
All-Pairs Bottleneck Paths For General Graphs
in Truly Sub-Cubic Time

Virginia Vassilevska∗

Computer Science Dept.
Carnegie Mellon University

Pittsburgh PA
virgi@cs.cmu.edu

Ryan Williams†

Computer Science Dept.
Carnegie Mellon University

Pittsburgh PA
ryanw@cs.cmu.edu

Raphael Yuster
Department of Mathematics

University of Haifa
Haifa, Israel

raphy@research.haifa.ac.il

ABSTRACT
In the all-pairs bottleneck paths (APBP) problem (a.k.a. all-
pairs maximum capacity paths), one is given a directed graph
with real non-negative capacities on its edges and is asked
to determine, for all pairs of vertices s and t, the capacity
of a single path for which a maximum amount of flow can
be routed from s to t. The APBP problem was first stud-
ied in operations research, shortly after the introduction of
maximum flows and all-pairs shortest paths.

We present the first truly sub-cubic algorithm for APBP
in general dense graphs. In particular, we give a procedure
for computing the (max, min)-product of two arbitrary ma-

trices over R ∪ {∞,−∞} in O(n2+ω/3) ≤ O(n2.792) time,
where n is the number of vertices and ω is the exponent for
matrix multiplication over rings. Using this procedure, an
explicit maximum bottleneck path for any pair of nodes can
be extracted in time linear in the length of the path.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems–Computations
on discrete structures; Geometrical problems and computa-
tions

General Terms
Algorithms, Theory

Keywords
bottleneck path, maximum capacity path, matrix multipli-
cation, sub-cubic time

1. INTRODUCTION
∗Supported by a Computer Science Department PhD Schol-
arship.
†Supported by the NSF ALADDIN Center and a grant from
Google, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07, June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

In recent years, researchers have found surprisingly strong
connections between the complexity of fundamental graph
problems and the complexity of matrix multiplication over a
ring. Much of the prominent work in this area [14, 7, 16, 21]
has developed fast algorithms for certain interesting cases
of the all-pairs shortest paths (APSP) problem in truly sub-
cubic time, i.e. O(n3−δ) for some constant δ > 0. Still,
it remains to be seen if the general APSP problem can be
solved in truly sub-cubic time. Several algorithms have been
given for solving APSP in n3−o(1) time; the most recent
development is by Chan [3] and runs in O(n3/ log2 n) time.

While we are still unable to give a bona fide sub-cubic
algorithm for APSP, we do present such an algorithm for an
intimately related problem: computing all-pairs bottleneck
paths in a graph. In this problem, one is given a directed
graph with (arbitrary) edge capacities, and the problem is
to report, for all pairs of vertices s, t, the maximum amount
of flow that can be routed from s to t along any single path.
(This amount is given by the smallest capacity edge on the
path, a.k.a. the bottleneck edge.) Our algorithm for APBP

runs in O(n2+ω/3) ≤ O(n2.792) time, where ω is the expo-
nent of matrix multiplication over a ring. We can also obtain
bottleneck paths: after Õ(n2+ω/3) preprocessing, we can re-
turn an explicit simple maximum capacity path between any
pair of vertices s, t in O(`) time, where ` is number of edges
in the returned path. That is, the algorithm can be used to
efficiently find bottleneck paths as well.

The APBP problem has been studied alongside APSP in
several contexts. Pollack [13] introduced APBP (calling it
the maximum capacity route problem), and showed how the
cubic APSP algorithms of that time could be modified to
solve it. Hu [9] proved that in undirected graphs, APBP
can be solved in O(n2) time by simply taking the paths in
a maximum spanning tree. The directed case of the prob-
lem has remained open until now, and recently appeared
as an explicit goal in [15]. Prior to our work, the best
known algorithm for the general case of APBP had been
O(mn+n2 log n) time (obtained by using Fredman and Tar-
jan’s implementation of Dijkstra [6]).

