Predicting Query Performance on the Web

Niranjan Balasubramanian
University of Massachusetts Amherst
140 Governors Drive, Amherst MA 01003
niranjan@cs.umass.edu

Predicting the performance of web queries is useful for several
applications such as automatic query reformulation and automatic
spell correction. In the web environment, accurate performance
prediction is challenging because measures such as clarity that work
well on homogeneous TREC-like collections, are not as effective
and are often expensive to compute. We present Rank-time Per-
formance Prediction (RAPP), an effective and efficient approach
for online performance prediction on the web. RAPP uses retrieval

scores, and aggregates of the rank-time features used by the document-

ranking algorithm to train regressors for query performance predic-
tion. On a set of over 12,000 queries sampled from the query logs
of a major search engine, RAPP achieves a linear correlation of
0.78 with DCG@Q5, and 0.52 with NDCG@5. Analysis of predic-
tion accuracy shows that hard queries are easier to identify while
easy queries are harder to identify.

Categories and Subject Descriptors: H.3 [Information Storage
and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation, Theory

Keywords: Performance prediction, Query difficulty, Web search

1. RANK-TIME PREDICTION

Query performance prediction is the task of estimating the qual-
ity of the results retrieved for a query, using effectiveness measures
such as normalized discounted cumulative gain (NDCG). Perfor-
mance prediction is useful for various applications such as detect-
ing queries with no relevant content, performing selective query ex-
pansion, and to merge results in a distributed information retrieval
system [5]. However, most post-retrieval query performance pre-
dictors are expensive to compute, and not well-suited for the web.

The key idea behind RAPP is to use retrieval scores and fea-
tures that are available to the retrieval algorithm during ranking.
Our choice of features is based on two observations. First, the
retrieval scores of the top-ranked documents are good indicators
of document relevance and therefore are good estimators of re-
trieval effectiveness. Retrieval score-based features have previ-
ously been shown to be effective for classifying TREC queries as
easy or hard [4]. Second, Web search engines use retrieval algo-
rithms that combine query dependent and query-independent doc-
ument features that are designed to capture relevance. The perfor-
mance of a query is intimately related to these feature values. Since
retrieval scores for different queries may not be directly compara-
ble, we use statistical aggregates of the scores. Moreover, statistical
aggregates such as maximum, mean, and standard deviation cap-

Copyright is held by the author/owner(s).
SIGIR’10, July 19-23, 2010, Geneva, Switzerland.
ACM 978-1-60558-896-4/10/07.

Giridhar Kumaran and Vitor R. Carvalho
Microsoft Corporation
One Microsoft Way, Redmond, WA
{giridhar,vitor}@microsoft.com

___ TopKResults
Doc 1 Score 1 Aggregated Features

_ ff2.fn Tatfalz..ain
::> I Aggregator I a21,a22,....a2n II
T Dock _allal2..an al2 .,aln
f1,02,...fn Score k ﬁ
Retrieval User Predicted
Algorithm Query Performance

Figure 1: RAPP Overview.

ture different aspects of the quality of search results. For example,
our initial analysis showed that retrieval scores for low-performing
queries tend to have low mean and high variance.

Figure 1 illustrates RAPP. First, we retrieve the top k documents
using the retrieval algorithm.We use the retrieval scores as well as
the query-dependent and query-independent features of these top-
ranking documents. We then compute statistical aggregates such
as mean, maximum, standard deviation, variance, and coefficient
of dispersion of these features. Finally, we use these aggregated
features and the individual retrieval scores to train a regressor to
predict a target performance measure.

2. EXPERIMENTS

To evaluate RAPP, we target the prediction of two performance
measures commonly used in web search: DCG@5' and NDCG@5
(referred as DCG and NDCG henceforth). We use a set of 12,185
queries, which were obtained as a frequency-weighted random sam-
ple from the query logs of a major web search engine. For retrieval
we use LambdaRank [2], an effective learning to rank algorithm
for the web. For each query in our collection, we create feature
vectors as follows. First, we use LambdaRank to assign scores and
rank documents on the Web>. Our implementation uses several
retrieval features such as BM25F-based features, click-based fea-
tures, query length, and other query-independent features such as
variants of PageRank. For each of these retrieval features we create
statistical aggregates as listed in Section 1. Next, we select the top
100 aggregates (referred to as regression features henceforth) that
have the highest linear correlation with the target metric on a set of
training queries. Some example features include clickboost_max
(maximum value of a click-based feature) and score_stdev (stan-
dard deviation of LambdaRank scores). Finally, we create a query
performance prediction dataset by associating with each query, the
performance metric, DCG@5 or NDCG @5 and the regression fea-
tures. On this dataset, we conduct 3-fold cross-validation experi-
ments to train linear as well as non-linear regressors based on the
Random Forest algorithm [6]3.

Clarity comparison. We use Clarity [3], a competitive perfor-
mance prediction technique, as an experimental baseline. To com-
pute Clarity for a query, we use a query model built from the top

"Normalized by perfect DCG@5 to scale values to (0,1).
2LambdaRank was trained on an entirely different data set.
3We use the R package implementation with default parameters.

50 results returned by the search engine. Because Clarity compu-
tation is expensive, we calculated Clarity only for a random subset
of 600 queries drawn from our original query set. Table 1 shows
the results of performance prediction for DCG and NDCG using
Clarity as well as selected features used in RAPP. Clarity achieves
very low linear correlation with both DCG and NDCG. When com-
pared to the performance of features used in RAPP, even the lowest
performing individual feature outperforms Clarity. This suggests
that while Clarity is a competitive measure in smaller TREC col-
lections, it is not a well-suited for the Web.

