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Abstract
Virtualized Reality creates a model of time-varying real-world events from image sequences. The model can be
used for manipulating and combining these events, and for rendering new virtual images. In this paper, we
present two recent enhancements to Virtualized Reality. We present Model Enhanced Stereo (MES) as a method
to use widely separated images to iteratively improve the quality of each local stereo output in a multi-camera
system. We then show, using an example, how Virtualized Reality models of two different events are integrated
with each other, and with a synthetic virtual model. In addition, we also develop a new calibration method that
allows simultaneous calibration of a large number of cameras without visibility problems. The method goes
from capturing real image sequences, integrating two or more events with a static or time-varying virtual model,
to virtual image sequence generation.

1   Introduction

Many methods for obtaining graphics models of real objects have been studied recently. A
large amount of work has focused on recovery of three dimensional shape models from range
images, which are obtained by direct range-scanning hardware [2][4][18], or image-based
shape reconstruction techniques [5][11][14][15][17]. Image-based modeling [1][3][7][8] has
also seen significant development, in which a set of real images implicitly represent the object
scene.

Most of this work, however, has been on developing algorithms to build static models of
relatively small objects. Instead, our goal is to reconstruct dynamic models of larger objects
so that real events can be represented in a virtual world. Modeling dynamic events requires a
multi-camera video capture system, rather than a typical setup including a turntable with a
single camera for modeling small, static objects. In theVirtualized Reality system [12][13],
we have demonstrated the ability to recover dynamic three-dimensional geometric models of
a scene with multiple human-sized objects.

Early versions of our system used stereo with some manual intervention to compute the
3D structure, and used a three-dimensional image-based rendering method to synthesize nov-
el views. We then incorporated a volumetric integration algorithm [10] to create a unified 3D
model of the scene. Due to inaccuracies in both calibration and stereo matching, these models
often contained errors in the recovered geometry.

This paper presents two recent enhancements to our system: model refinement by en-
hanced stereo, and ability to integrate multiple events into a virtual reality model, together
with an improved calibration method. We propose Model Enhanced Stereo (MES), which it-
eratively uses the three-dimensional model obtained by merging the range images of all cam-
eras for improving the stereo depth estimates at each camera. We then show using an example,
how Virtualized Reality models of two different events are integrated with each other, and
with a synthetic virtual model. In addition, to improve the accuracy of the camera calibration,



we developed the calibration system so that densely spaced calibration points spread through-
out the volume of interest can be simultaneously viewed by all cameras. We also show how
precise silhouette information can be used to refine the shape of a 3D model.

2   System Overview

Our multi-camera 3D system for Virtualized Re-
ality is shown in Figure 1. It is designed for imaging
a human-sized dynamic event from 51 omni-direc-
tionally distributed video cameras. For every time
instant, we run multi-baseline stereo [11] for each
camera to obtain a set of range images. These range
images are then merged into a volumetric model and
an iso-surface extraction is run on the resulting mod-
el to produce a polygonal mesh. This mesh is then
texture mapped, which lets us synthesize virtual im-
ages from arbitrary viewpoints [13]. Figure 2 ex-
plains the detailed dataflow in our system.

Before any processing, the cameras are calibrated
to relate the 2D coordinates on the image plane of
every camera to 3D coordinates in the scene. Any
system, including ours, that produces a full Euclide-
an model of the scene being imaged needs a strong calibration method, or knowledge of the
exact mapping from scene to image coordinates. Calibrating a volume of many cubic meters
accurately with respect to cameras in all directions poses many challenges because of visibil-

Figure 1: Virtualized Reality 3D Dome
camera configuration: 51 cameras
are distributed on a hemispherical

structure, 5 meters in diameter

Figure 2: Block diagram of dataflow in the system
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ity constraints. Standard calibration patterns and markers are not a viable solution, because
of the need for all cameras to simultaneously view all marked points. Also, the volume of the
space to be calibrated is around 8 cubic meters; thus any large fixture is bound to create prob-
lems of visibility across cameras.

It is well known that inaccuracies in calibration affect the subsequent stereo matching pro-
cess, since search is typically limited along the epipolar line. However, the merging of range
images into a Euclidean 3-D model would be affected as well, since neighboring cameras
would now vote differently for the location of the same point in the scene. The global texture
mapping process is also affected by inaccuracies in a similar fashion.

