeΓ
1 begin
2 Γ← Γ0

3 foreach i ∈ U do
4 Cost2Goal(i)←∞
5 Next2Goal(i)← ∅
6 end
7 foreach i ∈ U do
8 if Valid(i) then
9 foreach j ∈ Child(i) do

10 if Valid(j) then
11 c← Cost2Goal(j) + EdgeCost(i, j)
12 if c < Cost2Goal(i) then
13 Cost2Goal(i)← c
14 Next2Goal(i)← j

15 end
16 end
17 end
18 else
19 U ← U − {i}
20 end
21 end
22 Q← U

23 while Q 6= ∅ do
24 j ← MinCostNode(Q)
25 if Cost2Goal(j) =∞ then
26 break
27 end
28 Q← Q− {j}
29 foreachk ∈ Parent(j) do
30 if Valid(k) then
31 c← Cost2Goal(j) + EdgeCost(k, j)
32 if c< Cost2Goal(k) then
33 Cost2Goal(k)← c
34 Next2Goal(k)← j
35 end
36 end
37 end
38 end
39 end

5.4 Experimental Results with The Ballbot 99

5.4 Experimental Results with The Ballbot

This section presents experimental results of the ballbot without arms successfully achieving

different navigation tasks in a graceful manner using the integrated motion planning and control

framework presented in Sec.5.3.

5.4.1 Experimental Setup

The ballbot localizes itself on a 2D map of the environment using a particle filter based localiza-

tion algorithm developed by Biswaset al. [6]. The encoders on the ball motors of the inverse

mouse-ball drive [41] provide the odometry data for the prediction step, while a Hokuyo URG-

04LX laser range finder provides the laser scan readings for the correction step.

The laser range finder is also used to detect obstacles in the environment, and its scan readings

are used to update an occupancy grid map [18] with a grid spacing of 0.1 m. The laser range

finder is mounted on the front of the robot at a height of 0.78 m from the floor, and has a180◦

field of view. It has a linear resolution of 1 mm and an angular resolution of 0.36◦. Since the

laser range finder has only a180◦ field of view, it cannot detect obstacles behind the robot.

However, the ballbot can remember a previously encounteredobstacle using its occupancy grid

map. The occupancy grid map is primarily used to detect new static and dynamic obstacles,

whereas permanent static obstacles are included in the map.

5.4.2 Motion Policy Library

In order to illustrate the integrated motion planning and control framework’s capability to handle

different motion policy palettes, this section presents experimental results that used two motion

policy palettes, one with 39 unique motion policies and another with 43 unique motion policies.

They used different motion primitive sets with the same distance parameterd = 0.5 m like the

ones shown in Fig.5.2. The palette with 43 motion policies had more non-stationary trim condi-

tions than the palette with 39 motion policies. The problem of determining the number of motion

policies required to optimally achieve a navigation task isan open research question, and is not

addressed in this thesis. However, this problem must be explored as one of the future directions

of research.

For all the results presented in this section, the motion policies were automatically instan-

tiated in a 3.5 m× 3.5 m obstacle-free area of a map of our lab as described in Sec. 5.3.1.

100 Graceful Navigation

The motion policy palette with 39 motion policies produces amotion policy library of 4521 in-

stantiated motion policies, while the motion policy palette with 43 motion policies produces a

motion policy library of 4569 instantiated motion policies. For both the motion policy palettes,

the total time taken to generate the motion policy library and the gracefully prepares graph is

approximately 2.5 s on the dual core computer on-board the robot. Similarly, the same computer

takes about 0.05 s to generate the optimal motion policy treefor both the motion policy palettes.

Therefore, the optimal motion policy tree can be updated as well as regenerated in real-time. All

the results presented in this section use fastest time as theoptimality criterion.

5.4.3 Point-Point Motion

The point-point navigation task can be formulated as a motion between trim motion policies

with constant position reference trajectories as motion primitives. The goal motion policy in the

motion policy library is given by the trim motion policy whose goal position state is the closest

to the desired goal position by the Euclidean distance metric. Figure5.12 shows the ballbot

successfully reaching a single goal position state of (2 m, 2m, 0 m/s, 0 m/s) from four different

starting configurations in the presence of two static obstacles. The experimental position space

motions shown in Fig.5.12were obtained from the localization algorithm [6].

3

21

4

Y
(m

)

X (m)

GOAL

Reference
Experimental

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Figure 5.12: Point-Point motion with two obstacles, shown in black (Appeared in [78, 79]).

This navigation task used the motion policy palette with 39 motion policies to generate the

5.4 Experimental Results with The Ballbot 101

motion policy library. A single-goal time-optimal motion policy tree was generated online using

Algorithm 5.2that takes into account the known static obstacles in the map. Each of the motions

shown in Fig.5.12were obtained by tracking motions from the single-goal time-optimal motion

policy tree, and were not regenerated for each run.

Figure5.13shows the composite frames from a video of the ballbot achieving the goal from

the first starting position, while the body angle trajectories resulting from the fourth motion are

shown in Fig.5.14. The video of the ballbot achieving all four motions can be found in VideoD.7.

Start Goal

Figure 5.13: Composite frames from a video of the ballbot achieving the goal from start position
no. 1 (Appeared in [79]).

B
od

y
A

ng
le

(◦)

Time (s)

X
Y

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Figure 5.14: Point-Point motion: Body angle trajectories toachieve the goal from start position
no. 4 (Appeared in [78]).

102 Graceful Navigation

5.4.4 Disturbance Handling

Figure5.15presents the experimental results that illustrate the capability of the integrated motion

planning and control framework to handle large disturbances. While the ballbot was executing a

point-point motion, it was physically held and stopped frommoving towards the goal. Then, the

ballbot was physically moved to a different point on the map and let go.
Y

(m
)

X (m)

GOAL

Robot Pushed

Domain
Exit

Reference
Experimental

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Figure 5.15: Disturbance Handling (Appeared in [78, 79]).

When the ballbot was physically stopped from moving towards the goal, its position state

exited the domain of the motion policy it was executing, and the hybrid control architecture

detected this domain exit. It then, searched the motion policy library to find motion policies

whose start domain contained this exiting position state. Since a continued disturbance was

applied to the robot, its position state continued to exit the domains that were found until the

ballbot was set free to move on its own. After it was set free, the ballbot successfully reached the

goal as shown in Fig.5.15. Here again, the single-goal time-optimal motion policy tree was not

regenerated. The composite frames from a video of the ballbot achieving this motion are shown

in Fig. 5.16, and the video can be found in VideoD.7.

5.4 Experimental Results with The Ballbot 103

Start

Goal

Set Free

Domain
Exit Pushed

Figure 5.16: Composite frames from a video of the ballbot reaching the goal while handling a
disturbance (Appeared in [79]).

5.4.5 Surveillance

The navigation task of surveillance can be formulated as a motion between trim motion policies

that have constant velocity reference trajectories as motion primitives. The task is specified as a

sequence of moving goal position states that are repeated ina cyclic fashion. Unlike point-point

motion, the surveillance motion has multiple cyclic goals.A new goal motion policy is found

every time the current goal motion policy is reached, and hence the time-optimal motion policy

tree has to be regenerated. The motion planner takes only 0.05 s to regenerate the motion policy

library used here, and all of its motion policies have time durations greater than or equal to 1 s.

Hence, the optimal motion policy tree can be regenerated in real-time while executing the last

motion policy to the current goal. This process repeats until the user quits the surveillance task.

Figure5.17shows the ballbot successfully performing a surveillance task with four goal con-

figurations using the motion policy palette with 39 motion policies. In this run, the surveillance

task was quit after five successful loops. The composite frames from a video of the ballbot

achieving this task is shown in Fig.5.18, and the video can be found in VideoD.7. The body

angle trajectories for one complete surveillance loop are shown in Fig.5.19.

104 Graceful Navigation

Y
(m

)

X (m)

Reference
Experimental

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Figure 5.17: Surveillance motion with four goal configurations, shown in green and one obstacle,
shown in black (Appeared in [78, 79]).

Goal1

Goal2

Goal3Goal4

Figure 5.18: Composite frames from a video of the ballbot achieving the surveillance motion
with four goal configurations (Appeared in [79]).

5.4 Experimental Results with The Ballbot 105

B
od

y
A

ng
le

(◦)

Time (s)

X
Y

0 10 20 30 40 50 60 70 80 90
−4

−2

0

2

4

Figure 5.19: Body angle trajectories for the surveillance motion with four goal configurations
(Appeared in [78, 79]).

Two successful loops of another surveillance task with ten goal configurations are shown in

Fig. 5.20. This surveillance task was achieved using the motion policy palette with 43 motion

policies, and a video of it can be found in VideoD.8. The optimal motion policy tree was

successfully regenerated real-time on the robot for every single goal configuration. The resulting

body angle trajectories for one complete surveillance cycle are shown in Fig.5.21.

 Experimental
Reference

Y
(m

)

X (m)

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Figure 5.20: Surveillance motion with ten goal configurations, shown in green and one obstacle,
shown in black (Appeared in [79]).

106 Graceful Navigation

Y
X

B
od

y
A

ng
le

(◦)

Time (s)

0 20 40 60 80 100 120 140 160

−2

−1

0

1

2

Figure 5.21: Body angle trajectories for the surveillance motion with ten goal configurations
(Appeared in [79]).

5.4.6 Dynamic Replanning

Figure5.22shows the ballbot using the dynamic replanning algorithm presented in Sec.5.3.4to

avoid new static and dynamic obstacles, and successfully reach the goal. The composite frames

from a video of the ballbot performing this motion is shown inFig. 5.23, and the video can be

found in VideoD.8. The base optimal reference motion to the goal without any new static or

dynamic obstacles is shown in Fig.5.24(a). The optimal reference motion to the goal with the

new static obstacle and the dynamic obstacle in its first position is shown in Fig.5.24(b). The

optimal reference motion to the goal with the dynamic obstacle moving to its second location is

shown in Fig.5.24(c). The final optimal reference motion to the goal is shown in Fig. 5.24(d),

and the ballbot’s attempt at tracking this reference motionis shown in Fig.5.22. It is important

to note that the optimal motions achieved using this approach are limited by the motion policies

in the motion policy library. For example, one can see that the optimal reference motion shown

in Fig. 5.24(b) is not optimal in a true sense but is optimal w.r.t. the motionpolicies available in

the motion policy library.

The motion policy palette with 43 motion policies was used for this run. The dual-core

computer on-board the ballbot takes 0.01 s to 0.05 s to updatethe optimal motion policy tree

depending on the number of motion policy nodes to be updated.Each motion policy is of time

5.4 Experimental Results with The Ballbot 107

duration greater than or equal to 1 s, and hence the optimal motion policy tree can be updated

fast enough to account for the dynamic obstacles, which are detected by the laser range finder at

10 Hz,i.e., every 0.1 s.

Experimental
Reference

Dynamic
Obstacle3

Static
Obstacle

Goal

Start

Y
(m

)

X (m)

Dynamic
Obstacle2

Dynamic
Obstacle1

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

Figure 5.22: Dynamic replanning to reach the goal (Appearedin [79]).

Start Goal

Static
Obstacle

Dynamic
Obstacle

Figure 5.23: Composite frames from a video of the ballbot dynamically replanning to avoid static
and dynamic obstacles (Appeared in [79]).

108 Graceful Navigation

Goal

Start

Y
(m

)

X (m)

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

(a)

Dynamic
Obstacle1

Static
Obstacle

Goal

Start

Y
(m

)
X (m)

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

(b)

Dynamic
Obstacle2

Static
Obstacle

Goal

Start

Y
(m

)

X (m)

Dynamic
Obstacle1

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

(c)

Dynamic
Obstacle3

Static
Obstacle

Goal

Start

Y
(m

)

X (m)

Dynamic
Obstacle2

Dynamic
Obstacle1

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

(d)

Figure 5.24: (a) The base optimal reference motion to the goal; (b) The optimal reference motion
with the static obstacle, and the dynamic obstacle at its first location; (c) The optimal reference
motion when the dynamic obstacle has moved to its second location; (d) The optimal motion
when the dynamic obstacle has moved to its final location. (Appeared in [79])

5.5 Summary 109

5.5 Summary

This chapter presented an integrated motion planning and control framework that enables bal-

ancing mobile robots like the ballbot to gracefully navigate human environments. Thegrace-

fully prepares relationshipwas introduced as a restrictive definition on the prepares relationship.

Unlike other sequential composition based approaches [10, 11, 77] that do not guarantee grace-

ful switching between control policies, the integrated motion planning and control framework

presented in this chapter uses the gracefully prepares relationship to ensure graceful switching

between them. This chapter presented an offline procedure todesign a palette of gracefully com-

posable control policies calledmotion policiesthat result in collision-free graceful motions in

small domains of the position space. It also presented an online automatic instantiation proce-

dure that deploys these motion policies to fill a map of the environment, and generates a library

of motion policies. Agracefully prepares graphthat represented all possible graceful motions

that the robot can achieve in a map was generated online, and navigation tasks were formulated

as graph-search problems. This chapter used Dijkstra’s algorithm to generate a single-goal op-

timal motion policy tree that represents an optimal controlvector field for achieving the goal.

However, the optimality is limited to the motion policies available in the motion policy library.

This chapter also presented a dynamic replanning algorithmthat replans the single-goal optimal

motion policy tree in the presence of dynamic obstacles.

The most important contribution of this work is the experimental verification of the integrated

motion planning and control framework on the ballbot. This chapter presented experimental

results that demonstrate the ballbot successfully achieving a variety of different point-point and

surveillance navigation tasks. This chapter also presented experimental results that demonstrate

the capability of the framework to handle disturbances, andalso actively replan in the presence

of dynamic obstacles and still successfully achieve desired navigation tasks.

110 Graceful Navigation

Chapter 6

Conclusions and Future Work

Balancing mobile robots can be tall and skinny with low centers of gravity and small footprints,

unlike their statically stable counterparts. They can be tall enough for eye-level interaction and

narrow enough to navigate cluttered human environments. They can actively resist tipping over

by compensating for the shift in their centers of gravity. Their dynamic stability enables them to

be physically interactive, and also enables them to achievefast and graceful motions. All these

characteristics make balancing mobile robots ideal candidates for personal robots operating and

interacting in human environments.

The work presented in this thesis enables balancing mobile robots like the ballbot to navigate

human environments with speed and grace comparable to that of humans. The approach taken

to achieve this is two-fold: (i) the natural dynamics of balancing mobile robots are exploited

to achieve fast and dynamic motions; and (ii) the motion planning and control are integrated to

ensure that balancing mobile robots gracefully achieve desired navigation tasks while handling

disturbances and dynamic obstacles.

Fast and dynamic motions in the position space are achieved by planning for motions in the

shape space because the shape dynamics dominate the system dynamics. A palette of sequen-

tially composable controllers calledmotion policiesare designed such that their valid composi-

tions produce graceful robot motions. They are designed such that they have knowledge of their

reference motions in the state space and their collision-free domains in the position state space.

Desired navigation tasks are achieved by planning in the space of these gracefully composable

motion policies.

This chapter highlights the contributions of the work presented in this thesis, and also dis-

cusses several future directions that can be explored to extend and better the shape trajectory

112 Conclusions and Future Work

planner, and the integrated motion planning and control framework presented in this thesis.

6.1 Contributions

The contributions of the work presented in this thesis are listed below.

(i) One of the first contributions of this work was the design of the balancing controller and

other controllers that enabled the ballbot to balance and operate reliably [74, 76]. The bal-

ancing controller enabled the ballbot to be robust to disturbances like shoves, kicks and

collisions with furniture and walls, and it also enabled theballbot to be physically interac-

tive. Chapter3 presented successful experimental results on the ballbot that demonstrated

its capabilities, and also demonstrated some interesting human-robot physical interaction

behaviors.

