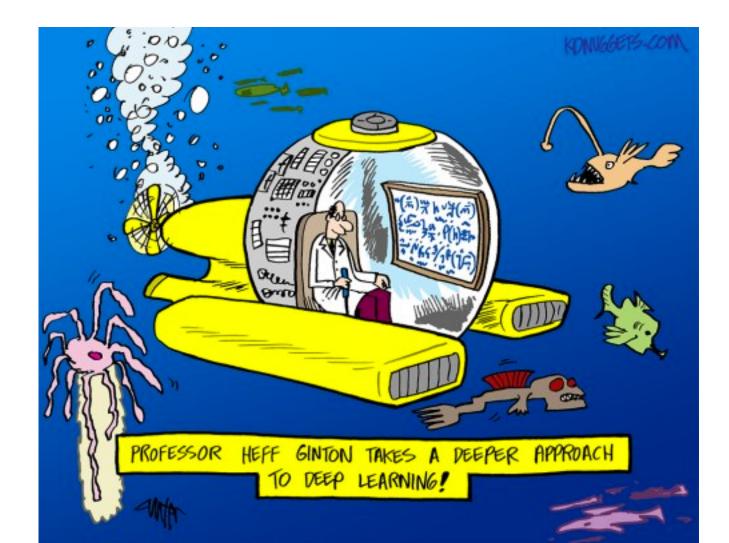
DEEP NETWORKS 10-405

Where we're going

- Assignment out Wed:
 - build framework for ANNs that will automatically differentiate and optimize any architecture
- Outline
 - History
 - Motivation
 - for ANN framework based on autodiff and matrix operations
 - Backprop 101
 - Autodiff 101

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY



On-line Resources

- <u>http://neuralnetworksanddeeplearning.com/index.html</u> Online book by Michael Nielsen
- <u>http://matlabtricks.com/post-5/3x3-convolution-kernels-</u> <u>with-online-demo</u> - of convolutions
- <u>https://cs.stanford.edu/people/karpathy/convnetjs/demo</u> <u>/mnist.html</u> - demo of CNN
- <u>http://scs.ryerson.ca/~aharley/vis/conv/</u> 3D visualization
- <u>http://cs231n.github.io/</u> Stanford CS class CS231n: Convolutional Neural Networks for Visual Recognition.
- <u>http://www.deeplearningbook.org/</u> MIT Press book in prep from Bengio

A history of neural networks

- 1940s-60's:
 - McCulloch & Pitts; Hebb: modeling real neurons
 - Rosenblatt, Widrow-Hoff: : perceptrons
 - 1969: Minskey & Papert, *Perceptrons* book showed formal limitations of one-layer linear network
- 1970's-mid-1980's: ...
- mid-1980's mid-1990's:
 - backprop and multi-layer networks
 - Rumelhart and McClelland *PDP* book set
 - Sejnowski's NETTalk, BP-based text-to-speech
 - Neural Info Processing Systems (NIPS) conference starts
- Mid 1990's-early 2000's: ...
 - Mid-2000's to current:
 - More and more interest and experimental success

Recent history of neural networks

- Mid-2000's to current:
 - Convolutional neural nets (CNN) trained to classify large image collections (e.g., ImageNet) become widely used in computer vision
 - as representation of images
 - Word embeddings (word2vec, GloVE,...) and recurrent neural networks (RNNs – like LSTMs, GRUs, ...) become widely used in NLP tasks
 - as representation of text
 - Generative adversarial networks (GANs) and variational autoencoders (VAEs)
 - as representation of distributions of images

— ...

- Progress in
 - Hardware platforms: GPUs
 - **Optimization**: minibatch SGD (and ADAM, RMSProp, ...) with GPUs
 - Experience: which NN architectures work (CNNs, LSTM, ...)
 - Software platforms: easily combine NN components

TECHNOLOGY

Silicon Valley Looks to Artificial Intelligence for the Next Big Thing

A popular artificial-intelligence method provides a powerful tool for surveying and classifying biological data. But for the uninitiated, the technology poses significant difficulties.