To overcome these challenges, we use a new large-volume calibration method. A calibrat-
ed bar with markers at known positions on it is swept through the space, and the grid of points
thus defined is used to calibrate all cameras. We built a thin 2 meter horizontal bar with 11
LEDs mounted 20 cm apart. The floor is calibrated with markers 20 cm apart in both dimen-
sions, as is the vertical motion of the tripods that the bar is mounted on. Then, this bar is swept
across vertically, and perpendicular to its length so that the precise coordinates of these points
are known. These 3-D points are imaged in all the cameras, and their 2-D image locations are
determined by simple dot-detection; because the bar is thin, there is no visibility problem. In
addition, availability of three dimensional calibration data (unlike our earlier systems
[12][13]) allows us to combine the extrinsic and intrinsic calibration steps into one. With this
grid of points and their corresponding image locations available, we use a well-known non-
planar calibration algorithm by Tsai[16], because it estimates radial distortion in addition to
the extrinsic and intrinsic parameters, and the implementation is robust.

3   Model refinement using enhanced stereo and silhouette information

Multi-baseline stereo searches for matches in neighboring images across different levels
of disparities, and yields range images. A volumetric model is obtained by sensor fusion of
these (somewhat noisy) range images [12]. Most of the inaccuracies in the model are because
of incorrect stereo, which results from two problems: first, insufficient texture on an object
may result in identical matches for widely separated disparity values. Second, since the algo-
rithm uses a window to match regions across images [11], the best match can result for a win-
dow position that partially overlaps the silhouette of an object.

We present a method to refine the volumetric model by limiting these errors in a next en-
hanced iteration of the stereo process. This model is converted to a polygonal mesh represen-
tation, and projected into virtual cameras corresponding to the location of the original
cameras. This gives us an approximation to the silhouette of the object, along with a depth
value at each pixel.

Based on the projected depth, we iterate the multi-baseline stereo process by imposing
tighter bounds on the range of disparity values to be searched for each pixel. Each iteration
produces more accurate depth estimates, in addition to eliminating a large number of false
matches that initial individual stereo may contain. Also, the contour bounding the projection
gives us an estimate of the exact silhouette of the object, which can be used to ensure that the
stereo window does not overlap edges of the object during the next iteration of the matching
process. We call this method of limiting the search space using depth and window bounds
Model Enhanced Stereo (MES). Figure 3(a) shows the result of the initial stereo depth from
one viewpoint, while Figure 3(b) shows the depth estimated by MES. We see that the esti-
mates of depth are more accurate and far less noisy. The results of MES for the various view-
points are again volumetrically merged to yield a significantly more accurate volumetric
model. This procedure may be repeated to further improve the accuracy of the model.

Also, MES helps us segment the model into objects and the environment (dome and floor),
because volumetric merging of range images from MES gives us Euclidean 3-D coordinates.
Knowing the approximate location and bounds of our objects, it is easy to eliminate volumes
outside these bounds that are discontinuous from the objects. Methods such as the Lumigraph
[3] and voxel coloring [15] are able to have a plane as the background and use a chroma-key
technique in image space to separate the foreground objects from the background. This sep-
aration is then propagated into the whole model. While chroma-key is usually fairly accurate,
it fails for an omnidirectional imaging system since uniform lighting is impossible without
the lights being visible in one or more cameras.



In our implementation, we use silhouettes to carve out free space from the volumetric
model directly, as a post-processing to the stereo algorithm. When the refined volumetric
model is projected into each input camera, we get an approximation to the actual silhouette.
While a snake [6] algorithm could be used to lock onto the exact contour, we use the approx-
imation as a template for a human operator to modify the silhouette, to visual accuracy.
Figure 3(c) shows the volumetric model obtained as a result of merging multiple MES range
images. Figure 3(d) shows the same model refined with knowledge of the exact contour. The
exact silhouettes need not be specified for all images; in our example, we find that specifying
silhouettes for only 10 of the 51 original images suffice.

4   Combining Multiple Dynamic Virtualized Reality Events and Virtual Sets

It is possible to combine the volumetric models of multiple events in a spatial and temporal
manner, even when the events are recorded separately and possibly at different locations.
Each of these models is transformed into a single, unified co-ordinate system, and their tem-
poral components are matched to ensure that the combined model is correct throughout the
length of the sequence. We show such an example, where two events of humans in a labora-
tory dribbling and passing a ball, are integrated with a virtual basketball court to produce a
virtual basketball play sequence.

Before integration, the volumetric models are texture-mapped using the intensity images
from various cameras [13]. Since we the volumetric models are discretized metric descrip-
tions of every surface, along with texture maps, they can be manipulated in the same way as
traditional graphics models and added into any VR system that uses polygon-based rendering.
Thus, Virtualized Reality models and textured CAD models can interact with each other in a
natural manner.