Our method for APBP is based on a new O(n2+ω/3) al-
gorithm for computing the (max, min)-product of two n×n
matrices with arbitrary entries from R ∪ {∞,−∞}.

Definition 1.1 The (max, min)-product of an n× ` matrix
A and `×m matrix B is the unique matrix C such that

C[i, j] = max
k=1,...,`

min{A[i, k], B[k, j]},

for all i = 1, . . . , n and j = 1, . . . , m.

The (max, min)-product is a natural generalization of the
Boolean matrix product to totally ordered sets of arbitrary
size. Besides its importance in flow problems, the (max, min)-
product is also an important operation in fuzzy logic, where
it is known as the composition of relations ([5], pp.73). The
ideas behind our (max, min)-product algorithm use ingredi-
ents from the dominance approaches of prior work; for more
details, see Section 4.

2. PRELIMINARIES
We use MT to denote the transpose of a matrix M . As is

typical, we define ω ≥ 2 to be the smallest real number such
that matrix multiplication over a ring is in O(nω+ε) arith-
metic operations, for all ε > 0. The best known upper bound
for ω is 2.376, given by Coppersmith and Winograd [4].

We use a special matrix product in our algorithms, first
defined by Matousek [12].

Definition 2.1 Given two n× n matrices A and B over a
totally ordered set, the dominance product C = A 4 B is
defined as

C[i, j] = |{k | A[i, k] ≤ B[k, j]}|, ∀i, j.

To deal with technical issues with weight functions, we
use the following definition.

Definition 2.2 Given a graph G = (V, E, w) with a weight
function w : E → R, the extension of w is the unique func-
tion w̃ : (V × V)→ R ∪ {−∞,∞} defined by:

w̃(u, v) :=

8

<

:

∞ if u = v
−∞ if (u, v) /∈ E
w(u, v) otherwise.

Throughout the paper, we shall assume that the weight
function under consideration is an extension of some other
weight function on edges.

Definition 2.3 Given a graph G = (V, E, w) with w : E →
R, a bottleneck edge of a path between vertices u and v is a
smallest weight edge on that path. A maximum bottleneck
path between u and v is a path whose bottleneck edge weight
is maximum over the bottleneck edge weights of all paths
from u to v.

2.1 Model of computation
We use the standard addition-comparison computational

model, along with random access to registers. In the algo-
rithms of this paper, the only operations we actually use on
real numbers are comparisons between them.

3. RELATED WORK
In addition to the work mentioned in the introduction,

there are a few other interesting results on APBP that de-
serve mention. Karger, Koller, and Phillips [10] show that
any “path comparison” algorithm (that only accesses edge
weights by comparing the weights of two different paths) re-
quires Ω(n3) time to compute both APSP and APBP. By
way of fast matrix multiplication, our algorithm performs
comparisons on rather unrelated pairs of edges, circumvent-
ing the above lower bound. Subramanian [17] proved that

on random (Erdös-Renyi) graphs, both APBP and APSP
can be solved in O(n2 log n) time.

Very recently, Shapira, Yuster, and Zwick [15] have given
algorithms for APBP in the special case where the vertices
have capacities, but not the edges. Their algorithms use
rectangular matrix multiplication, running in O(n2.58) time.
Note that the vertex-capacity case can be easily reduced to
the edge-capacity case, by setting the capacity of an edge
to be the minimum capacity of its two endpoints. Shapira,
Yuster, and Zwick’s algorithm relies on the linearity of the
number of weights. As the number of capacities in the
vertex-capacity case is only n, but the number in the edge-
capacity case can be Ω(n2), their techniques do not seem
to apply to the latter case. The authors of [15] also stated
the goal of finding a truly subcubic algorithm for (max, min)
matrix product as an open problem, which we resolve in this
paper.

