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1 Introduction

In modern systems, memory performance is highly critical
for application performance. Modern processors use mul-
tiple levels of caches to exploit both temporal and spatial
locality present in diUerent access patterns of applications.
In this work, we focus our attention on the class of applica-
tions which access large data structures using multiple dif-
ferent access patterns – e.g., a matrix application that ac-
cess a matrix both in row-major order and column major
order, or a database application in which certain queries
access most Velds of a few records whereas other queries
touch very few Velds of many records.

1.1 The Problem

In such applications that access large data structures with
multiple access patterns, when the data structure is stored
in only one format in physical memory can lead to inef-
Vciencies in the memory hierarchy for some of the access
patterns. For example, consider a matrix application that
accesses a matrix both in row-major order and column-
major order. If the matrix is stored only in the row-major
order, like in most systems, then the column major access
pattern will have zero spatial locality. However, almost
all components of the memory subsystem – i.e. caches,
DRAM, prefetchers – assume that applications have some
spatial locality. As a result, the column major access pat-
tern will lead to unwanted data movement between mem-
ory components. In addition, such access patterns with
low spatial locality can also increase the working set of an
application in terms of the number of cache blocks. This
can result in thrashing when there is not enough space in
the cache to hold the working set. On the other hand, if
the matrix is stored only in the column-major order, then
the row-major access pattern will suUer from the above
mentioned problems. In this project, we examine an ap-
proach to address this problem that can ensure eXcient
utilization of the memory hierarchy for all access patterns
of such applications.

1.2 Virtual Views: Our Approach

Our idea is to maintain multiple versions of a data struc-
ture in physical memory, each catering to one or more of

the diUerent access patterns that access the data structure.
We call each one of these versions a Virtual View of the
data structure. We leverage the use of the compiler to
ensure that the diUerent views of the data structure are
kept consistent. Depending on the nature of an access pat-
tern, the application can choose a speciVc view of the data
structure that provides the best performance. For exam-
ple, for the matrix application, our technique will store
both the row-major view and the column-major view of
the matrix. When accessing the matrix in the row-major
order, it will use the row-major view and when access-
ing the matrix in the column-major order, it will use the
column-major view.

To keep the multiple views of a data structure consis-
tent, whenever a piece of data in one view is modiVed, the
updated value should be propagated to the corresponding
elements of the other views. This requires the compiler
to generate additional writes. We explore two diUerent
approaches to decide when to perform these additional
writes: 1) eager write, 2) lazy regenerate. We describe
these two approaches in more detail in Section 3.

1.3 Related Work

Prior work had addressed this ineXciency problem in the
memory hierarchy using other approaches [5, 8]. Active
pages [5] proposes a design to export certain computa-
tions to the memory controller. The Impulse project [8]
proposes a new memory controller design wherein the
memory controller ensures that only useful data is sent
across the channel to the processor. The application speci-
Ves which pieces of data within a data structure are useful
and this information is stored in the memory controller in
the form of mapping tables. When the application gen-
erates an access to the data structure (using a newly as-
signed name), the memory controller gathers the useful
data from the main memory and sends it to the proces-
sor. This ensures eXcient memory bandwidth utilization
and cache utilization. One major drawback of the Im-
pulse approach is that the application needs to Wush the
cache before and after creating the new mappings to en-
sure correctness. Chilimbi et al. [1] propose to coallocate
data structures that appear in hot paths of execution to im-
prove the spatial locality along those paths. However, the
proposed scheme will work not work if there are multiple
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hot paths with diUerent access patterns.

1.4 Contributions

• We explore a new approach, Virtual Views, to address
the memory ineXciency problem, where an applica-
tion accesses a single data structure with multiple dif-
ferent access patterns.

• We explore diUerent design options that Vt our pro-
posed framework. SpeciVcally, we propose two dif-
ferent strategies to maintain consistency across vir-
tual views.

• We partially implement our proposed optimizations
using the LLVM compiler framework.

• We evaluate the performance eUect of the our pro-
posed schemes using a microbenchmark that repre-
sents a database application.

2 Access Patterns & Locality

As mentioned in Section 1, we address the memory ineX-
ciency problem using an approach, which we call Virtual
Views. In this section, we deVne the problem more for-
mally before we describe our proposed approach in detail.
An access pattern, with respect to a data structure,

refers to an ordered sequence of elements (words) of the
data structure that are accessed by the application. Most
access patterns exhibit locality of reference, which is gen-
erally classiVed into two types: temporal locality and spa-
tial locality. Temporal locality refers to the reuse of a spe-
ciVc piece of data within a small time duration. Spatial lo-
cality refers to use of data co-located in physical memory
within a small time duration. Figure 1 shows four diUer-
ent access patterns to an array of elements, A. The access
patterns contain either, both or none of temporal or spatial
locality.