Figure 3: (a) Range image from initial multi-baseline stereo(b) Range image from Model En-
hanced Stereo (c) Volumetric model obtained by merging MES results from 51 cameras (d)

Volumetric model after carving using 10 exact silhouettes

(a) (b)

(c) (d)



4.1    Combining Multiple Events into a Single Virtualized Reality Representation

To convert Virtualized Reality mod-
els of different events into a single rep-
resentation, they are first combined and
aligned spatially. To achieve this, a ro-
tation and translation are applied to
each of the models, so that the origin of
each local co-ordinate space is mapped
to the location of the world origin with
the desired orientation. Each of these
models is typically a triangle mesh with
a list of vertex coordinates, texture co-
ordinates, and polygon connectivities.
The vertex coordinates of each of these
models are defined independently with
respect to a local coordinate system.

On the other hand, temporal integra-
tion of model sequences involves deter-
mining how the sequences are related to each other in time. If one or more sequences are not
modeled at the frame rate of the desired virtual sequence, those sequences would need to be
subsampled or supersampled appropriately. For non-integral multiples, some temporal inter-
polation between models is called for. Once this is done, each time frame on the motion se-
quence needs to be mapped to a frame on the global time scale. By this mapping of the
component image sequences to the global time scale, the component events are overlapped or
concatenated one after the other. In addition, the individual frames of a sequence may be used
in reverse.

In our example, two separate events are recorded. The first event, shown in Figure 4(a),
involves two players, where one player bounces a basketball and passes it off to the side while
the other attempts to block the pass. The second event, shown in Figure 4(b) involves a single
player who receives a basketball and dribbles the ball. Since we are free to choose frames in
reverse, we actually recorded the second event by having the player dribble and then throw
the ball to the side since that was easier. Both these events are recorded separately, so no cam-
era ever sees all three players at once.

The events are combined, so that the final model contains a motion sequence where the
first player passes the ball to the third player, as the second player attempts to block this pass.
This is done by a spatial transform that places the ball at the end of the last frame of the first
event so as to coincide with the position of the ball at the beginning of the second event and

Figure 4: (a) Volumetric model of one frame of the first event with two players (b) Volumetric mod-
el of the second event with one player (c) Volumetric model obtained by combining both events

spatially to create an event with three players

(a) (b) (c)

Figure 5: Sequence of combined volumetric models [one
of Figure 4(c) for each time instant] superimposed on

each other: effect of motion seen similar to that on
a time-lapse photograph



a concatenation of the two events in time. Also, the polygonal model of the last frame of the
first event is modified so that the ball is removed. This edit prevents two balls from appearing
in the scene. The result of combining the two events is shown in Figure 4(c).

Figure 5 shows a number of volumetric models of combined events superimposed on each
other, as the “pass” happens. The effect produced is similar to that seen in a time-lapse pho-
tograph of a scene with moving objects.

4.2    Combining a Virtualized Reality Representation with a Virtual Model

Since a Virtualized Reality representation is a metric description of an event, we can intro-
duce other virtual models into this representation. The Virtualized Reality models combined
in Section 4.1 into a sequence of polygonal meshes are textured and introduced into a CAD
model of a virtual basketball court, to generate a unified geometry and texture representation.
Figure 6 shows a sequence of rendered images of this combined model that simulate a flyth-
rough. The virtual camera spirals around and above the players, as it is pointed at them. We
therefore have a sequence of virtual images, that captures spatial motion of the virtual camera,
and the dynamic event itself. While this is a case where the virtual model (basketball court)
is static, one can imagine a case where a Virtualized Reality model is combined with a time-
varying virtual event.

5   Conclusions

In this paper, we presented two enhancements to the Virtualized Reality system. Model
Enhanced Stereo iteratively improves the accuracy in stereo correspondence using a 3D mod-
el built from initial stereo results. This improvement is achieved by the fact that all images
are used in obtaining stereo correspondences for each camera. We also showed how two real
events are combined with each other, into a virtual space. Also, to improve the accuracy of
the camera calibration, we have developed a new calibration system that allows simultaneous
calibration of all cameras, without visibility problems.

Our Virtualized Reality system provides a new capability in creating virtual models of dy-
namic events involving large free-form objects such as humans. In addition to the modeling,
we have the capability to produce synthetic video from a varying virtual viewpoint. The sys-

Figure 6: Two separate dynamic events - one with two players and another with a single player are combined
into a CAD model of a virtual basketball court. The sequence of images are those seen by a virtual camera
that moves along a spiral trajectory around the players, and upwards. Notice that the event is dynamic - the

camera motion happens during the course of the play
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tem goes from capturing real image sequences, creating Virtualized Reality models from
these observed sequences, integrating two or more events with a static or time-varying VR
model, and to virtual image sequence generation. Future work involves development of ab-
stractions to represent recovered 3D geometry in other image based modeling representa-
tions. These representations, such as projective shape models or depth/correspondence maps,
can be local to the virtual viewpoint to facilitate rendering of virtual views without explicitly
recovering the full volumetric model.
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