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Abstract— This paper presents a hierarchical planning ar-
chitecture that generates vehicle trajectories that adapt to un-
certain, spatially-varying disturbance forces toward enhanced
tracking performance. The disturbance force is modeled as
a discrete conditional probability distribution that is updated
online by local measurements as the vehicle navigates. A global
planner identifies the optimal route to the goal and adapts
this route according to a cost metric derived from the belief
distribution on the disturbance force. A local planner embeds
the belief distribution in the trajectory generation process to
compute dynamically feasible trajectories along the global plan
that evolve with the belief. Simulation studies analyze and
demonstrate the increased trajectory tracking accuracy via the
proposed methodology with a single vehicle and the impact
of the approach to multiple agents performing collaborative
inference toward enhanced collective performance.

I. INTRODUCTION

The success of an autonomous micro air vehicle (MAV)
executing a complex mission hinges on its ability to plan
trajectories that accomplish the mission objectives and track
them accurately. For example, a persistent surveillance mis-
sion requires a MAV or team of MAVs to make repeated trips
through an environment to maintain situational awareness.
The trajectories are planned around sensor constraints, so
poor tracking may lead to constraint violation and degrade
the information collected [1].

However, MAVs must often operate in environments with
significant disturbances to their motion stemming from bulk
fluid flow due to pressure differentials, parasitic drag, ground
effect, and other unmodeled external forces acting on the
vehicle [2]. This is especially challenging for vehicles with
limited capabilities, such as MAVs, that prevent them from
simply rejecting the effects of disturbances through feedback
control. Using robust or adaptive control to follow a trajec-
tory is insufficient as the effects of the disturbance force
may warrant selecting an alternate trajectory that can be
tracked more accurately or require less energy usage (e.g.,
by avoiding turbulent regions or exploiting a tailwind [3]).
Therefore, a MAV must be able to adapt its trajectories
to the effects of disturbances to operate reliably in these
environments.

Disturbances can vary in indoor and outdoor environments
due to uncertain air flow sources (e.g., HVAC systems, wind
flow). While many planning algorithms consider the effects
of external disturbances [1, 4, 5], they typically are not
amenable to fast replanning. Several online planners consider
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the vehicle’s dynamics when generating plans to guarantee
path feasibility [6, 7]. However, a spatially-varying distur-
bance force results in a time-varying vehicle model, making
it impractical to use methods that rely on precomputed
libraries or lookup-tables.

Robust planning algorithms select paths based on the dis-
turbances in the environment. Deterministic approaches con-
sider disturbance-invariant sets that effectively yield safety
tubes about a nominal path [8, 9]. Other techniques plan
for stochastic disturbances using metrics based on uncer-
tainty to inform their path cost [10, 11] or the exploration
process [12, 13]. However, these approaches are primarily
focused on generating paths that will take the vehicle to the
goal, rather than accurately tracking the path.

This highlights the need for an online, predictive path
planning algorithm that can account for vehicle dynamics
and uncertain disturbance forces in order to accurately follow
the computed trajectory. Therefore, we propose a hierarchical
adaptive planning architecture that estimates online the dis-
turbance force and uses this estimate to drive two planners: a
global planner that guides the vehicle to the goal and avoids
routes that will incur a high cost due to disturbances, and a
local planner that uses the disturbance estimates to generate
dynamically feasible trajectories about the global plan that
the vehicle can follow accurately.

The Closed-loop Rapidly-exploring Random Tree (CL-
RRT) algorithm is particularly well-suited to generating
dynamically feasible local trajectories, as it incorporates a
model of how the closed-loop system evolves over time
and uses forward-simulation to provide guarantees on path
feasibility [14]. Its ability to handle model uncertainty has
also been studied [10, 15]. However, we take an alternate
approach based on the observation that CL-RRT explores the
reachable space for a dynamic system [16]. By introducing
disturbance estimates in the forward-simulation process, we
generate a mapping between the reference space of the
closed-loop system and its reachable space in the presence
of external disturbances. The algorithm verifies that any tra-
jectory generated will satisfy all constraints given the current
estimate of the external disturbances in the environment.