4. THE DOMINANCE APPROACH
We begin by revisiting an approach used by Chan [2] and

Vassilevska and Williams [18] to find improved algorithms
for all-pairs shortest paths and maximum node weighted tri-
angles, respectively. In this approach, one reduces a weighted
graph problem to the dominating pairs problem from com-
putational geometry, then uses a fast algorithm for that
problem. (The dominating pairs problem gives a set of n
points X in k-dimensional space, and the task is to com-
pute all pairs (x, y) where x, y ∈ X and x[i] ≤ y[i], for all
coordinates i.)

Let MX be the n× k matrix whose rows are the points of
X. One way to determine dominating pairs is to compute
the dominance product of MX and MT

X , as defined in the
Preliminaries. Then, (MX 4MT

X)[i, j] = k if and only if (i, j)
is a dominating pair. The best known algorithm in terms of
n for the dominance product of two n×n matrices is due to
Matousek [12].

Theorem 4.1 (Matousek [12]) The dominance product of
two n× n matrices A and B with entries from a totally or-

dered set is computable in O(n
3+ω

2) time.

A nice advantage of the dominance approach is that sums
of pairs of elements can be quickly compared to a global
constant, which is useful in some weighted graph problems.
For example, suppose we are given a constant K and a graph
G = (V, E, w) where w : E → R, and we want to compute
for all pairs of vertices i, j whether there is a path of the
form i → k → j of total weight sum at least K. Then one
can set up matrices A and B so that

A[i, k] :=



K − w(i, k) if (i, k) ∈ E
∞ otherwise,

B[k, j] :=



w(k, j) if (k, j) ∈ E
−∞ otherwise.

Then (A4B)[i, j] 6= 0 if and only if there is a k for which
(i, k), (k, j) ∈ E and K − w(i, k) ≤ w(k, j), i.e. w(i, k) +
w(k, j) ≥ K. In this paper, we find a new application of the
dominance approach, culminating in a genuinely sub-cubic
algorithm for APBP.

5. SPARSE DOMINANCE PRODUCT
In our applications that use a dominance product, we shall

only want to perform comparisons with certain entries of
the matrices. For example, suppose matrices A and B are
over R ∪ {∞}, such that A has mostly ∞ entries, while
B has mostly finite entries. Then, in the computation of
the dominance product A 4 B, many of the comparisons
(A[i, k] ≤ B[k, j]) are false; it only makes sense to compare
the finite entries of A with entries in B. To this end, we
design a special algorithm for dominance product, in the
case where one wishes to ignore large portions of the A-
matrix.

Theorem 5.1 (Sparse Dominance Product) Let A and
B be n× n matrices with entries from a totally ordered set.
Let S ⊆ [n]× [n] such that |S| = m ≥ n. Let C be the matrix
such that

C[i, j] = |{k | (i, k) ∈ S and A[i, k] ≤ B[k, j]}|.
There is an algorithm SD that, given A, B, and S, outputs

C in O(
√

m · n 1+ω
2) time.

Proof. Call the entries of A with coordinates in S the
relevant entries of A. For every j = 1, . . . , n, let Lj be the
sorted list containing the relevant entries from A in column
j, along with the entries from BT in column j. Let gj be
the number of relevant entries of A in Lj , for all j. Clearly,
P

j gj = m. Pick a parameter r and partition each Lj into r
consecutive buckets, such that every bucket contains at most
dgj/re relevant entries of A. Note that the bucket sizes are
not necessarily uniform.

For every bucket number b = 1, . . . , r, create Boolean ma-
trices Ab and Bb:

Ab[i, j] :=



1 if A[i, j] is in bucket b of Lj

0 otherwise,

Bb[j, k] :=



1 if B[j, k] is in bucket b′ of Lj and b′ > b
0 otherwise.

For each bucket number b, compute Cb = Ab×Bb (where ×
is ring matrix multiplication). This step takes O(rnω) time
and computes for every pair i, k and bucket number b, the
number of j such that A[i, j] ≤ B[j, k], where A[i, j] is in
bucket b of Lj , and B[j, k] is in a different bucket of Lj .