A[0], A[100], A[0], A[100], A[0], A[100]
(a) Temporal Locality

A[0], A[1], A[2], A[3], A[4], A[5]
(b) Spatial Locality

A[0], A[1], A[2], A[0], A[1], A[2]
(c) Temporal and Spatial Locality

A[0], A[104], A[35], A[220], A[75], A[151]
(d) No Locality

Figure 1: Access patterns to an array, A

There is a plethora of prior work which has focused on
exploiting temporal locality present in access patterns by

A[0][0], A[0][1], A[0][2], A[0][3], A[0][4], A[0][5]
(a) Row-major access: Exhibits spatial locality

A[0][0], A[1][0], A[2][0], A[3][0], A[4][0], A[5][0]
(b) Column-major access: Does not exhibit spatial locality

Figure 2: Two access patterns to a matrix stored in row-
major order

modifying the replacement policies used for caches and
DRAM (e.g., [2, 4, 6, 7]). However, the spatial locality in
access patterns is tightly coupled with the order in which
data is stored in physical memory. If the two do not match,
then the access pattern will not exhibit good spatial local-
ity. Figure 2 shows a scenario where there are two diUer-
ent access patterns to a matrix that is stored in row-major
order, i.e., subsequent elements of a row are stored in adja-
cent locations in physical memory. While one of them, the
row-major access pattern, exhibits very good spatial local-
ity, the column-major access pattern exhibits zero spatial
locality.

Consider an application that accesses a matrix using
both the row-major and column-major access patterns.
While the memory hierarchy (caches and DRAM) can ex-
ploit the spatial locality presented by the row-major ac-
cess pattern, they will be completely ineXcient for the
column-major access pattern for two reasons. First, since
only one element within a cacheline will likely be used,
the column-major access pattern can lead to cache under-
utilization. Second, to ensure high density, DRAM’s em-
ploy large row-buUers (8KB/row). On every cacheline ac-
cess, a full row of data is accessed and the required cache-
line is sent to the processor. If subsequent accesses go to
the same row, they are served quickly oU the row-buUer.
However, if there is no spatial locality and subsequent ac-
cesses go to a diUerent row, they incur much longer la-
tency as the data must Vrst be fetched from the DRAM
cells. Prior work has proposed some techniques improve
spatial locality in access patterns [1, 8], they [8] either are
not amenable to modern processors which have on-chip
memory controllers or they assume that the data struc-
tures are accessed with a Vxed access pattern. In this work,
we explore an alternate approach to improve spatial local-
ity of multiple access patterns to a data structure.

3 Virtual Views

The key idea behind our approach is to store multiple ver-
sions of a data structure in physical memory, each match-
ing a speciVc access pattern to the data structure. We call
each one of these versions a Virtual View of the data struc-
ture. We leverage the use of compilers to keep the diUerent
views of the data structure consistent.
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For example, for our matrix application that accesses a
matrix both in row-major and column-major order, our
approach stores two views of the same matrix: one storing
the matrix in the row-major order (A) and another storing
the matrix in the column-major order (B). When the ap-
plication needs to access the matrix using the row-major
access pattern, it uses the view A, and for the column-
major access pattern, it uses the view B. The main chal-
lenge involves the compiler keeping the two views A and
B consistent. This requires the compiler to identify write
operations to the views and generate additional writes to
the corresponding elements in the other views. We call
the generation of these additional writes as write ampliV-
cation.
Our approach of using Virtual Views has two compo-

nents. First, it requires the application or the compiler
to identify the opportunity for using Virtual Views. Al-
though exploring the latter was part of this project’s goal,
we resort to the former, where the application explic-
itly speciVes the opportunity for exploiting Virtual Views.
Automatic Virtual View generation requires sophisticated
static analysis (or proVling) of the application to identify
opportunities for creating Virtual Views. Due to lack of
time, we leave it as part of future work.

We explore two ways of implementing write ampliVca-
tion (described in Section 4): 1) eager write, and 2) lazy
regeneration. The eager write approach eagerly generates
write operations to all the views when it sees a write oper-
ation to one of the views. This is more like the update-
based coherence protocol where the data is propagated
immediately to multiple views. On the other hand, on a
write to a view, the lazy regenerate approach marks all
other views as stale and regenerates them just before they
are read. While the eager write approach may work better
when accesses to diUerent views are interleaved at a Vne
granularity, when there are multiple writes to the same
location, it might often be suXcient to generate an addi-
tional store for the last write. On the other hand, lazy re-
generate will work well when accesses to diUerent views
of the data structure are interleaved at a courser granular-
ity. However, the lazy regenerate approach will not work
well when the fraction of writes is low.