(ii) Chapter4 introduced a special class of underactuated systems calledshape-accelerated

balancing systems[72, 73] to which balancing mobile robots like the ballbot belong. These

systems have a special property wherein non-zero shape configurations result in accelera-

tions in the position space, and this special property can beexploited to enable balancing

mobile robots like the ballbot to achieve fast and dynamic motions.

(iii) Chapter4 presented a novel shape trajectory planner [72] that plans shape trajectories for

shape-accelerated balancing systems, which when tracked will result in optimal tracking of

desired acceleration trajectories in position space. The trajectory optimization algorithm

plans shape trajectories that are linearly proportional todesired acceleration trajectories

in the position space, and the proportionality gains are determined such that the acceler-

ation trajectories that result from tracking these plannedshape trajectories will optimally

track the desired acceleration trajectories in position space. It was demonstrated that the

shape trajectory planner can generate feasible trajectories for shape-accelerated balancing

systems at significantly faster speeds (25 to 70 times) than other trajectory optimization al-

gorithms using direct-collocation methods [30, 35, 104, 130, 131]. Such fast computation

times were possible because the shape trajectory planner optimized in a significantly lower

dimensional parameter space, and also used only the dynamicconstraint equations of the

system for numerical integration.

(iv) Chapter4 also introduced the notion of ashape set[73], a group of shape variables that are

capable of independently affecting the dynamics of all position variables. It was demon-

6.1 Contributions 113

strated that the shape trajectory planner can successfullyplan motions in the shape space

for systems with equal number of shape and position variables, i.e., systems with just

one shape set. The shape trajectory planner was extended to successfully plan in high-

dimensional shape space with the use of user-defined weight matrices, where the user picks

the relative contribution between different shape sets [73, 81]. It was also extended to in-

clude cases where a subset of the system’s shape sets were artificially constrained to desired

trajectories [73].

(v) Chapter4presented successful experimental results that validatedthe shape trajectory plan-

ner and its associated control architecture on the ballbot,both with and without arms [73,

81]. The ballbot was able to successfully achieve a variety of different fast and dynamic

motions using its body lean motions. It also successfully achieved desired motions in the

position space using pure arm motions, and combinations of body lean and arm motions.

Successful experimental results that demonstrate the capability of the ballbot to achieve

desired motions in the position space using only the body lean motions, while its arms

were constrained to desired trajectories were also presented.

(vi) Chapter5 introduced thegracefully prepares relationship[78, 79] between two control

policies, as a restrictive definition on the prepares relationship [10, 11, 77]. The grace-

fully prepares relationship guaranteed that the closed-loop motion of the system resulting

from a valid sequential composition of control policies wasgraceful. This was achieved

by ensuring graceful composition of their reference motions, feedback control laws, and

domains.

(vii) Chapter5 presented an integrated motion planning and control framework that enabled bal-

ancing mobile robots like the ballbot to gracefully achievedesired navigation tasks while

handling disturbances and dynamic obstacles [78, 79]. It presented an offline design pro-

cedure for controllers calledmotion policiesthat produce graceful, collision-free motions

in small domains of the position space for shape-accelerated balancing systems like the

ballbot. A palette of motion policies was designed such thatits motion policies gracefully

prepare each other. An automatic instantiation procedure that uniformly distributes motion

policies from a palette to fill a map of the environment was presented. The domain of

each motion policy in the motion policy library was verified to be collision-free. Chapter5

also introduced a directed graph called thegracefully prepares graphthat represents all

graceful, collision-free motions that the robot can achieve on the map using the motion

policy library. A motion planner that plans in the space of these collision-free, gracefully

114 Conclusions and Future Work

composable motion policies was presented. The navigation tasks were formulated as mo-

tions between motion policies, and Dijkstra’s algorithm was used to generate a single-goal

optimal motion policy tree. The optimal motion policy tree represented optimal graceful

motions to the goal from the start domain of every motion policy in the motion policy li-

brary. A dynamic replanning algorithm that quickly replansin the presence of dynamic

obstacles was also presented.

(viii) Chapter5 presented successful experimental results that validatedthe integrated motion

planning and control framework on the ballbot without arms.The ballbot was able to suc-

cessfully achieve a number of point-point and surveillancenavigation tasks in the presence

of static obstacles. Successful experimental results thatdemonstrate the framework’s ca-

pability to handle disturbances were presented. The ballbot was also able to successfully

achieve point-point navigation tasks in the presence of dynamic obstacles, where it had to

dynamically replan the optimal motion policy tree in real-time while successfully avoiding

the dynamic obstacles.

6.2 Future Work

This section presents brief descriptions of different improvements and extensions that can be

applied to the work presented in this thesis.

6.2.1 Shape Space Planning with Manipulation

The shape trajectory planner presented in Chapter4 can be extended to plan for a combination of

manipulation and navigation tasks. A variant of the shape trajectory planner that achieves desired

navigation tasks for the ballbot using only body lean motions while the arms were restricted

to additional constraint trajectories was presented in Sec. 4.2.4, and experimentally verified in

Sec.4.3.4. However, no manipulation tasks were performed. For balancing mobile robots like

the ballbot, navigation and manipulation tasks are tightlycoupled, and some of the challenges

that arise due to this coupling are described below.

One of the challenges is that the weight of the object that is manipulated plays a significant

role in the robot’s balance and in its navigation. A state estimator that actively estimates the

position of the net center of gravity of the robot and the object is essential for successfully per-

forming such tasks. The shape trajectory planner will have to take into account the manipulation

6.2 Future Work 115

trajectories, and also the dynamics associated with the object’s motions.

Another challenge is that the robot’s body lean motions willaffect its manipulation trajecto-

ries as the robot will lean with its arms attached to its body.Let’s take an example case where

the balancing robot has to pick up an object on a table while staying in place. While the arms

move forward to pick up the object, the body has to lean backward in order to stay in place. But,

the arms which are attached to the body will lean backward with it and hence, its end-effector

may not reach its correct location in the world. This will happen if the manipulation trajectory

planner ignores the body motions required to stay balanced while planning manipulation trajec-

tories. A trajectory optimization algorithm that combinesthe shape trajectory planner and the

manipulation trajectory planner can be developed such thatboth the navigation and manipulation

tasks are achieved. One approach towards developing such a trajectory optimization algorithm

is described below. At every iteration, the optimization algorithm determines a pseudo-goal for

the manipulation planner, which compensates for the shift in the position of the end-effector as a

result of body lean motions. Given a pseudo-goal for the end-effector, the manipulation planner

uses the inverse kinematics of a manipulator with a stationary base to plan trajectories for the

arm angles. The shape trajectory planner considers the manipulation trajectories as constraint

trajectories for the arm angles, and plans body lean trajectories that achieve the desired naviga-

tion task as described in Sec.4.2.4. Now, the resulting position of the end-effector in the world

is determined and compared with its ideal goal position given by the manipulation task. The op-

timization algorithm uses this difference to update the pseudo-goal for the manipulation planner

in its next iteration.

6.2.2 Navigating Large Maps

The integrated motion planning and control framework presented in Chapter5 used the Dijkstra’s

algorithm for motion planning in the space of gracefully composable motion policies. But the

Dijkstra’s algorithm may not be fast enough on bigger graphsthat cover larger areas. In order to

handle large maps, two different approaches can be explored. One approach involves the use of

heuristic based graph search algorithms likeD∗ [121] andD∗ Lite [53]. The design of admissible

heuristics in the space of motion policies is a challenging problem and must be explored.

The other approach involves dividing the large map into smaller regions, and piecing together

locally optimal motions to achieve the global goal. However, this approach of using regions still

requires a heuristic to determine the optimal path in the space of regions. In order for such an

approach to be successful, it must guarantee that the robot will neither be trapped in a region nor

116 Conclusions and Future Work

be stuck in a cycle between regions. A simple version of this proposed approach of using regions

was successfully attempted on the ballbot to navigate larger maps, like a long corridor (20 m

× 2.4 m area), moving between rooms in our lab, and also a 9.5 m× 7.5 m rectangular area.

The videos of the ballbot successfully navigating these larger maps can be found in VideoD.9.

However, the challenges of finding the best heuristic, and also handling the corner cases like

region traps and region cycles were not addressed, and must be explored.

6.2.3 Design of Invariant Motion Policy Domains

One of the improvements that can be done to the integrated motion planning and control frame-

work presented in Chapter5 is in the design and verification of the motion policy domains.

The current advancements in algebraic verification of controllers using sums-of-squares (SOS)

tools [125, 128] can be used to design invariant domains for the motion policies. It is difficult

to achieve100% coverage in environments with narrow paths as the motion policy domain defi-

nitions presented in this work are fixed. But the invariant motion policy domain definitions will

allow one to explore ways to scale-down these motion policy domains during instantiation so

that the obstacles can be avoided, and the desired coverage can also be guaranteed.

6.2.4 Optimal Palette of Motion Policies

A procedure to design a palette of gracefully composable motion policies for shape-accelerated

balancing systems like the ballbot was presented in Sec.5.2. However, this section did not

present any insight into choosing a motion policy palette for a given navigation task. Given a

navigation task, the minimum number and type of motion policies required to achieve it, and

the optimal set of motion policies that can achieve it are open research questions that need to

be addressed. Moreover, metrics that can compare and evaluate two motion policy palettes for a

navigation task must also be explored.

6.2.5 Integrated Motion Planning and Control for Graceful Manipulation

Chapter5 presented an integrated motion planning and control framework that ensures grace-

ful navigation of balancing mobile robots, and Section5.4presented experimental results of the

ballbot without arms using this framework to successfully achieve desired navigation tasks. The

integrated motion planning and control framework must be extended to include manipulation

6.2 Future Work 117

tasks as well. Each reference position space motion can havea variety of different manipulation

tasks associated with it, and hence a variety of different motion policies that produce the same

position space motion but different arm motions can be generated. The definition of gracefully

prepares relationship remains valid, but the motion policydomains can no longer be restricted

to the 4D position state space. In order to guarantee both graceful navigation and graceful ma-

nipulation, the motion policy domains have to be defined for the arm configurations as well. In

these cases, each trim condition will consist of both a navigation goal and a manipulation goal,

and the motion planner has to plan in the space of these gracefully composable motion policies

to achieve the desired navigation and manipulation tasks.

118 Conclusions and Future Work

Appendix A

Dynamic model for the 3D ballbot with a

pair of 2-DOF arms

The ballbot with arms is modeled as a rigid cylinder on top of arigid sphere with a pair of

massless arms having weights at their ends. The model makes the following assumptions: (i)

there is no slip between the ball and the floor; and (ii) there is no yaw/spinning motion for either

the ball or the body or the arms,i.e., they have two degrees of freedom each. A planar version

of the model along with the planar configurations is shown in Fig. A.1.

mb

ma

r

lb

la

Figure A.1: Planar configurations shown in a planar model of ballbot with arm (Appeared in
[73, 81]).

120 Dynamic model for the 3D ballbot with a pair of 2-DOF arms

There are eight configuration variables for the 3D ballbot model with arms represented by

q = [θ, αl, αr, φ], where,θ = [θx, θy]
T are configurations of the ball,αl = [αlx, αly]

T are config-

urations of the left arm,αr = [αrx, αry]
T are configurations of the right arm, andφ = [φx, φy]

T

are configurations of the body. The forced Euler-Lagrange equations of motion of the ballbot

with arms can be written in matrix form as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) =

[

τ

0

]

, (A.1)

where,M(q) ∈ R
8×8 is the mass/inertia matrix,C(q, q̇) ∈ R

8×8 is the matrix of Coriolis and

centrifugal terms,G(q) ∈ R
8×1 is the vector of gravitational forces andτ = [τθ, ταl

, ταr
]T ∈

R
6×1 is the vector of generalized forces. The body configurationsφ are unactuated, whereas the

rest of the configurations are actuated.

The remainder of this chapter will present the system matrices and their elements as func-

tions of the system parameters shown in TableA.1. The following symbols are used in their

expressions:β = Iw +
(

mw +mb +2ma

)

r2, γ1 = mbℓbr, γ2 = maℓar, γ3 = mad
z
ar, η1 = mbℓ

2
b ,

η2 = maℓ
2
a, η3 = maℓad

z
a, η4 = maℓad

y
a, η5 = mad

z
a
2, η6 = mad

y
a
2, χ1 = mbgℓb, χ2 = magℓa,

χ3 = magd
z
a, Ci = cos (i), andSi = sin (i).

Table A.1: System Parameters for The Ballbot with Arms

Parameter Symbol Value

Ball radius r 0.106 m
Ball mass mw 2.44 kg
Ball moment of inertia Iw 0.0174 kgm2

Body mass mb 70.3 kg
Body CM along z-axis from ball center ℓb 0.87 m
Body roll moment of inertia about CM Ibxx 12.59 kgm2

Body pitch moment of inertia about CM Ibyy 12.48 kgm2

Body yaw moment of inertia about CM Ibzz 0.66 kgm2

Arm mass ma 1 kg
Arm length from joint to CM ℓa 0.55 m
Arm joint distance along y-axis from ball centerdya 0.18415 m
Arm joint distance along z-axis from ball centerdza 1.3 m
Arm roll moment of inertia about CM Iaxx 0.0016 kgm2

Arm pitch moment of inertia about CM Iayy 0.0016 kgm2

Arm yaw moment of inertia about CM Iazz 0.0010 kgm2

121

The mass/inertia matrixM(q) in Eq.A.1 is given by:

M(q) =













Mθθ Mθαl(qs) Mθαr(qs) Mθφ(qs)

Mαlθ(qs) Mαlαl(qs) Mαlαr(qs) Mαlφ(qs)

Mαrθ(qs) Mαrαl(qs) Mαrαr(qs) Mαrφ(qs)

Mφθ(qs) Mφαl(qs) Mφαr(qs) Mφφ(qs)













, (A.2)

where eachMij ∈ R
2×2 is given below.