II. APPROACH

We consider the problem of planning trajectories through
an environment in the presence of a spatially-varying distur-
bance force acting on a MAV or team of MAVs. To satisfy
mission-level requirements, we wish to select trajectories that
the MAV can execute accurately. Consequently, the planning
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Fig. 1. System architecture showing the hierarchical planner driven by the
disturbance force belief.

objective is not only to find trajectories to the goal, but also
to select trajectories that maximize tracking accuracy. These
two objectives motivate the use of a hierarchical adaptive
planning architecture. This architecture, outlined in Fig. 1,
enables the MAV to adapt its trajectory in response to an
online updated conditional probability distribution on the
disturbance force.

As the MAV moves through the environment, it can
estimate the disturbance force it experiences based on its
motion [17] or using measurements from onboard sensors,
such as artificial hair cells [18]. These measurements drive
an estimator (e.g., a Kalman filter) to maintain a belief dis-
tribution for the current disturbance force, D̃ ∼ N(µD,ΣD).
This Gaussian model is motivated by its use in [17], although
this merits further study, as discussed in Sect. IV. The current
belief is used to update a discrete conditional probability
distribution representing the uncertainty in the disturbance
force, as described in Sect. II-B. This continuously updated
disturbance belief map enables the MAV to plan trajectories
more intelligently by considering the effects of disturbance
forces on the performance of system.

A global planner computes a nominal trajectory through
the environment to guide the MAV to a specified goal
location. It adapts to the disturbance force by augmenting
its normal cost metric with a cost map generated from the
disturbance belief map, as described in Sect. II-C.1. The
local planner in Sect. II-C.2 is a modified CL-RRT planner.
It evaluates the effects of the disturbance force (based on
the current belief) on the motion of the MAV to compute
dynamically feasible trajectories about the global trajectory.
As the conditional distribution is updated over time, both
planners will adapt to the new information and generate
different trajectories that can be tracked more accurately.

A. Vehicle Model

To simplify the presentation of this planning architecture,
we consider a quadrotor MAV with mass m and inertia J
constrained to the world y-z plane and subject to an additive
disturbance force, as shown in Fig. 2. The equations of
motion in terms of position p = [y, z]T , pitch angle θ, and
the disturbance force D = [dy, dz]T are

mÿ = −F sin θ + dy

mz̈ = F cos θ −mg + dz (1)
Jθ̈ = M

y
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Fig. 2. The state space configuration for a 2-D quadrotor in the y-z plane
with pitch angle θ, inputs F and M , and external disturbance force D.

The total thrust F and pitch moment M are inputs that
can be mapped back to the speeds of the motors ωi [19],[
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We consider the vehicle motor dynamics via a saturated
first-order model of the motor RPM for a commanded ωdi

,

ω̇i = −km(ωi − ωdi
), ωmin ≤ ωi ≤ ωmax (3)

The parameters l, kF , and km are determined via experimen-
tal characterization [19] and are platform specific.

A nonlinear backstepping controller [20] enables a quadro-
tor to track a smooth reference trajectory pd(t) with the thrust
computed via:

Td = −kp(p− pd) − kv(ṗ− ṗd) −mge2 +mp̈d (4)

where e2 is a unit vector along the world z-axis. The desired
thrust defines a reference pitch angle θd for the inner loop
controller to track, and the inputs F and M are given by

F = [− sin θ cos θ]Td

M = −kR(θ − θd) − kΩ(θ̇ − θ̇d). (5)

B. Spatial Disturbance Model

The key component that allows the hierarchical planner
to adapt online is the model of the disturbance force. We
model the true disturbance force in a given environment as an
uncertain, spatially-varying process, and the net disturbance
forces observed by the vehicle at a set of locations in the
environment are samples drawn from this process. Adapting
the vehicle’s trajectory to the true disturbance field requires
reconstructing this process from these samples.

To do so, we represent the process as a discrete conditional
probability distribution, which can be viewed as a grid map
of local distributions. Although this is an approximation of
the continuous process, it provides a means of identifying
the true distribution in each grid cell, and the resolution of
the grid map can be selected to control the fidelity of the
discrete model to the continuous process. The conditional
distribution is updated in a distributed fashion with each grid
cell maintaining a local estimate of the disturbance force
using a Kalman filter. The evolution of the disturbance force
in a cell is modeled as

Dk+1 = Dk + wk, wk ∼ N(0,Σgrid),



where the covariance Σgrid defines the rate at which the
uncertainty about old estimates increases.