As Silicon Valley fights for talent, universities struggle to hold on to their stars

Apr 2nd 2016 | SAN FRANCISCO | From the print edition

A Hippocratic Oath for artificial intelligence practitioners

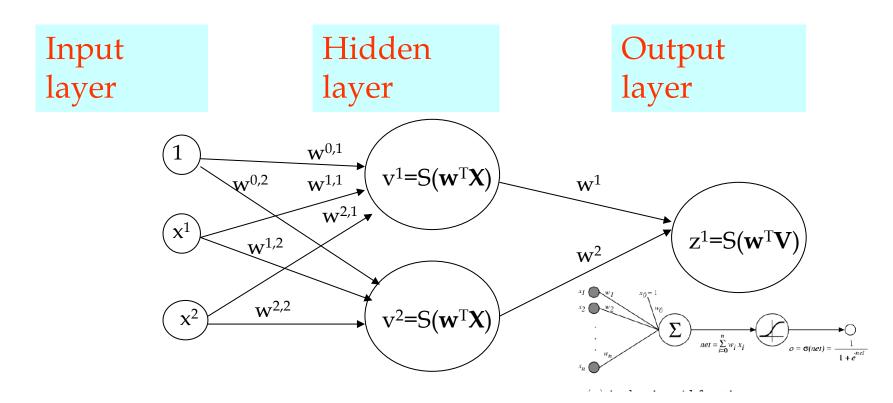
Oren Etzioni @etzioni / Yesterday

Comment

×

1990s Multilayer NN

- Simplest case: classifier is a multilayer *network* of *logistic units*
- Each *unit* takes some inputs and produces one output using a logistic classifier
- Output of one unit can be the input of another

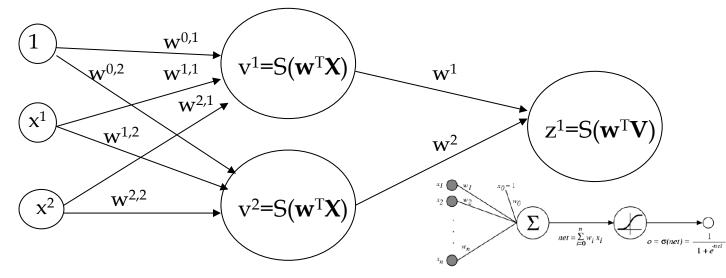


1990s Learning for NNs

- Define a loss (simplest case: squared error)
 - But over a network of "units"
- Minimize loss with gradient descent

$$J_{\mathbf{X},\mathbf{y}}(\mathbf{w}) = \sum_{i} \left(y^{i} - \hat{y}^{i} \right)^{2}$$

- You can do this over complex networks if you can take the *gradient* of each unit: every computation is *differentiable*



1990s Learning for NNs

- Mostly 2-layer networks or else carefully constructed "deep" networks (eg CNNs)
- Worked well but training was slow and finicky

 $\overline{7}$

PROC. OF THE IEEE, NOVEMBER 1998

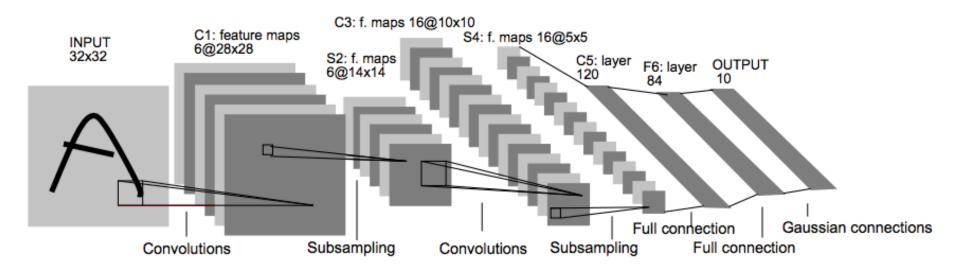
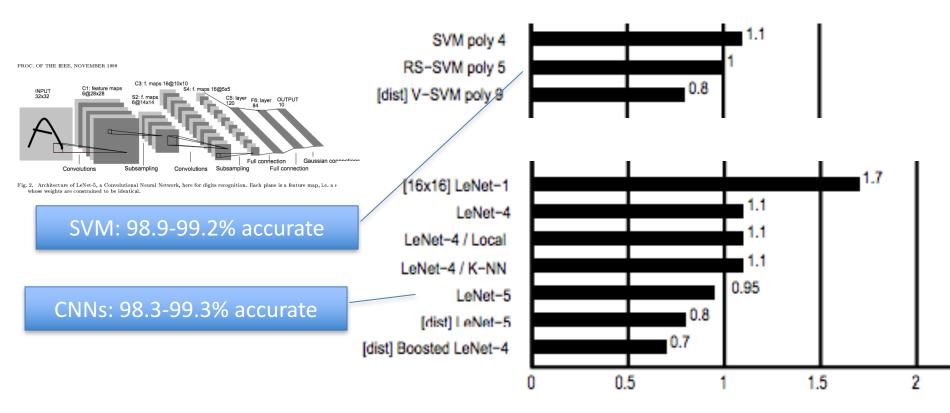


Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

1990s Learning for NNs

- Mostly 2-layer networks or else carefully constructed "deep" networks
- Worked well but training typically took weeks



1990s Teaching Learning for NNs

For nodes *k* in output layer:

$$\delta_k \equiv \left(t_k - a_k\right) a_k \left(1 - a_k\right)$$

For nodes *j* in hidden layer:

$$\delta_j = \sum_k \left(\delta_k w_{kj} \right) \ a_j \left(1 - a_j \right)$$

For all weights:

$$w_{kj} = w_{kj} - \varepsilon \, \delta_k a_j$$
$$w_{ji} = w_{ji} - \varepsilon \, \delta_j a_i$$

"Propagate errors backward" BACKPROP

Can carry this recursion out further if you have multiple hidden layers

2018 Learning for NNs

- We need to understand **interaction of**: hardware platforms, software platforms, architectural components, optimization methods
- Start off with a **new high-level language for NNs**
 - vectors/matrices/tensors
 - tensor = k-dimensional array of floats
 - vector/matrix/tensor operations
 - built-in gradient computation and optimizers
 - architectural components as subroutines
- A lot like dataflow languages for map-reduce workflows (eg GuineaPig)

(review)

Vectorized minibatch logistic regression

- Computation we'd like to vectorize:
 - For each **x** in the minibatch, compute

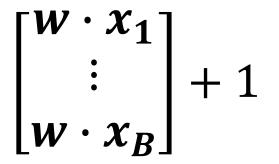
$$p \equiv \frac{1}{1 + e^{\mathbf{x} \cdot \mathbf{w}}} = \frac{1}{1 + \exp(-\sum_j x^j w^j)}$$

• For each feature *j*: update w^j using $\frac{\partial}{\partial w^j} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = (y - p)x^j$

 Computation we'd like to parallelize: - For each **x** in the minibatch X_{batch}, compute $p \equiv \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{w}}} = \frac{1}{1 + \exp(-\sum_j x^j w^j)}$ $\boldsymbol{X}_{batch}\boldsymbol{w} = \begin{vmatrix} x_1^1 & \cdots & x_1^J \\ \vdots & \ddots & \vdots \\ x_R^1 & \cdots & x_R^J \end{vmatrix} \begin{bmatrix} w^1 \\ \vdots \\ w^J \end{bmatrix} = \begin{bmatrix} \boldsymbol{w} \cdot \boldsymbol{x}_1 \\ \vdots \\ \boldsymbol{w} \cdot \boldsymbol{x}_B \end{bmatrix}$

- Computation we'd like to parallelize:
 - For each **x** in the minibatch X_{batch} , compute

$$p \equiv \underbrace{1}_{1+e^{-\mathbf{x}\cdot\mathbf{w}}} = \frac{1}{1+\exp(-\sum_j x^j w^j)}$$



in numpy if M is a matrix M+1 does the "right thing"

so does np.exp(M)

- Computation we'd like to parallelize:
 - For each **x** in the minibatch, compute

$$p \equiv \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{w}}} = \frac{1}{1 + \exp(-\sum_{j} x^{j} w^{j})}$$
$$\frac{\partial}{\partial w^{j}} \log P(Y = y | X = \mathbf{x}, \mathbf{w}) = (y - p) x^{j}$$

def logistic(X): return (-X.exp()+1).reciprocal()
p = logistic(Xb.dot(w)) # B rows, 1 column
grad = Xb.dot(y - p).rowsum() * 1/B
w = w + grad*rate