Mθθ(q)=

[

β 0

0 β

]

, (A.3)

Mθαl(q)=



























γ2
(

Cφy
Sαl

x
Sαl

y
+ Sφx

Sφy
Cαl

x

)

+γ2Cφx
Sφy

Sαl
x
Cαl

y
−γ2Cαl

x

(

Cφy
Cαl

y
− Cφx

Sφy
Sαl

y

)

γ2
(

Cφx
Cαl

x
− Sφx

Sαl
x
Cαl

y

)

−γ2Sφx
Cαl

x
Sαl

y



























, (A.4)

Mθαr(q)=



























γ2
(

Cφy
Sαr

x
Sαr

y
+ Sφx

Sφy
Cαr

x

)

+γ2Cφx
Sφy

Sαr
x
Cαl

y
−γ2Cαr

x

(

Cφy
Cαr

y
− Cφx

Sφy
Sαr

y

)

γ2
(

Cφx
Cαr

x
− Sφx

Sαr
x
Cαr

y

)

−γ2Sφx
Cαr

x
Sαr

y



























, (A.5)

122 Dynamic model for the 3D ballbot with a pair of 2-DOF arms

Mθφ(q)=















































β +
(

γ1 + 2γ3
)

Cφx
Cφy

−
(

γ1 + 2γ3
)

Sφx
Sφy

+γ2Sφy

(

Cαl
x
Sαl

y
+ Cαr

x
Sαr

y

)

+γ2Cφx
Sφy

(

Sαl
x
+ Sαr

x

)

+γ2Sφx
Cφy

(

Sαl
x
+ Sαr

x

)

+γ2Sφx
Sφy

(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

−γ2Cφx
Cφy

(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

−β −
(

γ1 + 2γ3
)

Cφx

+γ2Cφx

(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

0

−γ2Sφx

(

Sαl
x
+ Sαr

x

)















































, (A.6)

Mαlθ(q)=MT
θαl

(q), (A.7)

Mαlαl(q)=























η2 + IaxxC
2
αl
y
+ IazzS

2
αl
y

0

0 η2C
2
αl
x
+ Iayy























, (A.8)

Mαlαr(q)=

[

0 0

0 0

]

, (A.9)

Mαlφ(q)=











































(

η3Cφx
+ η4Sφy

+ γ2Cφy

)

Sαl
x
Sαl

y

η2Cαl
y
− η3Cαl

x
+ η4Sαl

x
+γ2Sφy

(

Sφx
Cαl

x
+ Cφx

Sαl
x
Cαl

y

)

γ2
(

Sφx
Sαl

x
Cαl

y
− Cφx

Cαl
x

)

+η2Sφx
Sαl

y

−
(

η3Cφx
+ η4Sφx

)

Cαl
x
Cαl

y
(

η4 + η2Sαl
x
+ γ2Sφx

)

Cαl
x
Sαl

y
+η2Cαl

x

(

Cφx
Cαl

x
− Sφx

Sαl
x
Cαl

y

)

−γ2Cαl
x

(

Cφy
Cαl

y
− Cφx

Sφy
Sαl

y

)











































,(A.10)

123

Mαrθ(q)=MT
θαr(q) (A.11)

Mαrαl(q)=MT
αlαr(q) (A.12)

Mαrαr(q)=























η2 + IaxxC
2
αr
y
+ IazzS

2
αr
y

0

0 η2C
2
αr
x
+ Iayy























, (A.13)

Mαrφ(q)=











































η2Sφx
Sαr

y
(

η2 − η4Sαr
x
+ γ2Sφx

Sαr
x

)

Cαr
y

+
(

γ2Cφy
+ η3Cφx

− η4Sφx

)

Sαr
x
Sαr

y

−
(

η3 + γ2Cφx

)

Cαr
x

+γ2Sφy

(

Sφx
Cαr

x
+ Cφx

Sαr
x
Cαr

y

)

(

η4Sφx
− η2Sφx

Sαr
x

)

Cαr
x
Cαr

y
(

γ2Sφx
+ η2Sαr

x
− η4

)

Cαr
x
Sαr

y
+
(

γ2Sφy
Sαr

y
− η3Cαr

y

)

Cφx
Cαr

x

+
(

η2Cφx
Cαr

x
− γ2Cφy

Cαr
y

)

Cαr
x











































,

(A.14)

Mφθ(q)=MT
θφ(q) (A.15)

Mφαl(q)=MT
αlφ(q) (A.16)

Mφαr(q)=MT
αrφ(q) (A.17)

124 Dynamic model for the 3D ballbot with a pair of 2-DOF arms

Mφφ(q)=





























































































































γ2Sφx
Sφy

(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

IbzzS
2
φy

+ 2η4
(

Sαl
x
− Sαr

x

)

+γ2Cφx
Sφy

(

Sαl
x
+ Sαr

x

)

+IbxxC
2
φy

+
(

2γ1 + 4γ3
)

Cφx
−
(

γ1 + 2γ3
)

Sφx
Sφy

−2η3
(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

−η3Sφx

(

Cαl
x
Sαl

y
+ Cαr

x
Sαr

y

)

−2γ2Cφx

(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

+η4Cφx

(

Cαl
x
Sαl

y
− Cαr

x
Sαr

y

)

+η2
(

C2
αl
x
C2

αl
y
+ C2

αr
x
C2

αr
y

)

+η2Sφx
C2

αl
x
Sαl

y
Cαl

y

+2γ2Sφx

(

Sαl
x
+ Sαr

x

)

+η2Sφx
C2

αr
x
Sαr

y
Cαr

y

−η2
(

C2
αl
x
+ C2

αr
x

)

+η2Cφx
Sαl

x
Cαl

x
Sαl

y

+β + η1 + 2
(

η2 + η5 + η6
)

+η2Cφx
Sαr

x
Cαr

x
Sαr

y

β + 2η4S
2
φx

(

Sαl
x
− Sαr

y

)

+2
(

η3Cφx
+ η2Cφy

)

Sφx
Sαl

x

γ2Cφx
Sφy

(

Sαl
x
+ Sαr

x

)

+2
(

η3Cφx
+ η2Cφy

)

Sφx
Sαr

x

−
(

γ1 + 2γ3
)

Sφx
Sφy

−η2S
2
φx

(

C2
αl
x
C2

αl
y
+ C2

αr
x
C2

αr
y

)

−η3Sφx

(

Cαl
x
Sαl

y
+ Cαr

x
Sαr

y

)

+
(

2γ2 + 4γ3
)

Cφx
Cφy

+η4Cφx

(

Cαl
x
Sαl

y
− Cαr

x
Sαr

y

)

+2
(

η2 + η6
)

S2
φx

+
(

η1 + 2η5
)

C2
φx

+η2Sφx
C2

αl
x
Sαl

y
Cαl

y
+η2C

2
φx

(

C2
αl
x
+ C2

αr
x

)

+η2Sφx
C2

αr
x
Sαr

y
Cαr

y
+2γ2Sφy

(

Cαl
x
Sαl

y
+ Cαr

x
Sαr

y

)

+η2Sφx
C2

αr
x
Sαr

y
Cαr

y
−2η3C

2
φx

(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

+η2Cφx
Sαl

x
Cαl

x
Sαl

y
−2η2Sφx

Cφx

(

Sαl
x
Cαl

x
Cαl

y

)

+γ2Sφx
Sφy

Cαl
x
Cαl

y
−2η2Sφx

Cφx

(

Sαr
x
Cαr

x
Cαr

y

)

+γ2Sφx
Sφy

Cαr
x
Cαr

y
+2Cφx

(

η4Sφx
− γ2Cφy

)

Cαl
x
Cαl

y

+2Cφx

(

η4Sφx
− γ2Cφy

)

Cαr
x
Cαr

y





























































































































. (A.18)

125

The Coriolis and centrifugal matrixC(q, q̇) in Eq.A.1 is given by:

C(q, q̇)=













0 Cθαl(qs, q̇s) Cθαr(qs, q̇s) Cθφ(qs, q̇s)

0 Cαlαl(qs, q̇s) 0 Cαlφ(qs, q̇s)

0 0 Cαrαr(qs, q̇s) Cαrφ(qs, q̇s)

0 Cφαl(qs, q̇s) Cφαr(qs, q̇s) Cφφ(qs, q̇s)













, (A.19)

where eachCij ∈ R
2×2 is given below.

Cθαl(q, q̇)=

























































γ2
(

Cφx
Cαl

x
− Sφx

Sαl
x
Cαl

y

)

Sφy
φ̇x

+γ2
(

Cφx
Cφy

Cαl
y
− Sφy

Sαl
y

)

Sαl
x
φ̇y −γ2Sφx

Sφy
Cαl

x
Sαl

y
φ̇x

+γ2Sφx
Cφy

Cαl
x
φ̇y +γ2

(

Sφy
Cαl

y
+ Cφx

Cφy
Sαl

y

)

Cαl
x
φ̇y

+γ2
(

Cφx
Cαl

x
Cαl

y
− Sφx

Sαl
x

)

Sφy
α̇l
x +γ2

(

Cφy
Cαl

y
− Cφx

Sφy
Sαl

y

)

Sαl
x
α̇l
x

+γ2Cφy
Cαl

x
Sαl

y
α̇l
x +γ2

(

Cφy
Sαl

y
+ Cφx

Sφy
Cαl

y

)

Cαl
x
α̇l
y

+γ2
(

Cφy
Cαl

y
− Cφx

Sφy
Sαl

y

)

Sαl
x
α̇l
y

−γ2
(

Sφx
Cαl

x
+ Cφx

Sαl
x
Cαl

y

)

φ̇x −γ2Cφx
Cαl

x
Sαl

y
φ̇x

−γ2
(

Cφx
Sαl

x
+ Sφx

Cαl
x
Cαl

y

)

α̇l
x +γ2Sφx

Sαl
x
Sαl

y
α̇l
x

+γ2Sφx
Sαl

x
Sαl

y
α̇l
y −γ2Sφx

Cαl
x
Cαl

y
α̇l
y

























































,

(A.20)

126 Dynamic model for the 3D ballbot with a pair of 2-DOF arms

Cθαr(q, q̇)=

























































γ2
(

Cφx
Cαr

x
− Sφx

Sαr
x
Cαr

y

)

Sφy
φ̇x

+γ2
(

Cφx
Cφy

Cαr
y
− Sφy

Sαr
y

)

Sαr
x
φ̇y −γ2Sφx

Sφy
Cαr

x
Sαr

y
φ̇x

+γ2Sφx
Cφy

Cαr
x
φ̇y +γ2

(

Sφy
Cαr

y
+ Cφx

Cφy
Sαr

y

)

Cαr
x
φ̇y

+γ2
(

Cφx
Cαr

x
Cαr

y
− Sφx

Sαr
x

)

Sφy
α̇r
x +γ2

(

Cφy
Cαr

y
− Cφx

Sφy
Sαr

y

)

Sαr
x
α̇r
x

+γ2Cφy
Cαr

x
Sαr

y
α̇r
x +γ2

(

Cφy
Sαr

y
+ Cφx

Sφy
Cαr

y

)

Cαr
x
α̇r
y

+γ2
(

Cφy
Cαr

y
− Cφx

Sφy
Sαr

y

)

Sαr
x
α̇r
y

−γ2
(

Sφx
Cαr

x
+ Cφx

Sαr
x
Cαr

y

)

φ̇x −γ2Cφx
Cαr

x
Sαr

y
φ̇x

−γ2
(

Cφx
Sαr

x
+ Sφx

Cαr
x
Cαr

y

)

α̇r
x +γ2Sφx

Sαr
x
Sαr

y
α̇r
x

+γ2Sφx
Sαr

x
Sαr

y
α̇r
y −γ2Sφx

Cαr
x
Cαr

y
α̇r
y

























































,

(A.21)

127

Cθφ(q, q̇)=

































































































γ2Sαl
x

(

Cφx
Cφy

φ̇x − Sφx
Sφy

φ̇y

)

+γ2Sαr
x

(

Cφx
Cφy

φ̇x − Sφx
Sφy

φ̇y

)

−
(

γ1 + 2γ3
)(

Cφx
Sφy

φ̇x + Sφx
Cφy

φ̇y

)

−
(

γ1 + 2γ3
)(

Sφx
Cφy

φ̇x + Cφx
Sφy

φ̇y

)

+γ2Cφx
Sφy

(

Cαl
x
α̇l
x + Cαr

x
α̇r
x

)

+γ2Sφy

(

Sαl
x
Sαl

y
α̇l
x + Sαr

x
Sαr

y
α̇r
x

)

+γ2Sαl
x

(

Cφx
Cφy

φ̇y − Sφx
Sφy

φ̇x

)

+γ2Sφy

(

Cαl
x
Cαl

y
α̇l
y + Cαr

x
Cαr

y
α̇r
y

)

+γ2Sαr
x

(

Cφx
Cφy

φ̇y − Sφx
Sφy

φ̇x

)

+γ2Sφx
Cφy

(

Cαl
x
α̇l
x + Cαr

x
α̇r
x

)

+γ2Cαl
x
Cαl

y

(

Cφx
Sφy

φ̇x + Sφx
Cφy

φ̇y

)

+γ2Cφx
Cφy

(

Sαl
x
Cαl

y
α̇l
x + Cαl

x
Sαl

y
α̇l
y

)

+γ2Cαr
x
Cαr

y

(

Cφx
Sφy

φ̇x + Sφx
Cφy

φ̇y

)

+γ2Cφx
Cφy

(

Sαr
x
Cαr

y
α̇r
x + Cαr

x
Sαr

y
α̇r
y

)

−γ2Sφx
Sφy

(

Sαl
x
Cαl

y
α̇l
x + Cαl

x
Sαl

y
α̇l
y

)

+γ2Cαl
x
Cαl

y

(

Sφx
Cφy

φ̇x + Cφx
Sφy

φ̇y

)

−γ2Sφx
Sφy

(

Sαr
x
Cαr

y
α̇r
x + Cαr

x
Sαr

y
α̇r
y

)

+γ2Cαr
x
Cαr

y

(

Sφx
Cφy

φ̇x + Cφx
Sφy

φ̇y

)

+γ2
(

Cαl
x
Sαl

y
+ Cαr

x
Sαr

y

)

Cφy
φ̇y

(

γ1 + 2γ3
)

Sφx
φ̇x

−γ2
(

Sαl
x
+ Sαr

x

)

Cφx
φ̇x

−γ2Sφx

(

Cαl
x
α̇l
x + Cαr

x
α̇r
x

)

−γ2Cφx

(

Sαl
x
Cαl

y
α̇l
x + Cαl

x
Sαl

y
α̇l
y

)

0

−γ2Cφx

(

Sαr
x
Cαr

y
α̇r
x + Cαr

x
Sαr

y
α̇r
y

)

−γ2
(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

Sφx
φ̇x

































































































,

(A.22)

Cαlαl(q, q̇)=











































(

Izza − I
xx
a

)

Sαl
y
Cαl

y
α̇l
x

(

Izza − I
xx
a

)

Sαl
y
Cαl

y
α̇l
y +η2Sαl

x
Cαl

x

(

Cφx
φ̇y + α̇l

y

)

+η2C
2
αl
x

(

Sφx
Cαl

y
φ̇y − Sαl

y
φ̇x

)

−
(

Izza − I
xx
a

)

Sαl
y
Cαl

y
α̇l
x

−η2Sαl
x
Cαl

x

(

Cφx
φ̇y + α̇l

y

)

−η2Sαl
x
Cαl

x
α̇l
x

−η2C
2
αl
x

(

Sφx
Cαl

y
φ̇y − Sαl

y
φ̇x

)











































, (A.23)

128 Dynamic model for the 3D ballbot with a pair of 2-DOF arms

Cαlφ(q, q̇)=



























































































(

η3Cφx
− η4Sφx

)

Sφx
Cαl

x
φ̇y

−η2Sαl
x
Cαl

x
S2
αl
y
φ̇x +η2Cφx

(

Sαl
y
φ̇x + Cαl

x
α̇l
y

)

−η2Cφx
S2
αl
x
Sαl

y
φ̇y +

(

η4Cφx
− η3Sφx

)

Sαl
x
Sαl

y
φ̇x

−η3Sαl
x
Cαl

x
φ̇x +η2Sφx

Cαl
y

(

C2
αl
x
α̇l
y − Cφx

φ̇y

)

−
(

η3 − η4
)

Sαl
x
Sαl

y
φ̇y −

(

η2Sαl
x
Cαl

y
+ η3C

2
φx

)

Cαl
x
Cαl

y
φ̇y

−η3Sαl
x
Cαl

y
φ̇x η2

(

Sφx
Sαl

x
Cαl

y
− Cφx

Cαl
x

)

Cαl
x
Sαl

y
φ̇x

+η2Sφx
Cαl

x
Sαl

y
Sαl

x
Cαl

y
φ̇y +η2C

2
φx
Sαl

x
Cαl

x
φ̇y

(

1 + C2
αl
y

)

−η2C
2
αl
x
Sαl

y
α̇l
y − η4Cαl

x
φ̇x

(

2η2C
2
αl
x
− η4Sαl

x

)

Sφx
Cφx

Cαl
y
φ̇y

−
(

η3Cφx
+ η4Sφx

)

Cαl
x
Sαl

y
Cφx

φ̇y

−η3Cαl
x
Sαl

y
φ̇x −η2

(

Sαl
x
Cφx

+ Cαl
x
Cαl

y
Sφx

)

Cαl
x
α̇l
x

+η3Sφx
Cαl

x
Cαl

y
φ̇y +

(

η3Sφx
− η4Cφx

)

Cαl
x
Cαl

y
φ̇x

−η4Cφx
Cαl

x
Cαl

y
φ̇y −η2C

2
αl
x
Sαl

y
Cαl

y
S2
φx
φ̇y

−η2Sφx
C2

αl
x
C2

αl
y
φ̇y −η2Cαl

x
Sαl

x
Sαl

y
Sφx

Cφx
φ̇y

−η2Cφx
Sαl

x
Cαl

x
Cαl

y
φ̇y −η2C

2
αl
x
C2

αl
y
Sφx

φ̇x

+η2C
2
αl
x
Sαl

y

(

α̇l
x + Cαl

y
φ̇x

)