As the vehicle moves, the current estimate of D from
the disturbance estimator serves as a measurement for the
Kalman filter corresponding to its current position in the grid.
A simple measurement model

zk = µDk
+ vk, vk ∼ N(0,ΣDk

).

uses both the mean and the covariance of D̃ to update the
local estimate.

A prior for the conditional probability distribution can
often be constructed from earlier missions, environment
geometry, or other scenario-specific information [21]. This
will guide the MAV’s initial trajectory, while new disturbance
estimates update and refine the distribution.

C. Online Adaptive Planning

1) Global Planner: The main purpose of the global
planner is to guide the local planner toward the goal by taking
into account obstacles or other aspects of the environment
that are beyond the local planner’s horizon. In this work,
we employ A∗ search to identify a path to the goal and fit
a polynomial spline to it using an unconstrained quadratic
program [22]. This produces a nominal trajectory with con-
tinuous derivatives to better guide the local planner.

The global planner’s interaction with the disturbance force
is through a cost map derived from the discrete conditional
probability distribution. In order to avoid routes with strong
disturbances, we define the cost map to be the magnitude
of the mean of the disturbance estimate at each grid cell.
We then smooth the cost map via a discrete 2-D convolution
with a Gaussian kernel [23] to avoid sharp changes in cost
between cells.

2) Local Planner: We wish to ensure dynamic feasi-
bility of the local trajectory for accurate tracking, making
the Closed-loop RRT (CL-RRT) algorithm a prime candi-
date [14]. CL-RRT quickly generates trajectories by ran-
domly sampling reference points and simulating the closed-
loop dynamics of the system toward them to grow a tree of
trajectories. This simulation guarantees that all trajectories
will be feasible for the dynamic model and satisfy all
constraints by construction [15].

We include the effects of the disturbance force in the
dynamic model so that each branch represents the expected
trajectory of the vehicle subject to the current disturbance
force belief. The disturbance force at each simulation step
is sampled from the current grid cell’s distribution, D̃ ∼
N(µD,ΣD). As a result, a branch grown through a cell
with high covariance will be subject to a greater variety of
disturbances, reflecting the uncertainty about the disturbance
force at that location.

In each planning iteration, we grow a new tree to ex-
plore locally around the global trajectory since adding this
spatially-varying disturbance produces a time-varying system
model. The trajectory returned by CL-RRT is only selected
if it has a lower cost than the current trajectory re-simulated
with the updated disturbance belief. This prevents the planner
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Fig. 3. CL-RRT sampling distribution biased about the global A∗ trajectory

Fig. 4. Standard CL-RRT connects to the nearest-neighbor (red) while
RRT∗ connects to the min-cost node within the radius drawn (green). We
connect to the min-cost node of the k-nn (blue with neighbors highlighted)
to generate smooth branches that follow the global trajectory (orange).

from selecting higher-cost trajectories that may be found due
to random sampling and re-growing the tree.

3) Global and Local Interaction: The global planner gen-
erates a proposal trajectory for the vehicle to reach the goal
from its current position. However, to ensure trajectory fea-
sibility, the local planner must generate the actual reference
that is sent to the controller. To explore feasible deviations
from the global trajectory, we bias the sampling distribution
for the CL-RRT as shown in Fig. 3. Samples are drawn from
a Gaussian distribution whose mean follows a half-normal
distribution along the global trajectory. The Gaussian focuses
the search for feasible trajectories around this trajectory [24],
while the half-normal distribution prevents CL-RRT from
planning too far ahead with the current belief.

To reduce the dimension of the search space, we sample
from the space of differentially flat outputs, [y, z], rather than
the full reference space of the controller, [y, z, ẏ, ż, ÿ, z̈]. The
sample is then augmented with derivatives taken from the
projection of the sample onto the global trajectory [25]. This
produces branches that try to follow the global trajectory in
position, velocity, and acceleration.