Initialize an n × n matrix D to be all zeroes. In every
bucket b of Lj , there are at most dgj/re relevant entries of
A and some number tjb of entries from B. Compare every
A-entry with every BT -entry in bucket b of column j in
O(tjb · dgj/re) time; in particular, for each A[i, j] ≤ BT [k, j]
where A[i, j] and BT [k, j] are in bucket b, increment D[i, k].
Over all j and b, this takes time on the order of

X

j

X

b

tjb · dgj/re ≤
X

j

(1 + gj/r)
X

b

tjb

=
X

j

(1 + gj/r)n

= n2 +
X

j

gjn/r

= n2 + mn/r.

After all buckets of all lists are processed, D[i, k] contains
the number of j such that A[i, j] ≤ B[j, k], where A[i, j],
BT [k, j] are in the same bucket of Lj .

Finally, set C =
Pr

b=1 Cb + D. It is easy to verify from
the above that the algorithm returns the desired C. The
overall runtime of the above procedure is O(n2 + mn/r +

rnω). Choosing r =
√

m · n 1−ω
2 , the runtime is minimized

to O(
√

m · n 1+ω
2). 2

Remark 1 If one replaces the O(nω) matrix multiplication
algorithm in the above procedure with the fast sparse ma-
trix multiplication of Yuster and Zwick [20], one can obtain

an O(
p

|SA| · |SB | · n
ω−1

2) algorithm for sparse dominance
product, where SA and SB are subsets of [n] × [n], and the
resulting matrix has C[i, j] = |{k | A[i, k] ≤ B[k, j], (i, k) ∈
SA, (k, j) ∈ SB}|. However, this generalized algorithm did
not turn out to be useful for our particular application.

6. ALL-PAIRS BOTTLENECK PATHS
Armed with the sparse dominance product algorithm, we

now turn to all-pairs bottleneck paths. We first show how
to compute the (max, min)-product of matrices in truly sub-
cubic time. Just as the (min, +)-product (or distance prod-
uct) can be used to find all-pairs shortest paths [1], the
(max, min)-product gives a way to compute all-pairs bot-
tleneck paths.

6.1 Max-Min Product
Recall that the (max, min)-product of two matrices A

and B is defined to be the matrix C such that C[i, j] =
maxk min{A[i, k], B[k, j]}. Clearly, the (max, min)-product
of two matrices A and B can be modeled by an all-pairs bot-
tleneck paths computation on a three-layered graph, where
the edge weights from the first to the second layer come
from A and the edge weights from the second to the third
layer come from B. Moreover, APBP on an n vertex graph
can be computed in roughly the time it takes to compute a
(max, min)-product of n× n matrices.

Theorem 6.1 ([1], pp. 204–206) If the product of two ar-
bitrary n×n matrices over a closed semiring R can be com-
puted in M(n) time so that M(2n) ≥ 4M(n), then there
exists a constant c such that the time T (n) to compute the
closure of an arbitrary n×n matrix over R satisfies T (n) ≤
cM(n).

Since (R, min, max,∞,−∞) is a closed semiring, we im-
mediately obtain the following corollary.

Corollary 6.1 If the (max, min)-product of two arbitrary
real n × n matrices is computable in M(n) time, then all-
pairs bottleneck paths of an n vertex graph is computable in
O(M(n)) time.

We now show how to compute the (max, min)-product in
truly sub-cubic time, using the sparse dominance algorithm
combined with another idea.

Theorem 6.2 (Max-Min Product) Given two n×n ma-
trices A and B, the matrix C with

C[i, j] = max
k

min{A[i, k], B[k, j]}

can be computed in O(n2+ ω
3) time. Moreover, for each pair

of indices i, j, the algorithm returns an index k satisfying
min{A[i, k], B[k, j]} = C[i, j].