−η2Sαl
x
Cαl

x
Cαl

y
Cφx

φ̇x



























































































,(A.24)

Cαrαr(q, q̇)=











































(

Izza − I
xx
a

)

Sαr
y
Cαr

y
α̇r
x

(

Izza − I
xx
a

)

Sαr
y
Cαr

y
α̇r
y +η2Sαr

x
Cαr

x

(

Cφx
φ̇y + α̇r

y

)

+η2C
2
αr
x

(

Sφx
Cαr

y
φ̇y − Sαr

y
φ̇x

)

−
(

Izza − I
xx
a

)

Sαr
y
Cαr

y
α̇r
x

−η2Sαr
x
Cαr

x

(

Cφx
φ̇y + α̇r

y

)

−η2Sαr
x
Cαr

x
α̇r
x

−η2C
2
αr
x

(

Sφx
Cαr

y
φ̇y − Sαr

y
φ̇x

)











































, (A.25)

129

Cαrφ(q, q̇)=

























































































(

η3Cφx
− η4Sφx

)

Sφx
Cαr

x
φ̇y

−η2Sαr
x
Cαr

x
S2
αr
y
φ̇x +η2Cφx

(

Sαr
y
φ̇x + Cαr

x
α̇r
y

)

−η2Cφx
S2
αr
x
Sαr

y
φ̇y +

(

η4Cφx
− η3Sφx

)

Sαr
x
Sαr

y
φ̇x

−η3Sαr
x
Cαr

x
φ̇x +η2Sφx

Cαr
y

(

C2
αr
x
α̇r
y − Cφx

φ̇y

)

−
(

η3 − η4
)

Sαr
x
Sαr

y
φ̇y −

(

η2Sαr
x
Cαr

y
+ η3C

2
φx

)

Cαr
x
Cαr

y
φ̇y

−η3Sαr
x
Cαr

y
φ̇x η2

(

Sφx
Sαr

x
Cαr

y
− Cφx

Cαr
x

)

Cαr
x
Sαr

y
φ̇x

+η2Sφx
Cαr

x
Sαr

y
Sαr

x
Cαr

y
φ̇y +η2C

2
φx
Sαr

x
Cαr

x
φ̇y

(

1 + C2
αr
y

)

−η2C
2
αr
x
Sαr

y
α̇r
y − η4Cαr

x
φ̇x

(

2η2C
2
αr
x
− η4Sαr

x

)

Sφx
Cφx

Cαr
y
φ̇y

−
(

η3Cφx
+ η4Sφx

)

Cαr
x
Sαr

y
Cφx

φ̇y

−η3Cαr
x
Sαr

y
φ̇x −η2

(

Sαr
x
Cφx

+ Cαr
x
Cαr

y
Sφx

)

Cαr
x
α̇r
x

+η3Sφx
Cαr

x
Cαr

y
φ̇y +

(

η3Sφx
− η4Cφx

)

Cαr
x
Cαr

y
φ̇x

−η4Cφx
Cαr

x
Cαr

y
φ̇y −η2C

2
αr
x
Sαr

y
Cαr

y
S2
φx
φ̇y

−η2Sφx
C2

αr
x
C2

αr
y
φ̇y −η2Cαr

x
Sαr

x
Sαr

y
Sφx

Cφx
φ̇y

−η2Cφx
Sαr

x
Cαr

x
Cαr

y
φ̇y −η2C

2
αr
x
C2

αr
y
Sφx

φ̇x

+η2C
2
αr
x
Sαr

y

(

α̇r
x + Cαr

y
φ̇x

)

−η2Sαr
x
Cαr

x
Cαr

y
Cφx

φ̇x

























































































,(A.26)

130 Dynamic model for the 3D ballbot with a pair of 2-DOF arms

Cφαl
(q, q̇)=







































































































































η4Cαl
x

(

φ̇x + Cαl
y
α̇l
x

)

−η2S
2
αl
x
Sαl

y
α̇l
x

−η4Sαl
x
Sαl

y

(

α̇l
y + Cφx

φ̇y

)

+η2C
2
αl
x
C2

αl
y
Sφx

φ̇y

+η3Sαl
x

(

α̇l
x + Cαl

y
φ̇x

)

+η2
(

α̇l
y + Cφx

φ̇y

)

Sαl
x
Cαl

x
Cαl

y

+
(

η3Sαl
x
Sφx
− η2Cφx

)

Sαl
y
φ̇y −η2C

2
αl
x
Cαl

y
Sαl

y
φ̇x

+η2
(

α̇l
y + Cφx

φ̇y

)

C2
αl
x
Sαl

y
+η4

(

α̇l
y + Cφx

φ̇y

)

Cαl
x
Cαl

y

+η2
(

Sαl
y
φ̇x − Cαl

y
Sφx

φ̇y

)

Sαl
x
Cαl

x
Sαl

y
−η4Sαl

x
Sαl

y
α̇l
x

+γ2
(

α̇l
x + Cαl

y
φ̇x

)

Cφx
Sαl

x
+η3Cαl

x

(

Sαl
y
φ̇x − Cαl

y
Sφx

φ̇y

)

+γ2
(

Cαl
y
α̇l
x + φ̇x

)

Sφx
Cαl

x
+γ2Cαl

x

(

Cαl
y
Sφx

α̇l
y + Sαl

y
Cφx

φ̇x

)

−
(

η2 + γ2Sαl
x
Sφx

)

Sαl
y
α̇l
y −γ2Sαl

x
Sαl

y
Sφx

α̇l
x

η4Cαl
x
Sφx

(

Sφx
φ̇y + Sαl

y
α̇l
x

)

+η4Sαl
x
Cαl

y
Sφx

(

Cφx
φ̇y + α̇l

y

)

+η3Cαl
x
Cφx

(

Sφx
φ̇y + Sαl

y
α̇l
x

)

γ2Cφy
Sαl

x
Cαl

y
α̇l
x

+η3Sαl
x
Cαl

y
Cφx

(

Cφx
φ̇y + α̇l

y

)

+
(

η3Cφx
+ η4Sφx

)

Sαl
x
Cαl

y
α̇l
x

+η2Sαl
x
Cαl

x
C2

φx
φ̇y

(

1 + C2
αl
y

)

+
(

η3Cφx
+ η4Sφx

)

Cαl
x
Sαl

y
α̇l
y

+η2Cαl
x
Cαl

y
φ̇y

(

Sαl
x
Cαl

y
− 2Cαl

x
Sφx

Cφx

)

+
(

η3Cφx
+ η4Sφx

)

Cαl
x
Sαl

y
Cφx

φ̇y

+η2Sφx
Cαl

y

(

α̇l
y + Cφx

φ̇y

)

−η2Sφx

(

C2
αl
x
S2
αl
y
φ̇x + Cαl

y
α̇l
x

)

+η2Cφx
Cαl

x

(

Cαl
x
Sαl

y
φ̇x − Sαl

x
α̇l
y

)

+η2Sφx
Cαl

x
Sαl

x
Sαl

y

(

α̇l
y + Cφx

φ̇y

)

−η2Sφx
Cαl

x
Cαl

y

(

Cαl
x
α̇l
y + Sαl

x
Sαl

y
φ̇x

)

−η2C
2
αl
x
Cαl

y

(

Sφx
α̇l
x + C2

φx
Sαl

y
φ̇y

)

+γ2Cφy

(

Cαl
x
Sαl

y
α̇l
x + Sαl

x
Cαl

y
α̇l
y

)

+η2C
2
αl
x
Cαl

y
Sαl

y
φ̇y

+γ2Cφx
Sφy

Cαl
x

(

φ̇x + Cαl
y
α̇l
x

)

−η2Cφx
Sαl

x
Cαl

x
α̇l
x

+γ2Sφx
Cφy

Cαl
x
φ̇y +γ2Cαl

x
Sφy

(

Cφx
Cαl

y
α̇l
y − Sφx

Sαl
y
φ̇x

)

−γ2Sφy
Sαl

x

(

Sαl
y
φ̇y + Sφx

α̇l
x

)

+γ2Cαl
x
Sαl

y
Cφy

(

α̇l
y + Cφx

φ̇y

)

+γ2Sαl
x
Cαl

y

(

Cφx
Cφy

φ̇y − Sφx
Sφy

φ̇x

)

+γ2Sφy

(

Cαl
x
Cαl

y
φ̇y − Cφx

Sαl
x
Sαl

y
α̇l
x

)

−γ2Cφx
Sφy

Sαl
x
Sαl

y
α̇l
y







































































































































,

(A.27)

131

Cφαr
(q, q̇)=





































































































































−η4Cαr
x

(

φ̇x + Cαr
y
α̇r
x

)

−η2S
2
αr
x
Sαr

y
α̇r
x

+η4Sαr
x
Sαr

y

(

α̇r
y + Cφx

φ̇y

)

+η2C
2
αr
x
C2

αr
y
Sφx

φ̇y

+η3Sαr
x

(

α̇r
x + Cαr

y
φ̇x

)

+η2
(

α̇r
y + Cφx

φ̇y

)

Sαr
x
Cαr

x
Cαr

y

+
(

η3Sαr
x
Sφx
− η2Cφx

)

Sαr
y
φ̇y −η2C

2
αr
x
Cαr

y
Sαr

y
φ̇x

+η2
(

α̇r
y + Cφx

φ̇y

)

C2
αr
x
Sαr

y
−η4

(

α̇r
y + Cφx

φ̇y

)

Cαr
x
Cαr

y

+η2
(

Sαr
y
φ̇x − Cαr

y
Sφx

φ̇y

)

Sαr
x
Cαr

x
Sαr

y
+η4Sαr

x
Sαr

y
α̇r
x

+γ2
(

α̇r
x + Cαr

y
φ̇x

)

Cφx
Sαr

x
+η3Cαr

x

(

Sαr
y
φ̇x − Cαr

y
Sφx

φ̇y

)

+γ2
(

Cαr
y
α̇r
x + φ̇x

)

Sφx
Cαr

x
+γ2Cαr

x

(

Cαr
y
Sφx

α̇r
y + Sαr

y
Cφx

φ̇x

)

−
(

η2 + γ2Sαr
x
Sφx

)

Sαr
y
α̇r
y −γ2Sαr

x
Sαr

y
Sφx

α̇r
x

−η4Cαr
x
Sφx

(

Sφx
φ̇y + Sαr

y
α̇r
x

)

−η4Sαr
x
Cαr

y
Sφx

(

Cφx
φ̇y + α̇r

y

)

+η3Cαr
x
Cφx

(

Sφx
φ̇y + Sαr

y
α̇r
x

)

γ2Cφy
Sαr

x
Cαr

y
α̇r
x

+η3Sαr
x
Cαr

y
Cφx

(

Cφx
φ̇y + α̇r

y

)

+
(

η3Cφx
− η4Sφx

)

Sαr
x
Cαr

y
α̇r
x

+η2Sαr
x
Cαr

x
C2

φx
φ̇y

(

1 + C2
αr
y

)

+
(

η3Cφx
− η4Sφx

)

Cαr
x
Sαr

y
α̇r
y

+η2Cαr
x
Cαr

y
φ̇y

(

Sαr
x
Cαr

y
− 2Cαr

x
Sφx

Cφx

)

+
(

η3Cφx
− η4Sφx

)

Cαr
x
Sαr

y
Cφx

φ̇y

+η2Sφx
Cαr

y

(

α̇r
y + Cφx

φ̇y

)

−η2Sφx

(

C2
αr
x
S2
αr
y
φ̇x + Cαr

y
α̇r
x

)

+η2Cφx
Cαr

x

(

Cαr
x
Sαr

y
φ̇x − Sαr

x
α̇r
y

)

+η2Sφx
Cαr

x
Sαr

x
Sαr

y

(

α̇r
y + Cφx

φ̇y

)

−η2Sφx
Cαr

x
Cαr

y

(

Cαr
x
α̇r
y + Sαr

x
Sαr

y
φ̇x

)

−η2C
2
αr
x
Cαr

y

(

Sφx
α̇r
x + C2

φx
Sαr

y
φ̇y

)

+γ2Cφy

(

Cαr
x
Sαr

y
α̇r
x + Sαr

x
Cαr

y
α̇r
y

)

+η2C
2
αr
x
Cαr

y
Sαr

y
φ̇y

+γ2Cφx
Sφy

Cαr
x

(

φ̇x + Cαr
y
α̇r
x

)

−η2Cφx
Sαr

x
Cαr

x
α̇r
x

+γ2Sφx
Cφy

Cαr
x
φ̇y +γ2Cαr

x
Sφy

(

Cφx
Cαr

y
α̇r
y − Sφx

Sαr
y
φ̇x

)

−γ2Sφy
Sαr

x

(

Sαr
y
φ̇y + Sφx

α̇r
x

)

+γ2Cαr
x
Sαr

y
Cφy

(

α̇r
y + Cφx

φ̇y

)

+γ2Sαr
x
Cαr

y

(

Cφx
Cφy

φ̇y − Sφx
Sφy

φ̇x

)

+γ2Sφy

(

Cαr
x
Cαr

y
φ̇y − Cφx

Sαr
x
Sαr

y
α̇r
x

)

−γ2Cφx
Sφy

Sαr
x
Sαr

y
α̇r
y





































































































































,

(A.28)

132 Dynamic model for the 3D ballbot with a pair of 2-DOF arms

Cφφ(q, q̇)=

































































































































(

Ibzz − I
b
xx

)

Sφy
Cφy

φ̇x

−η2Cφx

(

Sαl
y
α̇l
x + Sαr

y
α̇r
x

)

+S2φx

(

η5 − η6
)

− η2S2φx
φ̇y

+η1Sφx
Cφx

φ̇y + η3φ̇y

(

Sαl
x
+ Sαr

x

)

+η2Sφx

(

C2
αl
x
C2

αl
y
α̇l
y + C2

αr
x
C2

αr
y
α̇r
y

)

(

η3 − η2Cαl
x
Cαl

y

)

Sαl
x
Cαl

y
α̇l
x −η2φ̇y

(

Cαl
x
Cαl

y
Sαl

x
+ Cαr

x
Cαr

y
Sαr

x

)

+
(

η3 − η2Cαl
x
Cαl

y

)

Cαl
x
Sαl

y
α̇l
y +η4φ̇y

(

Cαr
x
Cαr

y
− Cαl

x
Cαl

y

)

+
(

η3 − η2Cαr
x
Cαr

y

)

Sαr
x
Cαr

y
α̇r
x +η2Cφx

(

C2
αl
x
Sαl

y
α̇l
x + C2

αr
x
Sαr

y
α̇r
x

)

+
(

η3 − η2Cαr
x
Cαr

y

)

Cαr
x
Sαr

y
α̇r
y +η2Sφx

Cφx
φ̇y

(

C2
αl
x
+ C2

αr
x

)

+γ2Sφx

(

Cαl
x
α̇l
x + Cαr

x
α̇r
x

)

−2η3C
2
φx
φ̇y

(

Sαl
x
+ Sαr

x

)

+γ2Cφx

(

Sαl
x
Cαl

y
α̇l
x + Cαl

x
Sαl

y
α̇l
y

)

+η2Cφx

(

Sαl
x
Cαl

x
Cαl

y
+ Sαr

x
Cαr

x
Cαr

y

)

+γ2
(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

Sφx
φ̇x +η4Cφx

(

Cαl
x
Cαl

y
α̇l
y − Cαr

x
Cαr

y
α̇r
y

)

+γ2Cφx

(

Sαr
x
Cαr

y
α̇r
x + Cαr

x
Sαr

y
α̇r
y

)

−η3Sφx

(

Cαl
x
Cαl

y
α̇l
y + Cαr

x
Cαr

y
α̇r
y

)

+
(

Ibzz − I
b
xx

)

Sφy
Cφy

φ̇y −η4Cφx

(

Sαl
x
Sαl

y
α̇l
x − Sαr

x
Sαr

y
α̇r
x

)

+
(

η4 + η2Sαl
x

)

Cαl
x
α̇l
x +η2C

2
φx
φ̇y

(

S2αl
x
Cαl

y
+ S2αr

x
Cαr

y

)

−
(

γ1 + 2γ3
)

Sφx
φ̇x +η3Sφx

(

Sαl
x
Sαl

y
α̇l
x + Sαr

x
Sαr

y
α̇r
x

)

−
(

η4 − η2Sαr
x

)

Cαr
x
α̇r
x +η4S2φx

φ̇y

(

Sαr
x
− Sαl

x

)

+γ2Cφx
φ̇x

(

Sαl
x
+ Sαr

x

)

+2
(

η4Cφx
− η3Sφx

)

Cαl
x
Cαl

y
Cφx

φ̇y

−2
(

η4Cφx
+ η3Sφx

)

Cαr
x
Cαr

y
Cφx

φ̇y

+η2
(

C2
αl
x
C2

αl
y
+ C2

αr
x
C2

αr
y

)

Sφx
Cφx

φ̇y

−η2Sφx
Cαl

x
Cαl

y
Sαl

x
Sαl

y
α̇l
x

−η2Sφx
Cαr

x
Cαr

y
Sαr

x
Sαr

y
α̇r
x

C21
φφ(q, q̇) C22

φφ(q, q̇)

































































































































.