Binary to softmax logistic regression

$$p \equiv \frac{1}{1 + e^{-\mathbf{x} \cdot \mathbf{w}}} = \frac{1}{1 + \exp(-\sum_{j} x^{j} w^{j})}$$
$$X_{batch} \mathbf{w} = \begin{bmatrix} x_{1}^{1} & \cdots & x_{1}^{J} \\ \vdots & \ddots & \vdots \\ x_{B}^{1} & \cdots & x_{B}^{J} \end{bmatrix} \begin{bmatrix} w^{1} \\ \vdots \\ w^{J} \end{bmatrix} = \begin{bmatrix} \mathbf{w} \cdot \mathbf{x}_{1} \\ \vdots \\ \mathbf{w} \cdot \mathbf{x}_{B} \end{bmatrix}$$

Binary to softmax logistic regression

$$p \equiv \frac{1}{1 + e^{-\mathbf{x}\cdot\mathbf{w}}} = \frac{1}{1 + \exp(-\sum_{j} x^{j} w^{j})}$$

$$p^{\mathcal{Y}} \equiv \frac{\exp(\mathbf{x} \cdot \mathbf{w}^{\mathcal{Y}})}{\sum_{\mathcal{Y}'} \exp(\mathbf{x} \cdot \mathbf{w}^{\mathcal{Y}'})}$$

$$XW = \begin{bmatrix} x_{1}^{1} & \cdots & x_{1}^{J} \\ \vdots & \ddots & \vdots \\ x_{B}^{1} & \cdots & x_{B}^{J} \end{bmatrix} \begin{bmatrix} w_{1}^{1} \\ \vdots \\ w^{J} \end{bmatrix} = \begin{bmatrix} \mathbf{w} \cdot \mathbf{x}_{1} \\ \vdots \\ \mathbf{w} \cdot \mathbf{x}_{B} \end{bmatrix}$$

$$XW = \begin{bmatrix} x_{1}^{1} & \cdots & x_{1}^{J} \\ \vdots & \ddots & \vdots \\ x_{B}^{1} & \cdots & x_{B}^{J} \end{bmatrix} \begin{bmatrix} w_{1}^{\mathcal{Y}^{1}} & \cdots & w_{1}^{\mathcal{Y}K} \\ \vdots & \ddots & \vdots \\ w_{J}^{\mathcal{Y}^{1}} & \cdots & w_{J}^{\mathcal{Y}K} \end{bmatrix} = \begin{bmatrix} \mathbf{w}^{\mathcal{Y}^{1}} \cdot \mathbf{x}_{1} & \cdots & \mathbf{w}^{\mathcal{Y}K} \cdot \mathbf{x}_{1} \\ \vdots & \ddots & \vdots \\ \mathbf{w}^{\mathcal{Y}^{1}} \cdot \mathbf{x}_{B} & \cdots & \mathbf{w}^{\mathcal{Y}K} \cdot \mathbf{x}_{B} \end{bmatrix}$$

$$\frac{1}{2}$$

$$\frac{1}$$

 $p^{y} \equiv \frac{\exp(\boldsymbol{x} \cdot \boldsymbol{w}^{y})}{\sum_{y'} \exp(\boldsymbol{x} \cdot \boldsymbol{w}^{y'})}$

... that this line will work correctly even though 'a and 'a_sum' have different shapes