Proof. We first compute for every pair i, j, the maxi-
mum A[i, k] (over all k) such that A[i, k] ≤ B[k, j], storing
the results in a matrix A′. Afterwards, we reverse the roles
of A and B, computing for every pair i, j, the maximum
B[k, j] (over all k) such that B[k, j] ≤ A[i, k], storing the
results in a matrix B′. Then we take

C[i, j] = max{A′[i, j], B′[i, j]}.
Since the above two cases (of computing A′ and B′) are

symmetric, it suffices to show how to compute A′, where

A′[i, j] = max
k : A[i,k]≤B[k,j]

A[i, k].

To do this, we employ a strategy similar to one used to
obtain maximum witnesses for matrix multiplication [11]. In
particular, for each i, j = 1, . . . , n, we “narrow down” the
possible choices for an A[i, k] such that A[i, k] ≤ B[k, j], to
one of g possible entries. This is done by a careful applica-
tion of O(n/g) sparse dominance products, in O(n2+ ω

2 /
√

g)
time. Then for each i, j, we directly check which of the g
possible entries are valid, if any. This takes O(n2g) time.
Choosing g optimally results in a subcubic time bound.

For every row i of matrix A, make a sorted list Ri of the
entries in that row. Pick a parameter g. Partition the en-
tries of each sorted list Ri into buckets, so that for every
Ri there are dn/ge buckets with at most g entries in each
bucket. For every bucket value b = 1, . . . , dn/ge, compute
Cb = SD(A,B, Sb), where SD is the sparse dominance prod-
uct from Theorem 5.1 and

Sb = {(i, j)| A[i, j] is in bucket b of Ri}.
Notice that for every bucket value b, we have |Sb| ≤ ng. By
Theorem 5.1, all matrices Cb can be computed in

O

„

n

g
· √ng · n

1+ω
2

«

= O

„

n2+ ω
2

√
g

«

.

Now for every pair i, j, we determine the largest bucket
bi,j in Ri for which there exists a k such that A[i, k] ≤
B[k, j]. (This is obtained by taking the largest bi,j such
that Cbi,j [i, j] 6= 0. Note we can easily compute bi,j during
the computation of the Cb.) For every i, j, we then examine
the entries in bucket bi,j of Ri to obtain the maximum A[i, k]
(and hence the corresponding k) such that A[i, k] ≤ B[k, j].
Since there are at most g entries in a bucket, each pair i, j
can be processed in O(g) time. Therefore, this last step
takes O(n2g) time.

To pick a value for g that minimizes the runtime, we set

n2g = n2+ω/2

√
g

, obtaining g = n
ω
3 . The running time is hence

O(n2+ ω
3). 2

Plugging in the best known value for ω by Coppersmith
and Winograd [4], the runtime bound becomes O(n2.79). If
ω = 2, then the above algorithm can run in O(n2.67).

6.2 Computing Explicit Maximum Bottleneck
Paths

By Corollary 6.1 we can obtain a matrix representing all-
pairs bottleneck paths in an edge weighted directed graph
in O(n2+ ω

3) time. To compute the actual paths, a bit more
work is necessary. We take an approach analogous to that
used by Zwick [21] in computing all-pairs shortest paths.
First, we compute APBP by repeatedly squaring the origi-
nal adjacency matrix via (max, min)-product, instead of the

approach in Aho et al. [1]. We also record, for every pair of
vertices i, j, the last iteration T [i, j] of the repeated squar-
ing phase in which the bottleneck edge weight was changed,
together with a witness vertex wij on a path from i to j,
provided by the (max, min)-product computation in that it-
eration.