(A.29)

The contents of the second row elements ofCφφ(q, q̇) are given below.

C21
φφ(q, q̇) =

(

Ibxx − I
b
zz

)

Sφy
Cφy

φ̇x +
(

η6 − η5 + η2 −
1

2
η1
)

S2φx
φ̇y − η3

(

Sαl
x
+ Sαr

x

)

φ̇y

−η2
(

C2
αl
x
S2
αl
y
Sφx

α̇l
y + C2

αr
x
S2
αr
y
Sφx

α̇r
y

)

+ η4
(

Cαl
x
Cαl

y
− Cαr

x
Cαr

y

)

φ̇y

133

−(γ1 + 2γ3)
(

Cφx
Sφy

φ̇x + Sφx
Cφy

φ̇y

)

+ 2η3C
2
φx

(

Sαl
x
+ Sαr

x

)

φ̇y

+η2
(

Sαl
x
Cαl

x
Cαl

y
+ Sαr

x
Cαr

x
Cαr

y

)

φ̇y − η3
(

Cαl
x
Sαl

y
+ Cαr

x
Sαr

y

)

Cφx
φ̇x

−η2
(

Sαl
x
Cαl

x
Sαl

y
+ Sαr

x
Cαr

x
Sαr

y

)

Sφx
φ̇x − η2

(

C2
αl
x
+ C2

αr
x

)

Sφx
Cφx

φ̇y

+η2Cφx

(

C2
αl
x
Sαl

y
α̇l
x + C2

αr
x
Sαr

y
α̇r
x

)

+ η4
(

Cαr
x
Sαr

x
− Cαl

x
Sαl

x

)

Sφx
φ̇x

+γ2Cφx
Sφy

(

Cαl
x
α̇l
x + Cαr

x
α̇r
x

)

+ γ2
(

Sαl
x
+ Sαr

x

)

Cφx
Cφy

φ̇y

+η4S2φx

(

Sαl
x
− Sαr

x

)

φ̇y + η2
(

C2
αl
x
Sαl

y
Cαl

y
+ C2

αr
x
Sαr

y
Cαr

y

)

Cφx
φ̇x

−η2
(

Cαl
x
Sαl

x
Cαl

y
+ C2

αr
x
Sαr

x
Cαr

y

)

C2
φx
φ̇y − γ2Sφx

Sφy

(

Sαl
x
+ Sαr

x

)

φ̇x

+2η4
(

Cαr
x
Cαr

y
− Cαl

x
Cαl

y

)

C2
φx
φ̇y − η2

(

C2
αl
x
C2

αl
y
+ C2

αr
x
C2

αr
y

)

Sφx
Cφx

φ̇y

+η3
(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

S2φx
φ̇y + γ2Cαl

x
Cαl

y

(

Cφx
Sφy

φ̇x + Sφx
Cφy

φ̇y

)

+γ2Cαr
x
Cαr

y

(

Cφx
Sφy

φ̇x + Sφx
Cφy

φ̇y

)

− γ2Sφx
Sφy

(

Sαl
x
Cαl

y
α̇l
x + Cαl

x
Sαl

y
α̇l
y

)

−γ2Sφx
Sφy

(

Sαr
x
Cαr

y
α̇r
x + Cαr

x
Sαr

y
α̇r
y

)

− η2Sφx
Cαl

x
Cαl

y
Sαl

x
Sαl

y
α̇l
x

−η2Sφx
Cαr

x
Cαr

y
Sαr

x
Sαr

y
α̇r
x (A.30)

C22
φφ(q, q̇) =

(

η6 − η5 + η2 −
1

2
η1
)

S2φx
φ̇x + η4

(

Cαl
x
α̇l
x − Cαr

x
α̇r
x

)

− η3
(

Sαl
x
+ Sαr

x

)

φ̇x

+η2
(

Sαl
x
Cαl

x
Cαr

x
+ Sαr

x
Cαr

x
Cαr

x

)

φ̇x +
1

2
η2S2φx

(

Cαl
y
α̇l
x + Cαr

y
α̇r
x

)

+η4
(

Cαl
x
Cαl

y
− Cαr

x
Cαr

y

)

φ̇x + η2Cαl
x
Cαl

y

(

Sαl
x
Cαl

y
α̇l
x + Cαl

x
Sαl

y
α̇l
y

)

+η2Cαr
x
Cαr

y

(

Sαr
x
Cαr

y
α̇r
x + Cαr

x
Sαr

y
α̇r
y

)

−
(

γ1 + 2γ3
)(

Sφx
Cφy

φ̇x + Cφx
Sφy

φ̇y

)

−η2C
2
φx

(

Sαl
x
Cαl

y
α̇l
x + Sαr

x
Cαr

y
α̇r
x

)

−
1

2
η2
(

C2
αl
x
+ C2

αr
x

)

S2φx
φ̇x

−η4C
2
φx

(

Cαl
x
α̇l
x − Cαr

x
α̇r
x

)

+ 2η3
(

Sαl
x
+ Sαr

x

)

C2
φx
φ̇x

+γ2Sφy

(

Cαl
x
Cαl

y
α̇l
y + Cαr

x
Cαr

y
α̇r
y

)

+ γ2
(

Cαl
x
Sαl

y
+ Cαr

x
Sαr

y

)

Cφy
φ̇y

+
1

2
η3S2φx

(

Cαl
x
α̇l
x + Cαr

x
α̇r
x

)

+ γ2Sφx
Cφy

(

Cαl
x
α̇l
x + Cαr

x
α̇r
x

)

+γ2
(

Sαl
x
+ Sαr

x

)

Cφx
Cφy

φ̇x + η4
(

Sαl
x
− Sαr

x

)

S2φx
φ̇x

−2η2
(

Sαl
x
Cαl

x
Cαl

y
+ Sαr

x
Cαr

x
Cαr

y

)

C2
φx
φ̇x − γ2Sφy

(

Sαl
x
Sαl

y
α̇l
x + Sαr

x
Sαr

y
α̇r
x

)

−η2S2φx

(

C2
αl
x
Cαl

y
α̇l
x + C2

αr
x
Cαr

y
α̇r
x − Sαr

x

)

− γ2
(

Sαl
x
+ Sαr

x

)

Sφx
Sφy

φ̇y

−2η4
(

Cαl
x
Cαl

y
− Cαr

x
Cαr

y

)

C2
φx
φ̇x + η3C

2
φx

(

Sαl
x
Cαl

y
α̇l
x + Cαl

x
Sαl

y
α̇l
y

)

+η3C
2
φx

(

Sαr
x
Cαr

y
α̇r
x + Cαr

x
Sαr

y
α̇r
y

)

− η2C
2
φx
Cαl

x
Cαl

y

(

Sαl
x
Cαl

y
α̇l
x + Cαl

x
Sαl

y
α̇l
y

)

−η2C
2
φx
Cαr

x
Cαr

y

(

Sαr
x
Cαr

y
α̇r
x + Cαr

x
Sαr

y
α̇r
y

)

−
1

2
η2
(

C2
αl
x
C2

αl
y
+ C2

αr
x
C2

αr
y

)

S2φx
φ̇x

134 Dynamic model for the 3D ballbot with a pair of 2-DOF arms

+
1

2
η2S2φx

(

Sαl
x
Cαl

x
Sαl

y
α̇l
y + Sαr

x
Cαr

x
Sαr

y
α̇r
y

)

+ η3
(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

S2φx
φ̇x

+γ2Cφx
Cφy

(

Sαl
x
Cαl

y
α̇l
x + Cαl

x
Sαl

y
α̇l
y

)

+ γ2Cφx
Cφy

(

Sαr
x
Cαr

y
α̇r
x + Cαr

x
Sαr

y
α̇r
y

)

+
1

2
η4S2φx

(

Sαl
x
Cαl

y
α̇l
x + Cαl

x
Sαl

y
α̇l
y

)

−
1

2
η4S2φx

(

Sαr
x
Cαr

y
α̇r
x + Cαr

x
Sαr

y
α̇r
y

)

+γ2
(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)(

Sφx
Cφy

φ̇x + Cφx
Sφy

φ̇y

)

(A.31)

The vector of gravitational forcesG(q) in Eq.A.1 is given by:

G(q)=













0

Gαl
(qs)

Gαr
(qs)

Gφ(qs)













, (A.32)

where eachGij ∈ R
2×1 is given below.

Gαl(q)=

















χ2

(

Sφx
Cφy

Cαl
x
− Sφy

Sαl
x
Sαl

y
+ Cφx

Cφy
Sαl

x
Cαl

y

)

χ2Cαl
x

(

Sφy
Cαl

y
+ Cφx

Cφy
Sαl

y

)

















, (A.33)

Gαr(q)=

















χ2

(

Sφx
Cφy

Cαr
x
− Sφy

Sαr
x
Sαr

y
+ Cφx

Cφy
Sαr

x
Cαr

y

)

χ2Cαr
x

(

Sφy
Cαr

y
+ Cφx

Cφy
Sαr

y

)

















, (A.34)

Gφ(q)=

























Cφy

(

χ2

(

Cφx

(

Sαl
x
+ Sαr

x

)

+ Sφx

(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

))

)

−
(

χ1 + 2χ3

)

Sφx
Cφy

χ2

(

Cφy

(

Cαl
x
Sαl

y
+ Cαr

x
Sαr

y

)

+ Sφy

(

Cφx

(

Cαl
x
Cαl

y
+ Cαr

x
Cαr

y

)

− Sφx

(

Sαl
x
+ Sαr

x

))

)

−
(

χ1 + 2χ3

)

Cφx
Sφy

























.

(A.35)

Appendix B

Verification of properties for

shape-accelerated balancing systems

Section4.1.2presented a list of properties that shape-accelerated balancing systems satisfy, and

some of these properties are exploited in the design of the shape trajectory planner presented in

Sec.4.2. The ballbot both with and without arms is a shape-accelerated balancing system, and

this appendix verifies that the dynamics of the ballbot satisfy the properties of shape-accelerated

balancing systems listed in Sec.4.1.2.

B.1 The 3D ballbot without arms

The dynamics of the 3D ballbot model without arms presented in Sec.3.3.1is verified to satisfy

all properties of shape-accelerated balancing systems listed in Sec.4.1.2as follows.

(a) The ball anglesθ = [θx, θy]
T ∈ R

2×1 form the position variablesqx, while the body angles

φ = [φx, φy]
T ∈ R

2×1 form the shape variablesqs. All position variables are actuated, while

all the shape variables are unactuated,i.e., nsa = 0. Therefore, the number of actuated

variables equals the number of position variables.

(b) The ballbot without arms has one unactuated shape set,i.e. the body anglesφ ∈ R
2×1, and

no actuated shape sets.

136 Verification of properties for shape-accelerated balancing systems

(c) The vector of gravitational forces shown earlier in Eq.3.5 is given by

G(q) =













0

0

−mbgℓb sin (φx) cos (φy)

−mbgℓb cos (φx) sin (φy)













∈ R
4×1, (B.1)

wheremb is the mass of the body,ℓb is the height of the body center of mass from the ball

center, andg is the acceleration due to gravity. These system parameterscan be found in

Table3.1.

It can be seen from Eq.B.1 that the vector of gravitational forcesG(q) is a function of only

the shape variablesqs and is independent of the position variablesqx.

(d) The vector of Coriolis and centrifugal forces can be obtained from Eq.3.4as follows:

C(q, q̇)q̇ =















−γ2

(

Cφx
Sφy

(

φ̇2
x + φ̇2

y

)

+ 2Sφx
Cφy

φ̇xφ̇y

)

γ2Sφx
φ̇2
x

Sφx

(

− γ2φ̇
2
x + γ3Cφx

φ̇2
y

)

−γ2Cφx
Sφy

(

φ̇2
x + φ̇2

y

)

− 2Sφx
φ̇xφ̇y

(

γ2Cφy
+ γ3Cφx

)















∈ R
4×1,(B.2)

whereCi = cos (i), Si = sin (i), γ2 = mbℓbr, andγ3 = mbℓ
2 + Ibyy − I

b
zz.

It can be seen from Eq.B.2 that the vector of Coriolis and centrifugal forcesC(q, q̇)q̇ is

independent of both the position and velocity of position variables,i.e., qx andq̇x.

(e) The system matrices obtained by the Jacobian linearization at the origin are given below.

A =











































0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0
−ξ1
ξ3

0 0 0 0

0 0
ξ1
ξ4

0 0 0 0 0

0 0
ξ2
ξ4

0 0 0 0 0

0 0 0
−ξ2
ξ3

0 0 0 0











































∈ R
8×8, (B.3)

B.1 The 3D ballbot without arms 137

B =











































0 0

0 0

0 0

0 0
−ξ5
ξ3

0

0
−ξ6
ξ4

0
−ξ7
ξ4

ξ7
ξ3

0











































∈ R
8×2, (B.4)

where, ξ1 = mbgℓb
(

Iw + mbℓbr + (mb + mw)r
2
)

, ξ2 = mbgℓb
(

Iw + (mb + mw)r
2
)

,

ξ3 = Iw(I
b
yy +mbℓ

2
b) + Ibyyr

2(mb +mw) +mbmwℓ
2
br

2, ξ4 = Iw(I
b
xx +mbℓ

2
b) + Ibxxr

2(mb +

mw)+mbmwℓ
2
br

2, ξ5 = Iw+I
b
yy+2mbℓbr+(mb+mw)r

2+mbℓ
2
b , ξ6 = Iw+I

b
xx+2mbℓbr+

(mb +mw)r
2 +mbℓ

2
b , andξ7 = Iw +mbℓbr + (mb +mw)r

2.

The pair (A,B) formed by the linear system matrices shown in Eq.B.3 and Eq.B.4 is con-

trollable if the controllability matrixP shown in Eq.B.5 has full row rank.

P =
[

B AB A2B A3B A4B A5B A6B A7B
]

∈ R
8×16 (B.5)

Sinceξ1 to ξ7 are all positive and non-zero, it can be verified that the controllability matrix

P has full row rank,i.e., rank(P) = 8.

(f) The system is said to have unstable zero dynamics [44] if the matrix given below is negative

definite.

∂
(

M−1
susu

(qs)Gsu(qs)
)

∂qsu

∣

∣

∣

∣

qs=0

=
−ρ2

ρ1(ρ1+Ibxx+I
b
yy)+I

b
xxI

b
yy

[

ρ1+I
b
yy 0

0 ρ1+I
b
xx

]

∈ R
2×2,

(B.6)

whereρ1 = Iw +mwr
2 +mb(ℓb + r)2 andρ2 = mbgℓb.

It can be seen that the Jacobian linearization at the origin shown in Eq.B.6 is a function only

of the system parameters and is always negative definite.