RRT-based planners are also known to generate trajectories
with extraneous excursions simply due to the nature of explo-
ration through random sampling. However, the local planner
only needs to explore the region around the global trajectory
and should plan trajectories that follow it. Therefore, we
grow the branch from the lowest cost node of the k-nearest
neighbors (k-nn) to the sample point, as shown in Fig. 4. This
modified node selection approach produces smooth, lower-
cost trajectories that follow the global trajectory by avoiding
expensive excursions.
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Fig. 5. Distribution of the error between a CL-RRT trajectory and its
corresponding spline showing the accuracy of the spline fit.
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Fig. 6. (a) The proposed reference trajectory accounts for expected
disturbances. (b) Ignoring expected disturbances in reference trajectory
generation can result in infeasible trajectories.

4) Polynomial Trajectory Representation: CL-RRT pro-
duces a set of waypoints for the vehicle to follow [14, 26] and
not a smooth trajectory to track, e.g., using (5). Therefore,
we generate a smooth trajectory by fitting a spline to the CL-
RRT waypoints [22]. We preserve feasibility by constraining
the derivatives at each waypoint using state information from
CL-RRT branches. This produces a smooth trajectory that
accurately tracks the CL-RRT trajectory, as shown in Fig. 5.
Feasibility is verified by re-simulating the spline.

Including disturbances in CL-RRT may lead to a sig-
nificant difference between the reference and the expected
trajectories. Therefore, we re-simulate the reference without
disturbances and use the resulting trajectory for the spline
fit. Figure 6 illustrates the difference between tracking this
new reference and tracking the expected trajectory. CL-RRT
can also embed mission-level constraints in its plans, making
accurate tracking essential for feasibility. Therefore, this
approach minimizes tracking error, defined as the distance
between the actual trajectory and the expected trajectory
from CL-RRT.

III. SIMULATION RESULTS

To demonstrate the utility of this hierarchical adaptive
planning architecture, we consider a scenario in which the
2-D quadrotor must continuously fly between three known
targets (e.g., for persistent surveillance). The targets are
spread across a large environment with obstacles and an
uncertain, spatially-varying disturbance force (Fig. 7(a)). The
true disturbance force yields the corresponding cost map
in Fig. 7(b). The planner is provided with a prior on the
disturbance force belief, and the corresponding cost map is
shown in Fig. 7(c).

(a) True disturbance
y (m)

z
 (

m
)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

(b) True cost map
y (m)

z
 (

m
)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

(c) Cost map prior

Fig. 7. True disturbance force and corresponding cost maps for the true
and prior belief distributions. The color gradient from red to blue indicates
regions of high to low cost.

(a) No information case (b) Perfect information case

Fig. 8. Example trajectories showing the routes taken to the three targets
(blue dots) in the two limiting cases.

A. Single Vehicle Performance

We first consider a single quadrotor operating in this
environment. The effects of this adaptive planning architec-
ture are most evident when comparing the limiting cases of
planning with no information and with perfect information
about the disturbance force. In the first case, the quadrotor
plans using A∗ and CL-RRT without any adaptation to the
disturbances and selects the shortest paths between targets, as
shown in Fig. 8(a). With perfect information, A∗ avoids high-
disturbance regions, as seen from a comparison of Fig. 7(b)
and Fig. 8(b), while CL-RRT uses the disturbance force
belief to generate reference trajectories that the quadrotor
can track well.

Figure 9 shows snapshots of the 2-D quadrotor flying
between the three targets using the prior in Fig. 7(c). The top
image in each snapshot shows the current global trajectory
(red), the CL-RRT (yellow), the biased sampling distribution
(cyan), the local spline trajectory (green), and quadrotor’s
actual trajectory (magenta). The quadrotor initially follows
the same route as in the no-information case, since the prior
underestimates the disturbance force. However, as the belief
is updated, the planner adapts and alters its trajectories to
follow routes that are believed to have weaker disturbance
forces. For example, in Fig. 9(b), the quadrotor deviates from
the shortest path and flies under the lower-right obstacle,
which is believed to be a low-cost region. It avoids the known
regions of high cost, leading to it exploring different routes
suggested by the current belief. It eventually explores all
the viable routes and settles on trajectories through low-
disturbance regions as determined by the updated belief.
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Fig. 10. Tracking error for the adaptive planner remains well below the
feed-forward approach, even as the disturbance force magnitudes vary.