Given an iteration matrix T and a witness matrix wij (de-
rived from a shortest path computation), Zwick [21] gives a
procedure which computes a matrix of successors in O(n2)
time, and another procedure that, given a matrix of succes-
sors and a pair of vertices, returns a simple shortest path
between the vertices. Applying his procedures to our set-
ting, we get simple maximum bottleneck paths. The major
difference here is that our iteration values are obtained by
repeated squaring, whereas Zwick’s iteration values come
from his random sampling algorithm for finding witnesses.
We review Zwick’s algorithm below.

algorithm wit-to-suc(W,T):
S ← 0
for ` = 0 to log n do T` = {(i, j) | T [i, j] = `}
for every (i, j) ∈ T0 do S[i, j] = j
for ` = 1 to log n do

for each (i, j) ∈ T` do
k = wij

while S[i, j] = 0 do
S[i, j]← S[i, k], i← S[i, j]

return S

Theorem 6.3 The all-pairs bottleneck paths problem can be
computed in O(n2+ ω

3) time. Furthermore, in O(n2+ ω
3 log n)

time algorithm wit-to-suc computes a successor matrix from
which for any i, j a simple maximum bottleneck path between
i and j can be recovered in O(`) time, where ` is the length
of the returned path.

Proof. Let wij and T [i, j] for all vertex pairs i, j be pro-
vided by repeated squaring of the adjacency matrix using
(max, min)-product.

Consider algorithm wit-to-suc. Let S be the matrix of
successors that the algorithm computes. The algorithm pro-
cesses vertex pairs (i, j) in increasing order of their iteration
numbers T [i, j]. The idea is that if k is a witness for (i, j),
then T [i, k] is an earlier iteration of the squaring than T [i, j],
and hence S[i, k] would be set before S[i, j] is processed.

We claim by induction that after a value S[i, j] is set,
matrix S stores a simple maximum bottleneck path from i
to j which can be recovered by following successors one by
one. Our argument is similar to that of Zwick [21].

At iteration 0 of the algorithm, all pairs whose maximum
bottleneck path is an edge are fixed. Suppose that at the
iteration in which vertex pair (i, j) is processed, the claim
holds for all vertex pairs (k, `) that have been processed be-
fore (i, j) (and hence which have a nonzero S[k, `] value).
Now consider the iteration in which (i, j) is processed. Let
k = wij . Since S[i, k] is set, we can use its successor value to
set S[i, j] since we know that a maximum bottleneck path
goes through k. We then take S[i, j] and if its successor on
the path to j has not been set. we set it to match S[S[i, j], k].
We continue processing consecutive successors similarly, un-
til we encounter some i0 for which S[i0, j] is set (i0 exists as
k is such a vertex). Since it is set, and the path from i to k
is simple (by induction), S[i0, j] must have been set before

(i, j) is processed. Hence by induction, the path from i0 to
j is simple and all successors for vertices on that path to j
are set. But since no successors for vertices between i and
i0 were set, then the paths i to i0 and i0 to j are simple and
nonoverlapping, and the overall path is simple and a max-
imum bottleneck path. Furthermore, now the successors of
all vertices on the simple path are set in the S matrix.

The algorithm for determining successors from witnesses
takes O(n2) time. Given a matrix of successors, obtaining
the actual path from i to j is straightforward: find S[i, j]
and then recursively obtain the path from S[i, j] to j. This
clearly takes time linear in the length of the path. 2

7. CONCLUSION
We have provided the first truly sub-cubic algorithm for

all-pairs bottleneck paths in general dense graphs, with no
restrictions on edge weights or edge directions. Our algo-
rithm combines several different ingredients from past work,
along with a few new ideas, to reduce the problem of com-
puting the (max, min) matrix product to a small collection
of 0-1 matrix products. Timothy Chan (personal communi-
cation) has recently observed that the running time of our
algorithm can be slightly improved (from n2.792 to n2.781) by
using fast rectangular matrix multiplication. We believe fur-
ther improvements are probably possible along these lines.