(g) The system is said to have locally strong inertial coupling [118] if the matrix given below is

138 Verification of properties for shape-accelerated balancing systems

invertible.

Msux(qs) =

[

−γ2Sφx
Sφy

−γ1 − γ2Cφx

γ1 + γ2Cφx
Cφy

0

]

∈ R
2×2, (B.7)

whereCi = cos (i), Si = sin (i), γ1 = Iw+(mb+mw)r
2 andγ2 = mbℓr, and its determinant

is given by:

det(Msux(qs)) = (γ1 + γ2Cφx
)(γ1 + γ2Cφx

Cφy
). (B.8)

The matrixMsux(qs) shown in Eq.B.7 loses its rank when its determinant shown in Eq.B.8

is zero. This happens when eithercosφx = −
γ1
γ2

or cosφx cosφy = −
γ1
γ2

. Sinceγ1 andγ2

are both positive, eithercosφx or cosφx cosφy must be negative for the matrixMsux(qs) to

lose rank. But this will not happen forφx ∈
[

−
π

2
,
π

2

]

andφy ∈
[

−
π

2
,
π

2

]

irrespective

of the values ofγ1 andγ2. Therefore,Msux(qs)
−1 exists for the entire range of body angle

values of interest. This ensures that the system has locallystrong inertial coupling [118].

(h) The Jacobian linearization of the vector of gravitational forces corresponding to the unactu-

ated shape variablesGsu(qs) w.r.t. qs at qs = 0 is given by:

∂Gsu(qs)

∂qs

∣

∣

∣

∣

qs=0

= −mbgℓb

[

1 0

0 1

]

∈ R
2×2. (B.9)

It can be seen from Eq.B.9 that the Jacobian linearization ofGsu(qs) w.r.t. qs at the origin is

a function of only the system parameters, and it always exists and is invertible.

(i) The Jacobian linearization ofMsux(qs)
−1Gsu(qs) w.r.t. qs at qs = 0 is given by:

∂
(

Msux(qs)
−1Gsu(qs)

)

∂qs

∣

∣

∣

∣

qs=0

=
mbgℓb
γ1 + γ2

[

0 −1

1 0

]

∈ R
2×2, (B.10)

whereγ1 = Iw + (mb +mw)r
2 andγ2 = mbℓr.

It can be seen from Eq.B.10that the Jacobian linearization ofMsux(qs)
−1Gsu(qs) w.r.t. qs at

the origin is a function of only the system parameters, and italways exists and is invertible.

B.2 The 3D ballbot with a pair of 2-DOF arms 139

B.2 The 3D ballbot with a pair of 2-DOF arms

The dynamics of the 3D ballbot model with a pair of 2-DOF arms presented in AppendixA is

verified to satisfy all properties of shape-accelerated balancing systems listed in Sec.4.1.2as

follows.

(a) The ball anglesθ = [θx, θy]
T ∈ R

2×1 form the actuated position variablesqx, while the body

anglesφ = [φx, φy]
T ∈ R

2×1 form the unactuated shape variablesqsu, and the arm angles

[αl, αr]T = [αl
x, α

l
y, α

r
x, α

r
y]

T ∈ R
4×1 form the actuated shape variablesqsa . Therefore,

number of unactuated variables equals the number of position variables.

(b) The ballbot with a pair of 2-DOF arms has one unactuated shape set,i.e. the body angles

φ ∈ R
2×1, and two actuated shape sets, one for each arm,i.e., the left arm anglesαl ∈ R

2×1

and the right arm anglesαr ∈ R
2×1 .

(c) The vector of gravitational forces for the ballbot with arms shown earlier in Eq.A.32 is given

by

G(q)=













0

Gαl
(qs)

Gαr
(qs)

Gφ(qs)













∈ R
8×1, (B.11)

where eachGij(qs) ∈ R
2×1 can be found in Eq.A.33−A.35.

It can be seen from Eq.B.11that the vector of gravitational forcesG(q) is a function of only

the shape variablesqs = [αl, αr, φ]T , and is independent of the position variablesqx.

(d) The vector of Coriolis and centrifugal forces can be obtained from Eq.A.19 as follows:

C(q, q̇)q̇ =













Cθαl(qs, q̇s)α̇
l + Cθαr(qs, q̇s)α̇

r + Cθφ(qs, q̇s)φ̇ ∈ R
2×1

Cαlαl(qs, q̇s)α̇
l + Cαlφ(qs, q̇s)φ̇ ∈ R

2×1

Cαrαr(qs, q̇s)α̇
r + Cαrφ(qs, q̇s)φ̇ ∈ R

2×1

Cφαl(qs, q̇s)α̇
l + Cφαr(qs, q̇s)α̇

r + Cφφ(qs, q̇s)φ̇ ∈ R
2×1













∈ R
8×1,

(B.12)

where eachCij(qs, q̇s) ∈ R
2×2 can be found in Eq.A.20−A.29.

It can be seen from Eq.B.12 that the vector of Coriolis and centrifugal forcesC(q, q̇)q̇ is

independent of both the position and velocity of position variables,i.e., qx andq̇x.

(e) The linear system matrices obtained by the Jacobian linearization of the nonlinear model at

140 Verification of properties for shape-accelerated balancing systems

the origin are given below.

A=



















































08×8 I 8×8

0 0 0
̺11
̺7

0
̺11
̺7

0 −
̺1
̺7

0 0 −
̺12
̺8

0 −
̺12
̺8

0
̺2
̺8

0

0 0 −
̺13
̺8̺10

0
̺14
̺8̺10

0 −
̺3
̺8

0

0 0 0 −
̺15
̺7̺9

0
̺16
̺7̺9

0 −
̺4
̺7

08×8

0 0
̺14
̺8̺10

0 −
̺13
̺8̺10

0 −
̺3
̺8

0

0 0 0
̺16
̺7̺9

0 −
̺15
̺7̺9

0 −
̺4
̺7

0 0 −
̺17
̺8

0 −
̺17
̺8

0
̺5
̺8

0

0 0 0 −
̺18
̺7

0 −
̺18
̺7

0
̺6
̺7



















































∈ R
16×16,

(B.13)

B=





























































08×6

̺19
̺7

0 0
̺21
̺7

0
̺21
̺7

0
̺20
̺8

̺22
̺8

0
̺22
̺8

0

0
̺22
̺8

̺25
̺8

0
̺26
̺8̺10

0

̺21
̺7

0 0
̺30
̺7̺9

0
̺28
̺7̺9

0
̺22
̺8

̺26
̺8̺10

0
̺25
̺8

0

̺21
̺7

0 0
̺28
̺7̺9

0
̺30
̺7̺9

0
̺23
̺8

−
̺27
̺8

0 −
̺27
̺8

0

−
̺24
̺7

0 0
̺29
̺7

0
̺29
̺7





























































∈ R
16×6, (B.14)

where̺1 to ̺30 are non-zero, positive functions of system parameters.

The pair (A,B) formed by the linear system matrices shown in Eq.B.13 and Eq.B.14 is

B.2 The 3D ballbot with a pair of 2-DOF arms 141

controllable if the controllability matrixP shown in Eq.B.15has full row rank.

P =
[

B AB A2B A3B A4B · · · A14B A15B
]

∈ R
16×96 (B.15)

Since̺1 to ̺30 are all positive and non-zero, it can be verified that the controllability matrix

P has full row rank,i.e., rank(P) = 16.

(f) The system is said to have unstable zero dynamics [44] if the matrix given below is negative

definite.

∂
(

M−1
susu

(qs)Gsu(qs)
)

∂qsu

∣

∣

∣

∣

qs=0

=
−ρ4
ρ5

[

ρ3+I
b
yy 0

0 ρ3+2η6+I
b
xx

]

∈ R
2×2,

(B.16)

whereη6 = mad
y
a
2, ρ3 = Iw +mwr

2 + mb(ℓb + r)2 + 2ma(d
z
a − ℓa + r)2, ρ4 = mbgℓb +

2mag(d
z
a − ℓa), andρ5 = ρ3(ρ3+2η6+I

b
xx+I

b
yy)+I

b
yy(I

b
xx+2η6).

It can be seen that the Jacobian linearization at the origin shown in Eq.B.16 is a function

only of the system parameters and their values are such that the Jacobian linearization at the

origin is always negative definite.

(g) The system is said to have locally strong inertial coupling [118] if the matrixMsux(qs) ∈

R
2×2 shown inA.15 is invertible. Its determinant is given by:

det(Msux(qs)) =

(

β + ϕ

)(

β + ϕCφy
+ γ2Sφy

(

Cαl
x
Sαl

y
+ Cαr

x
Sαr

y

)

)

, (B.17)

whereCi = cos (i), Si = sin (i), β = Iw +
(

mw +mb + 2ma

)

r2, γ1 = mbℓbr, γ2 = maℓar,

γ3 = mad
z
ar, andϕ = Sφx

(

γ2(Sαl
x
+ Sαr

x
)
)

+ Cφx

(

γ1 + 2γ3 − γ2(Cαl
x
Cαl

y
+ Cαr

x
Cαr

y
)
)

.

It can be numerically shown that thedet(Msux(qs)) 6= 0, ∀qs ∈

[

−π

2
,
π

2

]

. Therefore,

Msux(qs)
−1 exists in a large neighborhood around the origin and hence the system has locally

strong inertial coupling [118].

(h) The Jacobian linearization of the vector of gravitational forces corresponding to the unactu-

ated shape variablesGsu(qs) w.r.t. qs at qs = 0 is given by:

∂Gsu(qs)

∂qs

∣

∣

∣

∣

qs=0

=

[

∂Gsu(qs)

∂αl

∣

∣

∣

∣

qs=0

,
∂Gsu(qs)

∂αr

∣

∣

∣

∣

qs=0

,
∂Gsu(qs)

∂φ

∣

∣

∣

∣

qs=0

]

∈ R
2×6, (B.18)

142 Verification of properties for shape-accelerated balancing systems

∂Gsu(qs)

∂αl

∣

∣

∣

∣

qs=0

= χ2

[

1 0

0 1

]

∈ R
2×2, (B.19)

∂Gsu(qs)

∂αr

∣

∣

∣

∣

qs=0

= χ2

[

1 0

0 1

]

∈ R
2×2, (B.20)

∂Gsu(qs)

∂φ

∣

∣

∣

∣

qs=0

= −(χ1 − 2χ2 + 2χ3)

[

1 0

0 1

]

∈ R
2×2, (B.21)

whereχ1 = mbgℓb, χ2 = magℓa, andχ3 = magd
z
a.

It can be seen from Eq.B.18that the Jacobian linearization ofGsu(qs) w.r.t. qs at the origin is

a function of only the system parameters, and it always exists but is not invertible. However,

the Jacobian linearization ofGsu(qs) w.r.t. every single shape set at the origin shown in

Eq.B.19−B.21exists and is invertible.

(i) The Jacobian linearization ofMsux(qs)
−1Gsu(qs) w.r.t. every shape set atqs = 0 are given

below.

∂
(

Msux(qs)
−1Gsu(qs)

)

∂αl

∣

∣

∣

∣

qs=0

=
χ2

β + γ1 − 2γ2 + 2γ3

[

0 1

−1 0

]

∈ R
2×2, (B.22)

∂
(

Msux(qs)
−1Gsu(qs)

)

∂αr

∣

∣

∣

∣

qs=0

=
χ2

β + γ1 − 2γ2 + 2γ3

[

0 1

−1 0

]

∈ R
2×2, (B.23)

∂
(

Msux(qs)
−1Gsu(qs)

)

∂φ

∣

∣

∣

∣

qs=0

=
χ1 − 2χ2 + 2χ3

β + γ1 − 2γ2 + 2γ3

[

0 −1

1 0

]

∈ R
2×2, (B.24)

whereγ1 = mbℓbr, γ2 = maℓar, γ3 = mad
z
ar, χ1 = mbgℓb, χ2 = magℓa, andχ3 = magd

z
a.

The Jacobian linearization ofMsux(qs)
−1Gsu(qs) w.r.t. qs at the origin is a function of

only the system parameters, and it always exists but is not invertible. However, the Jaco-

bian linearization ofMsux(qs)
−1Gsu(qs) w.r.t. every single shape set at the origin shown in

Eq.B.22−B.24exists and is invertible.

Appendix C

Software architecture

One of the major contributions of the work presented in this thesis is the development of the

software architecture that enabled the ballbot to achieve all the experimental results presented in

this thesis. This appendix presents a brief description of the ballbot’s software architecture.

The ballbot has two single-board computers on its decks: (i) a single-core computer running

QNX real-time operating system, and (ii) a dual-core computer running Ubuntu 10.04 LTS oper-

ating system. The QNX computer performs low-level control operations like balancing control,

arm control, yaw control and leg control. These control operations include reading low-level

sensors like IMU, absolute yaw encoder, ball encoders, arm encoders and leg encoders, and

also include providing motor commands to ball, arm, yaw and leg motors. The Linux computer

performs high-level operations like localization and motion planning. These operations include

reading the laser scanner data to update an occupany grid mapof the environment. The QNX

and Linux computers communicate with each other using sockets via a wired connection.

The ballbot’s software architecture includes a graphical user interface (GUI), which allows

the user to monitor and control the ballbot. This graphical user interface is run on a laptop, which

wirelessly communicates with the ballbot’s Linux computerusing sockets. The graphical user

interface also includes a joystick controller that allows the user to control the ballbot using a

joystick. A high-level overview of the ballbot’s software architecture is shown in Fig.C.1.

144 Software architecture

Balancing Control

Arm Control

Yaw Control

Leg Control

Low-level
Control Thread

@ 500 Hz

IMU Thread
@ 100 Hz

Yaw Encoder Thread
@ 500 Hz

Ball Encoders

Arm Encoders

Leg Encoders

Ball Motors

Arm Motors

Yaw Motors

Leg Motors

Socket Thread 2
@ 500 Hz

Socket Thread 1
@ 10 Hz

Motor
Commands

User
Commands

System
Data

Odometry
Data

Motion Policy
Commands

Socket Thread 2
@ 500 Hz

Odometry
Data

Motion Policy
Commands

Socket Thread 1
@ 10 Hz

User
Commands

System
Data

Laser Scanner Thread
@ 500 Hz

Odometry
Data

Motion Policy
Commands

Motion Policy
Planner Thread

@ 500 Hz

Occupancy Thread
@ 500 Hz

Localization Thread
@ 500 Hz

Socket Thread 3
@ 10 Hz

User
Commands

System
DataMotion Policy

Data

Occupancy Data

Socket Thread
@ 10 Hz

Laser Data

GUI Thread
@ 10 Hz

Occupancy
DataUser

Commands

System
Data Laser

Data

User
Commands

System Data
Laser Data

Occupancy Data

Joystick Thread
@ 10 Hz

QNX
Computer

Linux
Computer

Laptop

Wired
Connection

Wired
Connection

Wireless
Connection

Figure C.1: A high-level overview of the ballbot’s software architecture.

Appendix D

Links to the ballbot videos

Chapters3−5 presented several successful experimental results on the ballbot, and links to the

videos of the ballbot achieving these results are listed below.