Figure 9(e) shows that once it has explored the map and
estimated the disturbance force along each route, the trajec-
tories follow the routes shown in Fig. 8(b).

As described earlier, the key metric for this adaptive
planning architecture is tracking error, due to the impor-
tance of following the expected trajectory. To illustrate its
performance, we compare it to an approach that tracks
the global A∗ trajectory with a feed-forward term in the
controller to compensate for the current disturbance force
belief. Since the quadrotor is expected to follow the global
trajectory, tracking error is defined as the deviation from the
smoothed A∗ trajectory. Figure 10 shows the percentage of
tracking error measurements below a given threshold for the
scenario in Fig. 9. The shallow slope for the adaptive planner
illustrates its ability to track the expected trajectory much
more accurately due to its use of CL-RRT to predict the
effects of the disturbance. Accuracy is also more consistent
than in the feed-forward case as the maximum magnitude of
the disturbance force is increased. The non-adaptive planner
from Fig. 8(a) is unable to avoid obstacles for a maximum
disturbance force greater than 1 N.

B. Multi-Agent Performance

This adaptive planning architecture is particularly effective
when applied to a multi-agent team. For simplicity, we
assume the agents form an ideal network and that the distur-
bance map is centrally managed. Inter-agent interactions can
be accounted for via a coordination strategy [27]. Figure 11
highlights a three-quadrotor mission scenario in which Agent
1 and Agent 2 initially must switch positions and select
the shortest paths to do so. However, Agent 2’s updates to
the disturbance map inform Agent 1’s global planner to re-
route and avoid a high-disturbance region without having
to traverse it. This enables the team to quickly identify the
best routes without multiple agents exploring each one and
improves tracking accuracy, as shown in Fig. 12.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a hierarchical adaptive
planning architecture that allows one or more micro air

(a) (b) (c)

Fig. 11. Snapshots of the three quadrotor scenario. (a) The agents on the
left both select shortest paths. (b) The updates to the disturbance map from
Agent 2 prompt Agent 1 to replan to avoid the high-disturbance region. (c)
The team converges to similar routes as in the single agent case.
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Fig. 12. Tracking error is reduced for two quadrotors in the multi-agent
case. The third is comparable to the single agent case.

vehicles to plan trajectories that can be tracked accurately
in the presence of an uncertain, spatially-varying disturbance
force. The discrete conditional probability distribution for the
disturbance force is updated online with local observations
as the vehicle traverses the environment. This enables the
global planner to select low-disturbance routes, while the
CL-RRT local planner ensures dynamic feasibility according
to the accuracy of the conditional distribution. The simulation
studies demonstrate the advantages of adapting at the planner
level, rather than compensating for the disturbance force at
the controller level.

We are presently working toward an experimental hard-
ware evaluation of the methodology which necessitates a
3-D real-time implementation on a mobile class processor.
Current results empirically suggest a two- or three-fold
increase in run-time complexity for an analogous high-
fidelity 3-D model [2], thereby restricting the rate of online
re-planning to 1 Hz or less. While these informal remarks
suggest that real-time evaluation is viable, we are interested
in pursuing a more precise characterization of the compu-
tational complexity of the proposed approach. We are also
interested in investigating alternate representations of the
conditional distribution that more accurately represent the
spatially-varying disturbance force and can capture spatial
correlation and variation over time, permitting the planner to
propagate its current belief to enhance its motion prediction
and reduce the dependence on the prior.
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Fig. 9. Snapshots of the 2-D quadrotor flying between three targets (first row) while updating its disturbance force belief (second row). (a) The quadrotor
initially takes the shortest path to the first target. (b) The belief is updated with the disturbances observed, biasing the trajectories toward routes believed to
be low-disturbances. (c) To re-visit the first target, it takes a different route to avoid the known high-disturbance region. (d) Similarly, it explores different
routes to the other targets while continuing to update the distribution. (e) Subsequent trajectories follow the routes found to have weaker disturbance forces.
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