4 Implementation

In this project, we require compiler support to 1) identify
Virtual Views by analyzing the applications that explic-
itly declare uses of them, and 2) maintains consistency be-
tween data structures and their views through write am-
pliVcation. To accomplish these tasks, we use the LLVM
3.0 compiler framework [3] to compile, analyze, and trans-
form applications for our project.

4.1 Virtual View IdentiVcation

Since the goal of our project is to explore the potential
beneVts of using Virtual Views, we modify all our appli-
cations to explicitly declare and initialize Virtual Views by
calling a pragma (VIRTUAL_VIEW) instead of having the
compiler to automatically generate Virtual Views. As a re-
sult, our LLVM analysis simply examines the arguments
of each pragma to identify the Virtual View and its corre-
sponding data structure. We keep track of each linkage in
order for us to perform correct write ampliVcation.

4.2 Virtual View Write AmpliVcation

We wrote two LLVM passes that transform the applica-
tions to maintain consistency across data structures and
their views. SpeciVcally, we implemented two variants of
write ampliVcation: 1) eager write and 2) lazy regenerate
as described in Section 3.

The eager write pass Vrst runs the Virtual View identiV-
cation pass to Vnd all Virtual Views and their source data
structures. After that, the pass sequentially runs through
the application’s intermediate representation (IR) to Vnd
all store instructions. Once a pass veriVes that a store in-
struction’s pointer points to an element of a data structure
that has a Virtual View, it eagerly generates a new store
instruction with the same value, but a diUerent element
pointer, pointing to the corresponding element in the other
view. Note that we assume there is no pointer aliasing is-
sue in our target applications.

The lazy regenerate approach we implemented regen-
erates an entire stale view from the source data structure.
Similar to the eager write pass, it has to identify all Virtual
Views and their source data structures. However, when it
Vnds a store instruction that writes to a source data struc-
ture, it simply marks the data structure as dirty instead
of duplicating the store instruction. The pass inserts a
re-generation function call (provided by the applications)
only when there is a read to the view that has the dirty bit
set for its source data structure. This can reduce the write
overhead of using Virtual Views when there can be a lot
of redundant writes to the data structure.

5 BeneVts and Limitations

The motivation of our project is to tackle the problem of
diUerent access patterns that result in poor locality due to
way data is laid out in the memory. In this work, we pro-
pose to use Virtual Views to store data in multiple diUerent
layouts in an attempt to solve this problem. We have de-
scribed the mechanism and its implementation in the pre-
vious sections. We now qualitatively discuss the beneVts
of using Virtual View.
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Using Virtual View provides several beneVts. First, by
having multiple data layouts, Virtual Views retain spatial
locality for various access streams that access the elements
of the data structure in diUerent orders. Hence, using Vir-
tual View can signiVcantly improve cache and memory
performance with much lower cache miss rate and mem-
ory bandwidth consumption. Second, Virtual View pro-
vides automatic data consistency across views and sources
through compiler support. Additionally, compilers can
also provide automatic Virtual View creation along with
automatic read transformation that selects the highest lo-
cality data layout to read from. As a result, the support of
Virtual View can be completely transparent to the users.
On the other hand, there are also some limitations or

weaknesses of Virtual View. First, it requires additional
memory storage to hold multiple copies of data. This could
be a major concern for programs that have big data and
want to create multiple views for each data structure. Sec-
ond, write ampliVcation to ensure data consistency can be-
come a signiVcant bottleneck for performance when there
is an abundant of writes, increasing the memory band-
width consumption. This is especially true for eager write
that duplicates every single write. In order to mitigate
this, we proposed using lazy regenerate that delays all
writes to a view until a read needs to be performed on
that view. Doing so eliminates redundant writes to the
same memory location, and thus reduces pressure on the
cache and the memory. Given the tradeoU of using Vir-
tual View, application developers can decide to use Virtual
View based on their needs. If they care more about perfor-
mance and memory capacity is not a major issue, Virtual
View can signiVcantly improve application performance
with acceptable overhead.

6 Methodology

This section describes the system and microbenchmark we
use to experimentally evaluate Virtual View. We present
quantitative results of our experiments in the next section.

6.1 System

We use a real system that has a reasonable cache and
memory capacity to evaluate Virtual View. Table 1 shows
the detailed conVguration of our system. The system has
the hardware prefetching enabled. We will evaluate Vir-
tual View without prefetching as part of the future work.