D.1. Introduction to the ballbot:

http://www.youtube.com/watch?v=39zeZwlVaN0

D.2. Human-robot physical interaction with the ballbot:

http://www.youtube.com/watch?v=miZ_ebjoiFY

D.3. Fast motions for the ballbot without arms:

http://www.youtube.com/watch?v=Wd03f_6utA8

D.4. Planning in high-dimensional shape space:

http://www.youtube.com/watch?v=YX3DuIA9FLo

D.5. Planning with additional arm constraints:

http://www.youtube.com/watch?v=BW78KmmB9IU

D.6. Fast maneuvers for the ballbot without arms:

http://www.youtube.com/watch?v=VWAF3jTZLgw

D.7. Graceful navigation to achieve point-point and surveillance tasks:

http://www.youtube.com/watch?v=tzNKiGq5oaA

D.8. Surveillance motion with ten goals, and point-point motion with dynamic obstacles:

http://www.youtube.com/watch?v=tLDjZDRA1uE

D.9. Graceful navigation using regions:

http://www.youtube.com/watch?v=Ss7gsC3rQkk

http://www.youtube.com/watch?v=39zeZwlVaN0
http://www.youtube.com/watch?v=miZ_ebjoiFY
http://www.youtube.com/watch?v=Wd03f_6utA8
http://www.youtube.com/watch?v=YX3DuIA9FLo
http://www.youtube.com/watch?v=BW78KmmB9IU
http://www.youtube.com/watch?v=VWAF3jTZLgw
http://www.youtube.com/watch?v=tzNKiGq5oaA
http://www.youtube.com/watch?v=tLDjZDRA1uE
http://www.youtube.com/watch?v=Ss7gsC3rQkk

146 Links to the ballbot videos

Bibliography

[1] Pierre-Antoine Absil and Rodolphe Sepulchre. A hybrid control scheme for swing-up

acrobatics. InProceedings of the 5th European Control Conference, pages 2860–2864,

2001.13

[2] F. Amirabdollahian, R. Loureiro, and W. Harwin. Minimum jerk trajectory control for re-

habilitation and haptic applications. InProc. IEEE International Conference on Robotics

and Automation, pages 3380–3385, 2002.6

[3] Anybots. http://anybots.com.11

[4] G. Baltus, D. Fox, F. Gemperle, J. Goetz, T. Hirsch, D. Magaritis, M. Montemerlo,

J. Pineau, N. Roy, J. Schulte, and S. Thrun. Towards personal service robots for the el-

derly. InProc. Workshop on Interactive Robotics and Entertainment (WIRE), Pittsburgh,

PA, 2000.xiii , 2

[5] C. Belta, V. Iser, and G. J. Pappas. Discrete abstractions for robot planning and control in

polygonal environments.IEEE Transactions on Robotics, 21(5):864–874, 2005.15

[6] J. Biswas, B. Coltin, and M. Veloso. Corrective gradient refinement for mobile robot lo-

calization. InIntelligent Robots and Systems (IROS), 2011 IEEE International Conference

on. IEEE, 2011.99, 100

[7] Anthony M. Bloch, P. S. Krishnaprasad, Jerrold E. Marsden, and Richard M. Murray.

Nonholonomic mechanical systems with symmetry.Arch. Rational Mech. Anal., 136:

21–99, 1996.13

[8] R. W. Brockett. Formal languages for motion description and map making.Robotics, RI:

Amer. Math. Soc., 41:181–193, 1990.15

[9] F. Bullo and A. D. Lewis. Kinematic controllability and motion planning for the snake-

board.IEEE Transactions on Robotics and Automation, 19:494–498, 2003.13

148 Bibliography

[10] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequentialcomposition of dynamically

dexterous robot behaviors.The International Journal of Robotics Research, 18(6):534–

555, 1999.xvii , 14, 76, 77, 78, 85, 109, 113

[11] D. C. Conner, Howie Choset, and A. A. Rizzi. Integrated planning and control for convex-

bodied nonholonomic systems using local feedback. InProc. Robotics: Science and Sys-

tems II, pages 57–64, 2006.14, 76, 77, 78, 89, 109, 113

[12] P. Deegan, B. Thibodeau, and R. Grupen. Designing a self-stabilizing robot for dynamic

mobile manipulation.Robotics: Science and Systems - Workshop on Manipulation for

Human Environments, 2006.11

[13] P. Deegan, B. Thibodeau, and R. Grupen. Designing a self-stabilizing robot for dynamic

mobile manipulation. InRobotics: Science and Systems - Workshop on Manipulation for

Human Environments, August 2006.3

[14] P. Deegan, R. Grupen, A. Hanson, E. Horrell, S. Ou, E. Riseman, S. Sen, B. Thibodeau,

A. Williams, and D. Xie. Mobile manipulators for assisted living in residential settings.

Autonomous Robots, Special Issue on Socially Assistive Robotics, 24(2):179–192, 2008.

11

[15] S. Devasia and B. Paden. Exact output tracking for nonlinear time-varying systems. In

IEEE International Conference on Decision and Control, volume 3, pages 2346–2355,

1994.12

[16] S. Devasia, D. Chen, and B. Paden. Nonlinear inversion-based output tracking. InIEEE

Transactions on Automatic Control, volume 41, pages 930–942, 1996.12

[17] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-

matik, 1(1):269–271, 1959.89

[18] Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.Com-

puter, 22(6):46–57, 1989.96, 99

[19] T. Flash and N. Hogan. The coordination of arm movements: an experimentally confirmed

mathematical model.Journal of Neuroscience, 5:1688–1703, 1985.6

[20] E. Frazzoli.Robust Hybrid Control for Autonomous Vehicle Motion Planning. PhD thesis,

Massachusetts Institute of Technology, June 2001.16

[21] E. Frazzoli. Explicit solutions for optimal maneuver-based motion planning. InProc.

IEEE Conference on Decision and Control, volume 4, pages 3372–3377, 2003.16

149

[22] E. Frazzoli, M. A. Dahleh, and E. Feron. Robust hybrid control for autonomous vehicle

motion planning. InProc. IEEE Conference on Decision and Control, pages 821–826,

2000.16

[23] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motionplanning for agile autonomous

vehicles.AIAA J. Guid., Control, Dynam., 25(1), 2002.16

[24] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-basedmotion planning for nonlinear

systems with symmetries.IEEE Transactions on Robotics, 21(6), 2005.16, 79, 82

[25] V. Gavrilets, E. Frazzoli, B. Mettler, M. Piedmonte, andE. Feron. Aggressive maneuver-

ing of small autonomous helicopters: A human-centered approach.International Journal

of Robotics Research, 20(10), 2001.16

[26] N. Getz. Control of balance for a nonlinear nonholonomicnon-minimum phase model of

a bicycle. InAmerican Control Conference, 1994, volume 1, pages 148 – 151, 1994.12

[27] Neil Getz and J. Karl Hedrick. An internal equilibrium manifold method of tracking

for nonlinear nonminimum phase systems. Inin 1995 American Control Conference,

(Seattle), American Automatic Control Council, pages 2241–2245, 1995.12

[28] Neil H. Getz. Tracking with balance. Inin 13th IFAC Triennial World Congress, San

Francisco, USA, 1996.12

[29] Neil Holden Getz.Dynamic Inversion of Nonlinear Maps with Applications to Nonlinear

Control and Robotics. PhD thesis, University of California at Berkeley, December 1995.

12, 47

[30] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale

constrained optimization.SIAM Review, 47(1):99–132, 2005.59, 112

[31] J.W. Grizzle, Jonathan Hurst, Benjamin Morris, Hae-WonPark, and Koushil Sreenath.

Mabel, a new robotic bipedal walker and runner. InAmerican Control Conference, St.

Louis, MO, June 2009.3

[32] Shilpa Gulati and Benjamin Kuipers. High performance control for graceful motion of an

intelligent wheelchair. InProc. IEEE International Conference on Robotics and Automa-

tion, pages 3932–3938, 2008.6

[33] Y.-S. Ha and S. Yuta. Trajectory tracking control for navigation of self-contained mobile

inverse pendulum. InProc. IEEE/RSJ Int’l. Conf. on Intelligent Robots and Systems, pages

1875–1882, 1994.11

150 Bibliography

[34] Y.S. Ha and S. Yuta. Indoor navigation of an inverse pendulum type autonomous mobile

robot with adaptive stabilization control system. InExperimental Robotics IV, Int’l. Symp.,

pages 529–37, 1997.11

[35] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlinear program-

ming and collocation.AIAA J. Guidance, 10(4):338–342, 1987.58, 112

[36] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis forthe heuristic determination

of minimum cost paths.IEEE Transactions on Systems Science and Cybernetics, 4(2):

100–107, 1968.89

[37] Ross Hatton and Howie Choset. Connection vector fields for underactuated systems. In

Proceedings of IEEE/RAS-EMBS International Conference on Biomedical Robotics and

Biomechatronics, pages 451–456, 2008.13

[38] Lászĺo Havasi. ERROSphere: an equilibrator robot.Intl. Conf. on Control and Automa-

tion, pages 971–976, June 27-29 2005.11

[39] S. Hirose.Biologically Inspired Robots: Snake-like Locomotors and Manipulators. Ox-

ford University Press, Oxford, 1993.13

[40] N. Hogan. An organizing principle for a class of voluntary movements.Journal of Neu-

roscience, 4:2745–2754, 1984.6

[41] Ralph Hollis. Ballbots.Scientific American, pages 72–78, Oct 2006.xiii , 2, 3, 17, 99

[42] T. M. Howard and A. Kelly. Optimal rough terrain trajectory generation for wheeled

mobile robots. InIEEE International Conference on Robotics and Automation, pages

2399–2404, 2005.12

[43] iBot. http://www.ibotnow.com.11

[44] A. Isidori. Nonlinear Control Systems. Springer-Verlag, 1989.12, 47, 137, 141

[45] A. Isidori and C. I. Byrnes. Output regulation of nonlinear systems.IEEE Transactions

on Automatic Control, 35(2):131–140, 1990.12

[46] G. Kantor and A. A. Rizzi. Feedback control of underactuated systems via sequential

composition: Visually guided control of a unicycle. In11th International Symposium of

Robotics Research, Siena, Italy, October 2003.14

[47] R. Kelly, J. Llamas, and R. Campa. A measurement procedure for viscous and coulomb

friction. IEEE Transactions on Instrumentation and Measurement, 49(4):857–861, 2000.

151

28

[48] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, and A. Casal. Vehicle/arm

coordination and multiple mobile manipulator decentralized cooperation. InProc. of the

IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pages 546–553, Osaka, 1996.

xiii , 2

[49] Jongwoo Kim and J.P. Ostrowski. Motion planning a aerial robot using rapidly-exploring

random trees with dynamic constraints.IEEE International Conference on Robotics and

Automation, 2:2200–2205, Sept. 2003.12

[50] E. Klavins and D. E. Koditschek. A formalism for the composition of concurrent robot

behaviors. InProc. IEEE Int’l. Conf. on Robotics and Automation, volume 4, pages 3395–

3402, 2000.14

[51] Ross A. Knepper and Matthew T. Mason. Empirical samplingof path sets for local area

motion planning. InInternational Symposium on Experimental Robotics, 2008.80

[52] Ross A. Knepper and Matthew T. Mason. Path diversity is only part of the problem. In

IEEE International Conference on Robotics and Automation (ICRA), pages 3260–3265,

2009.80

[53] S. Koenig and M. Likachev. D* lite. InProc. 18th National Conf. on Artificial Intelligence,

pages 476–483, 2002.115

[54] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs.ACM Trans. Graphics (Special

Issue: Proc. ACM SIGGRAPH 2002), 21(3):473–482, 2002.15, 16

[55] Masaaki Kumagai and Takaya Ochiai. Development of a robot balancing on a ball.Intl.

Conf. on Control, Automation and Systems, 2008.11

[56] Masaaki Kumagai and Takaya Ochiai. Development of a robot balancing on a ball -

application of passive motion to transport. InProc. IEEE Int’l. Conf. on Robotics and

Automation, pages 4106–4111, 2009.11

[57] K. J. Kyriakopoulos and G. N. Saridis. Minimum jerk pathgeneration. InProc. IEEE

International Conference on Robotics and Automation, pages 364–369, 1988.6

[58] G. Lafferriere and H. Sussmann. Motion planning for controllable systems without drift.

In IEEE International Conference on Robotics and Automation, pages 1148–1153, 1991.

12

[59] J. P. Laumond.Robot Motion Planning and Control. Springer-Verlag New York, Inc.,

152 Bibliography

Secaucus, NJ, USA, 1998.12

[60] T. B. Lauwers, G. A. Kantor, and R. L. Hollis. A dynamicallystable single-wheeled mo-

bile robot with inverse mouse-ball drive. InProc. Int’l. Conf. on Robotics and Automation,

Orlando, FL, May 15-19 2006.xiii , 2, 17, 19

[61] Tom Lauwers, George Kantor, and Ralph Hollis. One is enough! In Proc. Int’l. Symp.

for Robotics Research, San Francisco, October 12-15 2005. Int’l. Foundation for Robotics

Research.6, 11, 17

[62] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. InTR

98-11, Computer Science Dept., Iowa State University, Oct. 1998.16

[63] Kenneth Levenberg. A method for the solution of certainnon-linear problems in least

squares.The Quarterly of Applied Mathematics, 2:164–168, 1944.55, 59

[64] Andrew Lewis, Jim Ostrowski, Richard Murray, and Joel Burdick. Nonholonomic me-

chanics and locomotion: The snakeboard example. InIn Proc. IEEE Int. Conf. Robotics

and Automation, pages 2391–2397, 1994.13

[65] A. Majumdar, M. Tobenkin, and R. Tedrake. Algebraic verification for parameterized

motion planning libraries. InProc. American Control Conference, 2012.16

[66] A.K. Mampetta. Automatic transition of ballbot from statically stable state to dynamically

stable state. Master’s thesis, Carnegie Mellon University,Pittsburgh, PA, 2006. CMU-RI-

TR-01-00.17, 35

[67] V. Manikonda, P. S. Krishnaprasad, and J. Hendler. A motion description language and a

hybrid architecture for motion planning with nonholonomicrobots. InProc. IEEE Int’l.

Conf. on Robotics and Automation, pages 2021–2028, 1995.15

[68] V. Manikonda, P. S. Krishnaprasad, and J. Hendler. Languages, behaviors, hybrid archi-

tectures and motion control.Mathematical Control Theory, pages 199–226, 1998.15

[69] A. Marigo and A. Bicchi. Steering driftless nonholonomic systems by control quanta. In

Proc. IEEE Conference on Decision and Control, pages 4164–4169, 1998.15, 16

[70] J.E. Marsden and M.J. Hoffman.Elementary classical analysis. W.H. Freeman, 1993.50,

51, 54

[71] R. M. Murray, Z. Li, and S. S. Sastry.A Mathematical Introduction to Robotic Manipula-

tion. CRC Press, Berkeley, 1994.60

153

[72] Umashankar Nagarajan. Dynamic constraint-based optimal shape trajectory planner for

shape-accelerated underactuated balancing systems. InProceedings of Robotics: Science

and Systems, Zaragoza, Spain, 2010.45, 75, 78, 80, 112

[73] Umashankar Nagarajan and Ralph Hollis. Shape space planner for shape-accelerated bal-

ancing mobile robots.International Journal of Robotics Research, 2012. (Under Review).

xiii , xiv, xv, xvi, xvii , xix, 4, 21, 25, 45, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 75, 112, 113, 119

[74] Umashankar Nagarajan, George Kantor, and Ralph Hollis.Trajectory planning and control

of an underactuated dynamically stable single spherical wheeled mobile robot. InIEEE

Int’l. Conf. on Robotics and Automation, pages 3743–3748, 2009.xiv, 20, 22, 112

[75] Umashankar Nagarajan, George Kantor, and Ralph Hollis.Human-robot physical interac-

tion with dynamically stable mobile robots.4th ACM/IEEE Int’l. Conf. on Human-Robot

Interaction, March 11-13 2009. (Short paper and video).xiii , xv, 3, 4, 18, 38, 39, 40, 41

[76] Umashankar Nagarajan, Anish Mampetta, George Kantor,and Ralph Hollis. State transi-

tion, balancing, station keeping, and yaw control for a dynamically stable single spherical

wheel mobile robot. InIEEE Int’l. Conf. on Robotics and Automation, pages 998–1003,

2009.xiii , xiv, xv, 8, 19, 22, 27, 28, 29, 31, 32, 33, 34, 36, 37, 112

[77] Umashankar Nagarajan, George Kantor, and Ralph Hollis.Hybrid control for naviga-

tion of shape-accelerated underactuated balancing systems. InProc. IEEE Conference on