The most pressing question from our work is if the ideas
from our (max, min) matrix product algorithm can be ex-
tended further to obtain a O(n3−δ) algorithm for the (min, +)
matrix product (that is, the distance product). Note we al-
ready know that the dominance approach can be used to
obtain the k most significant bits of the distance product in
O(2kn(3+ω)/2) time [18]. An affirmative answer would im-
mediately imply a truly sub-cubic APSP algorithm for gen-
eral graphs, resolving a longstanding and prominent open
problem. More modestly, it may be possible to use our
methods to develop better maximum flow algorithms for the
general case, as we are finding paths for which we can route
a maximum amount of flow.

8. REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. Ullman. The

Design and Analysis of Computer Algorithms,
Addison-Wesley Longman Publishing Co., Boston,
MA, 1974.

[2] T. M. Chan, All-pairs shortest paths with real
weights in O(n3/ log n) time. In Proc. Workshop
on Algorithms and Data Struct., Springer-Verlag
LNCS 3608:318–324, 2005.

[3] T. M. Chan, More algorithms for all-pairs shortest
paths in weighted graphs. To appear in Proc. of
STOC, 2007.

[4] D. Coppersmith, S. Winograd, Matrix
multiplication via arithmetic progressions, J.
Symbolic Computation 9(3):251–280, 1990.

[5] D. Dubois and H. Prade. Fuzzy Sets and Systems:
Theory and Applications. Academic Press, 1980.

[6] M. L. Fredman and R. E. Tarjan. Fibonacci heaps
and their uses in improved network optimization
algorithms. JACM 34(3):596–615, 1987.

[7] Z. Galil and O. Margalit. All-pairs shortest paths
for graphs with small integer length edges. JCSS
54:243–254, 1997.

[8] Y. Han. An O(n3(log log n/ log n)5/4) Time
Algorithm for All Pairs Shortest Paths. In Proc. of
ESA, Springer-Verlag LNCS 4168:411–417, 2006.

[9] T. C. Hu. The Maximum Capacity Route
Problem. Operations Research 9(6):898–900, 1961.

[10] D. Karger, D. Koller, and S. Phillips. Finding the
Hidden Path: Time Bounds for All-Pairs Shortest
Paths. SIAM J. Computing 22(6):1199–1217, 1993.

[11] M. Kowaluk and A. Lingas, LCA queries in
directed acyclic graphs. In Proc. of ICALP,
Springer-Verlag LNCS 3580:241–248, 2005.

[12] J. Matousek, Computing dominances in En.
Information Processing Letters 38(5):277–278,
1991.

[13] M. Pollack. The Maximum Capacity Through a
Network. Operations Research 8(5):733–736, 1960.

[14] R. Seidel. On the all-pairs-shortest-path problem
in unweighted undirected graphs. JCSS
51:400–403, 1995.

[15] A. Shapira, R. Yuster and U. Zwick. All-Pairs
Bottleneck Paths in Vertex Weighted Graphs. In
Proc. of SODA, 978–985, 2007.

[16] A. Shoshan and U. Zwick. All Pairs Shortest Paths
in Undirected Graphs with Integer Weights. Proc.
of FOCS, 605–614, 1999.

[17] C. R. Subramanian. A generalization of Janson
inequalities and its application to finding shortest
paths. In Proc. of SODA, 795–804, 1999.

[18] V. Vassilevska and R. Williams. Finding a
maximum weight triangle in n3−δ time, with
applications. In Proc. of STOC, 225–231, 2006.

[19] V. Vassilevska, R. Williams, and R. Yuster.
Finding the smallest H-subgraph in real weighted
graphs and related problems. In Proc. of ICALP,
Springer-Verlag LNCS 4051:262–273, 2006.

[20] R. Yuster and U. Zwick. Fast sparse matrix
multiplication. ACM Trans. on Algorithms
1(1):2–13, 2005.

[21] Uri Zwick. All pairs shortest paths using bridging
sets and rectangular matrix multiplication. JACM
49(3):289–317, 2002.