6.2 Database Microbenchmark

The goal of this project is to improve the performance of
applications that access certain data structures with mul-
tiple diUerent access patterns. To this end, we created a
microbenchmark which represents a database application

Processor Intel Xeon 3.00, X5472 GHz
L1 Cache Size 32KB, 8-way associative
L3 Cache Size 12MB
Cacheline Size 64B
Main Memory 8GB, DDR3, 2 channels
OS Kernel Linux kernel 2.6.38-11
OS Ubuntu 11.04 64-bit (x86_64)

Table 1: System ConVguration

that runs two types of queries on a table. Type 1 query:
a short transaction that accesses all Velds of a particu-
lar record. Type 2 query: a long running operation that
touches only a fraction of the Velds of all records. Type 1
queries beneVt from a row-oriented organization of the ta-
ble whereas type 2 queries beneVt from a column-oriented
organization of the table. In addition, the microbench-
mark also models updates to the database which can be
controlled using command line parameters. The bench-
mark runs multiple queries of type 1 and type 2 in batches
and the fraction of those queries that modify the records
can be varied. To evaluate Virtual View, we created both
row- and column-major order data structures. The bench-
mark chooses which data structure to use based on the
access pattern. Furthermore, we also implemented both
eager write and lazy regenerate in order to compare their
performance.

7 Results and Analysis

7.1 Read-only Query Performance

Figure 3 shows the performance improvement of using
Virtual Views for diUerent query conVgurations – i.e., the
fraction of records touched by type 1 queries and fraction
of Velds touched by type 2 queries. In this experiment,
all queries are read-only. Hence, there is no additional
overhead due to write ampliVcation in these results. Sev-
eral observation are in order. First, as expected, the row-
store organization signiVcantly outperforms the column-
store organization for type 1 queries and the column-store
outperforms the row-store for type 2 queries for most
cases. Second, in all cases, virtual views obtains the per-
formance of the row-store for type 1 queries and that of
the column-store for type 2 queries. As a result, it pro-
vides the best performance overall. Third, when the type 2
queries access all Velds, they essentially access all the data
in the database. In this special case, a row-store organi-
zation is better as it oUers better spatial locality than the
column-store organization. Consequently, it outperforms
the column-store organization even for type 2 queries.
When using virtual views, type 2 queries are served by
the column-store. Hence, as expected, the performance of
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Figure 3: Performance comparison of Virtual Views with a row-store only or column-store only organization. All
queries in this experiment are read-only.

virtual views is similar to that of a column-store. Based
on these results, we conclude that virtual views can be
a good technique to improve performance of applications
that have multiple access patterns to a given data structure
when the fraction of writes to the data structure is close to
zero.

7.2 EUect of Writes

Figure 4 plots the eUect of varying the write probability
for the type 1 queries. As the Vgure shows, even a small
write probability (0.05) degrades the performance of dif-
ferent mechanisms, except the column-store organization.
This is because, all our queries write to only one Veld and
as a result, the column-store organization leads to only a
small portion of the working set that is written to. The per-
formance gap between the eager write approach and lazy
regenerate approach is not signiVcant in this experiment.
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Figure 4: EUect of varying the write probability of type 1
queries

Figure 5 plots the eUect of varying the write probability
for the type 2 queries. In this study, if a query is chosen
to update the records, it updates all the records. There-
fore, when multiple queries choose to update the records,
there will be a lot of redundant writes to the database.
This is evident from the steep degradation in performance
of the eager write technique. As the probability reaches
1, when all queries update all records, the performance of

the eager write technique is as bad as the row-store orga-
nization. However, the lazy regenerate technique amor-
tizes the cost of writes by performing it only once after all
queries are completed. As a result, it experiences much
less performance degradation compared to the eager write
technique.
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Figure 5: EUect of varying the write probability of type 2
queries

8 Conclusion

In this project, we propose Virtual View, a new approach
to address the spatial locality problem caused by disparate
access patterns issued by applications. The key idea of Vir-
tual View is to maintain multiple layouts of a data struc-
ture in physical memory in order to retain high spatial
locality for multiple commonly used access patterns (e.g.,
row-major order). To maintain data consistency across
views and their source data structures, we propose write
ampliVcation, which generate additional writes to views
when an element in the source data structure is updated.
We describe two approaches of implementing write am-
pliVcation: eager write and lazy regeneration. Eager write
simply generate new writes to all the views when there
a write is issued to their source. Since eager write can
potentially consume signiVcant write bandwidth, we use
lazy regeneration to mitigate this overhead. This approach
only performs writes to Virtual Views when there is a read
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from any view and the source is dirty. Virtual View pro-
vides two key beneVts. First, using Virtual View improves
application performance with reduced cache miss rate for
applications that have multiple access patterns to the same
data structure. Second, compilers provide support to auto-
matic Virtual View creation and data consistency.
Our experimental evaluations demonstrate the potential

of Virtual View for improving spatial locality, which leads
to application performance gain. In addition, we also com-
pare the performances of write ampliVcation variants, and
we show that lazy regeneration performance gain becomes
greater as the frequency of write increases. We conclude
that Virtual View can be an eUective approach to exploit
cache locality for applications that have the presence of
multiple disparate access patterns.
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