Table 1: Clarity comparison: Average — the average correlation of
RAPP features. Best and Worst — the highest and the lowest individual
correlation of RAPP features on the entire set of 12,185 queries. Clarity
correlation is measured on a subset of 600 queries.

Predicted Measure Clarity Average Best Worst
DCG 0.11 0.57 0.70 0.20
NDCG 0.10 0.27 0.50 0.17

Table 2 shows the prediction accuracy for RAPP in terms of lin-
ear correlation and root mean squared error (RMSE). Both pre-
dicted DCG and NDCG values achieve a high linear correlation
and low RMSE. Also, NDCG prediction is much worse as indi-
cated by the low correlation and the higher RMSE values. This
is mainly because NDCG is a non-linear metric that is calculated
based on the actual number of relevant documents that exist in the
collection. Thus NDCG cannot be estimated based on the features
of the top-ranked documents alone. Finally, in terms of correla-
tion and RMSE, there is little difference in prediction effectiveness
between simple linear regression and the non-linear random forest
based regression.

Table 2: RAPP Effectiveness: Corr. — Linear correlation measure.
RMSE - root mean squared error.

DCG NDCG
Method Corr. RMSE Cor. RMSE
Tinear 078 0.3 050 023

Random Forest 0.79 0.13 0.52 0.22

The scatter plot in Figure 2(a) illustrate a strong correlation be-
tween the predicted and actual DCG values for one fold of the
data. Figure 2(b) shows predicted NDCG values which are not as
strongly correlated with the actual values. For DCG, when the ac-
tual values are less than 0.2, the predicted values are also less than
0.2 in most cases. On the other hand, when the actual values are
greater than 0.4 the predicted values are more spread out. This
suggests, DCG prediction is more precise for hard queries than for
average, and easy queries. Our preliminary analysis suggests that
feature values for hard queries are most consistent (lower values)
compared to easy queries.

Similarly, NDCG prediction is highly precise when predicted
values are below 0.3. However, prediction effectiveness degrades
quickly when predicted values are above 0.4. Thus, for both mea-
sures, the high linear correlation and low RMSE values mask the
rather poor effectiveness at the extremes.

Actual
Actual

os o8 10 oo oz o4
Predicted Predicted

(a) DCG (b) NDCG
Figure 2: Prediction versus Actual Metrics for Test fold 1.

Feature Importance. Next, we inspect the features used for
regression. We consider three subsets: features based on 1) Lamb-
daRank scores, 2) Click-based features, and 3) BM25F-based fea-
tures. Table 3 shows the prediction effectiveness of the different
feature groups for linear regression. For DCG, all feature groups
achieve high correlation while for NDCG, click and BM25F fea-
tures are substantially lower compared to the combined features.
Also, relative feature importance differs for DCG and NDCG. For
instance, click features are more important for predicting DCG than
LambdaRank score features. The order is reversed for NDCG.
Click-based features are strong predictors of user preference [1],
and it is no surprise that they correlate well with DCG. However,
NDCG being a non-linear metric, is harder to predict with click-
based features alone. Also, we hypothesize that since LambdaRank
combines several features including click features and is trained
to optimize for NDCG, the LambdaRank-based features are better
predictors than click-based features. Interestingly, we find that the
click features for DCG and LambdaRank features for NDCG are
as effective as all the features combined. This suggests that more
careful feature selection can reduce run-time computations while
retaining prediction effectiveness.

Table 3: Feature Groups Effectiveness: Corr. — Linear correlation
measure. RMSE - root mean squared error.

DCG NDCG
Corr. RMSE Corr. RMSE
LambdaRank 0.75 0.14 0.50 0.22

Group

Click 0.78 0.13 0.41 0.24
BM25F 0.71 0.14 0.38 0.24
All 0.78 0.13 0.50 0.23

3. CONCLUSIONS

In this paper, we describe RAPP, an effective and efficient Web
query performance prediction technique that uses retrieval scores
and retrieval features. Large scale evaluation using actual web
queries shows that RAPP is effective, and outperforms the state-
of-the-art Clarity baseline. Moreover, experimental results suggest
that Clarity is not well-suited for the web. While RAPP is a general
approach that can be used for different ranking algorithms and to
target different measures, the results in this paper are based only
on DCG@5 and NDCG@S5 prediction for LambdaRank. We leave
investigation of RAPP’s utility for other ranking algorithms and
performance measures such as MAP as part of future work.

4. ACKNOWLEDGMENTS

This work was supported in part by the Center for Intelligent
Information Retrieval and in part by NSF IIS-0910884. Any opin-
ions, findings and conclusions or recommendations expressed here
are the authors’ and do not necessarily reflect those of the sponsor.

5. REFERENCES

[1] E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking
by incorporating user behavior information. In SIGIR 2006, 19-26.

[2] C. Burges, R. Ragno, and Q. Le. Learning to rank with nonsmooth
cost functions. Advances in NIPS, 19:193, 2007.

[3] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting query
performance. In SIGIR 2002, pages 299-306.

[4] J. Grivolla, P. Jourlin, and R. de Mori. Automatic classification of
queries by expected retrieval performance. In SIGIR 2005 Workshop
on Predicting Query Difficulty.

[5] E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow. Learning to estimate
query difficulty: including applications to missing content detection
and distributed information retrieval. In SIGIR 2005, pages 512-519.

[6] A.Liaw and M. Wiener. Classification and regression by
randomforest. R News, 2(3):18-22, 2002.