Decision and Control, pages 3566–3571, 2010.xiii , 4, 77, 78, 82, 83, 109, 113

[78] Umashankar Nagarajan, George Kantor, and Ralph Hollis.Integrated planning and control

for graceful navigation of shape-accelerated underactuated balancing mobile robots. In

Proc. IEEE Int’l Conf. on Robotics and Automation, pages 136–141, St. Paul, USA, 2012.

xiii , xiv, xvii , xviii , 4, 22, 82, 83, 84, 92, 100, 101, 102, 104, 105, 113

[79] Umashankar Nagarajan, George Kantor, and Ralph Hollis.Integrated motion planning

and control for graceful balancing personal robots.International Journal of Robotics

Research, 2012. (Under Review).xiii , xiv, xvii , xviii , xix, 3, 4, 22, 80, 81, 83, 84, 88, 92,

94, 100, 101, 102, 103, 104, 105, 106, 107, 108, 113

[80] Umashankar Nagarajan, George Kantor, and Ralph Hollis.The ballbot: An omnidirec-

tional balancing mobile robot.International Journal of Robotics Research, 2012. (Under

Review).xiii , xiv, xv, 4, 18, 19, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40

154 Bibliography

[81] Umashankar Nagarajan, Byungjun Kim, and Ralph Hollis. Planning in high-dimensional

shape space for a single-wheeled balancing mobile robot with arms. InProc. IEEE Int’l

Conf. on Robotics and Automation, pages 130–135, St. Paul, USA, 2012.xiv, xv, xvi, xix,

20, 21, 25, 60, 61, 62, 63, 64, 65, 66, 67, 68, 75, 78, 80, 82, 113, 119

[82] J.A. Nelder and R. Mead. A simplex method for function minimization. The Computer

Journal, 7:308–313, 1964.55

[83] H. G. Nguyen, J. Morrell, K. Mullens, A. Burmeister, S. Miles, N. Farrington, K. Thomas,

and D. Gage. Segway robotic mobility platform. InSPIE Proc. 5609: Mobile Robots XVII,

Philadelphia, PA, October 2004.3, 11, 48

[84] R. W. O’Flaherty, R. G. Sanfelice, and A. R. Teel. A hybrid control strategy for robust

global swing-up of the pendubot. InProc. American Control Conference, pages 1424–

1429, 2008.13

[85] Reza Olfati-Saber. Nonlinear control and reduction of underactuated systems with sym-

metry II: Unactuated shape variables case. InProc. 40th IEEE Conference on Decision

and Control, pages 4164–4169, 2001.44, 46

[86] Reza Olfati-Saber.Nonlinear Control of Underactuated Mechanical Systems with Appli-

cation to Robotics and Aerospace Vehicles. PhD thesis, Massachusetts Institute of Tech-

nology, February 2001.12

[87] G. Oriolo and Y. Nakamura. Control of mechanical systemswith second-order nonholo-

nomic constraints: underactuated manipulators.Decision and Control, 1991., Proceedings

of the 30th IEEE Conference on, 3:2398–2403, 1991.12

[88] Giuseppe Oriolo and Yoshihiko Nakamura. Control of mechanical systems with second-

order nonholonomic constraints: Underactuated manipulators. InProc. 30th IEEE Con-

ference on Decision and Control, volume 3, pages 2398–2403, 1991.24, 26, 48

[89] James Patrick Ostrowski.The mechanics and control of undulatory robotic locomotion.

PhD thesis, California Institute of Technology, 1996.13

[90] Jim Ostrowski and Joel Burdick. Geometric perspectiveson the mechanics and control

of robotic locomotion. InIn Proc. International Symposium on Robotics Research, pages

487–504. Springer Verlag, 1995.13

[91] Jim Ostrowski and Joel Burdick. The geometric mechanicsof undulatory robotic locomo-

tion. International Journal of Robotics Research, 17:683–701, 1996.13

155

[92] J.P. Ostrowski. Computing reduced equations for robotic systems with constraints and

symmetries.Robotics and Automation, IEEE Transactions on, 15(1):111 –123, 1999.13

[93] S. Patel, S-H. Jung, J. P. Ostrowski, R. Rao, and C. J. Taylor. Sensor based door navigation

for a nonholonomic vehicle. InProc. IEEE Int’l. Conf. on Robotics and Automation, pages

3081–3086, 2002.14

[94] Mihail Pivtoraiko and Alonzo Kelly. Efficient constrained path planning via search in

state lattices. In8th International Symposium on Artificial Intelligence, Robotics and

Automation in Space, 2005.80

[95] Mihail Pivtoraiko, Ross A. Knepper, and Alonzo Kelly. Differentially constrained mobile

robot motion planning in state lattices.Journal of Field Robotics, 26(3):308–333, 2009.

80

[96] A. E. Quaid and A. A. Rizzi. Robust and efficient motion planning for a planar robot using

hybrid control. InProc. IEEE Int’l. Conf. on Robotics and Automation, pages 4021–4026,

2000.14

[97] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob Playter, and the BigDog Team.

Bigdog, the rough-terrain quadraped robot. InIn Proc. 17th World Congress of the Inter-

national Federation of Automatic Control, pages 10822–10825, 2008.3

[98] Muruhan Rathinam and Richard M. Murray. Configuration flatness of lagrangian systems

underactuated by one control. 1998.12

[99] J. R. Ray. Nonholonomic constraints.American Journal of Physics, 34:406–408, 1966.5

[100] Rezero. http://www.rezero.ethz.ch/projecten.html.11

[101] A. A. Rizzi. Hybrid control as a method for robot motion programming. InProc. IEEE

Int’l. Conf. on Robotics and Automation, volume 1, pages 832–837, 1998.14

[102] A. A. Rizzi, J. Gowdy, and R. L. Hollis. Distributed coordination in modular precision as-

sembly systems.The International Journal of Robotics Research, 20(10):819–838, 2001.

14

[103] Brandon Rohrer, Susan Fasoli, Hermano Igo Krebs, RichardHughes, Bruce Volpe, Walter

Frontera, Joel Stein, and Neville Hogan. Movement smoothness changes during stroke

recovery.Journal of Neuroscience, 22(18):8297–8304, 2002.6

[104] Per Rutquist and M. M. Edvall.PROPT - Matlab Optimal Control Software. Tomlab

Optimization Inc., Pullman, WA, USA, 2010.59, 112

156 Bibliography

[105] R. G. Sanfelice and A. R. Teel. A “throw-and-catch” hybrid control strategy for robust

global stabilization of nonlinear systems. InProc. American Control Conference, pages

3470–3475, 2007.13

[106] Agostino De Santis, Bruno Siciliano, Alessandro De Luca, and Antonio Bicchi. An atlas

of physical human-robot interaction.Mechanism and Machine Theory, 43(3):253–270,

2008.38

[107] Eric M. Schearer. Modeling dynamics and exploring control of a single-wheeled dy-

namically stable mobile robot with arms. Master’s thesis, Carnegie Mellon University,

Pittsburgh, PA, 2006. Report CMU-RI-TR-06-37.17

[108] Elie Shammas, Howie Choset, and Alfred Rizzi. Towards automated gait generation for

dynamic systems with non-holonomic constraints. InProc. IEEE Int’l. Conf. on Robotics

and Automation, pages 1630–1636, 2006.13

[109] Elie A. Shammas, Howie Choset, and Alfred Rizzi. Naturalgait generation techniques

for principally kinematic systems. InProceedings of Robotics: Science and Systems, June

2005.13

[110] Elie A. Shammas, Karen Schmidt, and Howie Choset. Natural gait generation techniques

for purely mechanical systems. InProceedings of IEEE International Conference on

Robotics and Automation, pages 3664–3669, 2005.13

[111] Elie A. Shammas, Howie Choset, and Alfred A. Rizzi. Towards a unified approach to mo-

tion planning for dynamic underactuated mechanical systems with non-holonomic con-

straints.International Journal of Robotics Research, 26:1075–1124, October 2007.13

[112] Elie A. Shammas, Howie Choset, and Alfred A. Rizzi. Geometric motion planning analy-

sis for two classes of underactuated mechanical systems.International Journal of Robotics

Research, 26:1043–1073, October 2007.13

[113] A. Shiriaev, J. W. Perram, and C. Canudas de Wit. Constructive tool for orbital stabiliza-

tion of underactuated nonlinear systems: Virtual constraints approach.IEEE Transactions

on Automatic Control, 50(8):1164–1176, 2005.12

[114] A. Shiriaev, L. B. Freidovich, and I. R. Manchester. Can wemake a robot ballerina perform

a pirouette? orbital stabilization of periodic motions of underactuated mechanical systems.

Annual Reviews in Control, 32:200–211, 2008.12

[115] A. Shiriaev, L. B. Freidovich, and S. V. Gusev. Transverse linearization for controlled

157

mechanical systems with several passive degrees of freedom. IEEE Transactions on Au-

tomatic Control, 55(4):893–906, 2010.12

[116] Reid Simmons, J. Fernandez, R. Goodwin, S. Koenig, and Joseph O’Sullivan. Xavier: An

autonomous mobile robot on the web.Robotics and Automation Magazine, 1999.xiii , 2

[117] Ole Jakob Sørdalen. Conversion of the kinematics of a car with n trailers into a chained

form. In IEEE International Conference on Robotics and Automation, pages 382–387,

1993.12

[118] Mark W. Spong. The control of underactuated mechanical systems. InFirst International

Conference on Mechatronics, Mexico City, 1994.5, 12, 43, 47, 137, 138, 141

[119] M.W. Spong. Partial feedback linearization of underactuated mechanical systems. In

Intelligent Robots and Systems ’94. ’Advanced Robotic Systems and the Real World’, IROS

’94. Proceedings of the IEEE/RSJ/GI International Conference on, volume 1, pages 314–

321, 1994.12

[120] M.W. Spong. The swing up control problem for the acrobot. Control Systems Magazine,

IEEE, 15(1):49–55, Feb 1995.12

[121] Anthony (Tony) Stentz. The D* algorithm for real-timeplanning of optimal traverses.

Technical Report CMU-RI-TR-94-37, Robotics Institute, CarnegieMellon University,

Pittsburgh, PA, October 1994.115

[122] M. Stilman, J. Olson, and W. Gloss. Golem Krang: Dynamically stable humanoid robot

for mobile manipulation. InIEEE Int’l Conf. on Robotics and Automation, pages 3304–

3309, 2010.11

[123] Y. Takahashi, S. Ogawa, and S. Machida. Step climbing using power assist wheel chair

robot with inverse pendulum control. InIEEE Intl. Conf. on Robotics and Automation,

pages 1360–65, 2000.11

[124] R. Tedrake. LQR-trees: Feedback motion planning on sparse randomized trees. InProc.

Robotics: Science and Systems IV, June 2009.16

[125] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts. LQR-trees: Feedback

motion planning via sums-of-squares verification.International Journal of Robotics Re-

search, 29(8), 2010.16, 116

[126] K. Teeyapan, J. Wang, T. Kunz, and M. Stilman. Robot limbo: Optimized planning and

control for dynamically stable robots under vertical obstacles. In IEEE Int’l Conf. on

158 Bibliography

Robotics and Automation, pages 4519–4524, 2010.11

[127] Sebastian Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, Frank Dellaert, Dieter Fox,

D. Haehnel, Chuck Rosenberg, Nicholas Roy, Jamieson Schulte, and D. Schulz. MIN-

ERVA: A second generation mobile tour-guide robot. InProc. of the IEEE Int’l Conf. on

Robotics and Automation (ICRA’99), 1999.xiii , 2

[128] M. M. Tobenkin, I. R. Manchester, and R. Tedrake. Invariant funnels around trajectories

using sum-of-squares programming. InProc. 18th IFAC World Congress, 2011.16, 116

[129] S. Tsai, E. Ferreira, and C. Paredis. Control of the gyrover: A single-wheel gyroscopically

stabilized robot. InIEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, October 1999.

35

[130] O. von Stryk and R. Bulirsch. Direct and indirect methodsfor trajectory optimization.

Annals of Operations Research, 37(1):357–373, 1992.58, 112

[131] Oskar von Stryk. Numerical solution of optimal control problems by direct collocation. In

in Optimal Control, (International Series in Numerical Mathematics 111, pages 129–143,

1993.58, 112

[132] H. Wang and et al. An experimental method for measuringthe moment of inertia of an

electric power wheelchair.Proc. 29th Annual Int’l. Conf. of IEEE EMB, pages 4798–4801,

2007.27

[133] Jingang Yi, Yizhai Zhang, and Dezhen Song. Autonomousmotorcycles for agile ma-

neuvers, part i: Dynamic modeling. InDecision and Control, 2009 held jointly with the

2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings ofthe 48th IEEE

Conference on, pages 4613–4618, 2009.12

[134] Jingang Yi, Yizhai Zhang, and Dezhen Song. Autonomousmotorcycles for agile maneu-

vers, part ii: Control systems design. InDecision and Control, 2009 held jointly with the

2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings ofthe 48th IEEE

Conference on, pages 4619–4624, 2009.12

[135] Mingjun Zhang and Tzyh-Jong Tarn. Hybrid control of the pendubot. Mechatronics,

IEEE/ASME Transactions on, 7(1):79 –86, 2002.13

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Thesis Objective
	Challenges
	The Need for Graceful Robot Motion
	Approach
	Planning in Shape Space
	Graceful Navigation

	Outline

	Related Work
	Balancing Mobile Robots
	Underactuated Systems
	Planning in Shape Space
	Hybrid Control

	The ballbot
	History
	System Description
	Four-Motor Inverse Mouse-Ball Drive
	Yaw Mechanism
	Legs
	Arms

	Dynamic Models
	3D Ballbot without Arms
	3D Ballbot with Arms

	Parameter Estimation Experiments
	Inertia Measurement
	Friction Modeling

	Control Architecture
	Balancing Control
	Outer Loop Control
	Yaw Control
	Leg Control

	Human–Ballbot Physical Interaction
	Ease of Mobility
	Robustness
	Human Intent Detection
	Learn and Repeat
	Ballbot Interface and Teleoperation

	Summary

	Planning in Shape Space
	Underactuated Mechanical Systems
	Position and Shape Variables
	Shape-Accelerated Balancing Systems
	Dynamic Constraints

	Dynamic Constraint-based Shape Trajectory Planner
	Shape and position space of equal dimensions
	High dimensional shape space
	Optimal Shape Trajectory Planner
	Planning with Additional Shape Constraints
	Control Architecture
	Characteristics of Desired Position Trajectories
	Choosing Weight Matrices
	Performance Comparison against Direct Collocation Methods

	Experimental Results with The Ballbot
	Pure Body Motion
	Pure Arm Motion
	Arm and Body Motion
	Constrained Arm Motion

	Summary

	Graceful Navigation
	Background
	Decoupled Planning and Control
	Sequential Composition - A Hybrid Control Approach
	Approach towards Graceful Navigation

	Motion Policy Design
	Motion Primitives
	Motion Policies
	Gracefully Prepares Relationship

	Integrated Motion Planning and Control
	Automatic Instantiation of Motion Policies
	Planning in Motion Policy Space
	Hybrid Control
	Dynamic Replanning
	Finding Invalid Motion Policies
	Finding Motion Policy Nodes to be Updated
	Update the Motion Policy Nodes

	Experimental Results with The Ballbot
	Experimental Setup
	Motion Policy Library
	Point-Point Motion
	Disturbance Handling
	Surveillance
	Dynamic Replanning

	Summary

	Conclusions and Future Work
	Contributions
	Future Work
	Shape Space Planning with Manipulation
	Navigating Large Maps
	Design of Invariant Motion Policy Domains
	Optimal Palette of Motion Policies
	Integrated Motion Planning and Control for Graceful Manipulation

	Dynamic model for the 3D ballbot with a pair of 2-DOF arms
	Verification of properties for shape-accelerated balancing systems
	The 3D ballbot without arms
	The 3D ballbot with a pair of 2-DOF arms

	Software architecture
	Links to the ballbot videos
	Bibliography