 $XW = \begin{bmatrix} x_1^1 & \cdots & x_1^J \\ \vdots & \ddots & \vdots \\ x_R^1 & \cdots & x_R^J \end{bmatrix} \begin{bmatrix} w_1^{y_1} & \cdots & w_1^{y_K} \\ \vdots & \ddots & \vdots \\ w_I^{y_1} & \cdots & w_I^{y_K} \end{bmatrix} = \begin{bmatrix} \mathbf{w}^{y_1} \cdot \mathbf{x}_1 & \cdots & \mathbf{w}^{y_K} \cdot \mathbf{x}_1 \\ \vdots & \ddots & \vdots \\ \mathbf{w}^{y_1} \cdot \mathbf{x}_R & \cdots & \mathbf{w}^{y_K} \cdot \mathbf{x}_R \end{bmatrix}$

```
http://minpy.readthedocs.io/en/latest/get-started/logistic regression.html
      import numpy as np
1
      import numpy.random as random
2
      from examples.utils.data_utils import gaussian_cluster_generator as make_data
 3
4
      # Predict the class using multinomial logistic regression (softmax regression).
      def predict(w, x):
5
          a = np.exp(np.dot(x, w))
6
          a_sum = np.sum(a, axis=1, keepdims=True)
7
          prob = a / a sum
          return prob
8
9
      # Using gradient descent to fit the correct classes.
10
      def train(w, x, loops):
          for i in range(loops):
11
              prob = predict(w, x)
12
              loss = -np.sum(label * np.log(prob)) / num samples
13
              if i % 10 == 0:
14
                  print('Iter {}, training loss {}'.format(i, loss))
              # gradient descent
15
              dy = prob - label
16
              dw = np.dot(data.T, dy) / num_samples
17
              # update parameters; fixed Learning rate of 0.1
18
              w -= 0.1 * dw
19
      # Initialize training data.
20
      num samples = 10000
21
      num features = 500
      num classes = 5
22
      data, label = make data(num samples, num features, num classes)
23
24
      # Initialize training weight and train
      weight = random.randn(num features, num classes)
25
      train(weight, data, 100)
26
```

 \sim -

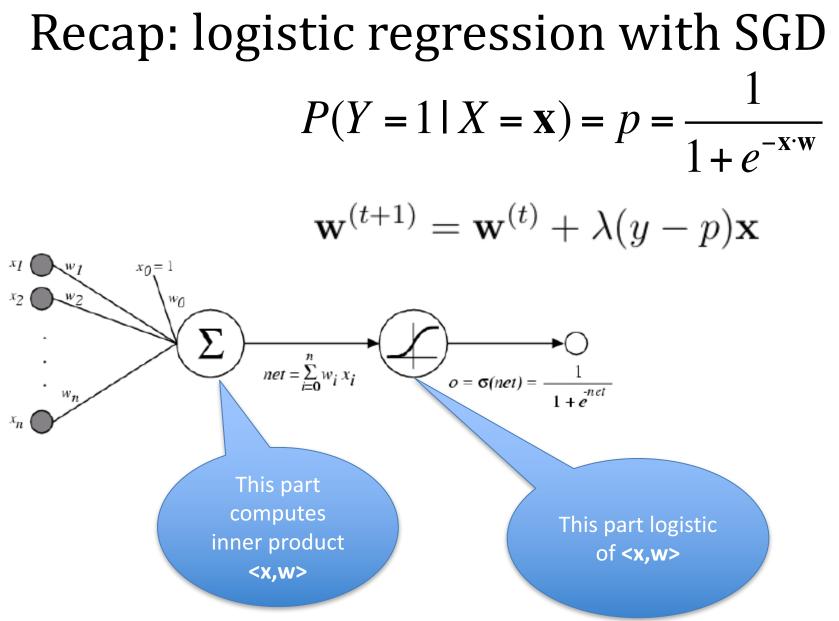
```
http://minpy.readthedocs.io/en/latest/get-started/logistic regression.html
      import numpy as np
1
      import numpy.random as random
 2
      from examples.utils.data_utils import gaussian_cluster_generator as make_data
 3
4
      # Predict the class using multinomial logistic regression (softmax regression).
      def predict(w, x):
 5
          a = np.exp(np.dot(x, w))
 6
          a_sum = np.sum(a, axis=1, keepdims=True)
7
          prob = a / a sum
          return prob
8
9
      # Using gradient descent to fit the correct classes.
10
      def train(w, x, loops):
          for i in range(loops):
11
              prob = predict(w, x)
12
              loss = -np.sum(label * np.log(prob)) / num samples
13
              if i % 10 == 0:
14
                  print('Iter {}, training loss {}'.format(i, loss))
              # aradient descent
15
              dy = prob - label
16
              dw = np.dot(data.T, dy) / num_samples
17
              # update parameters; fixed Learning rate of 0.1
18
              w -= 0.1 * dw
19
      # Initialize training data.
20
      num samples = 10000
21
      num features = 500
      num classes = 5
22
      data, label = make data(num samples, num features, num classes)
23
24
      # Initialize training weight and train
      weight = random.randn(num features, num classes)
25
      train(weight, data, 100)
26
\sim -
```

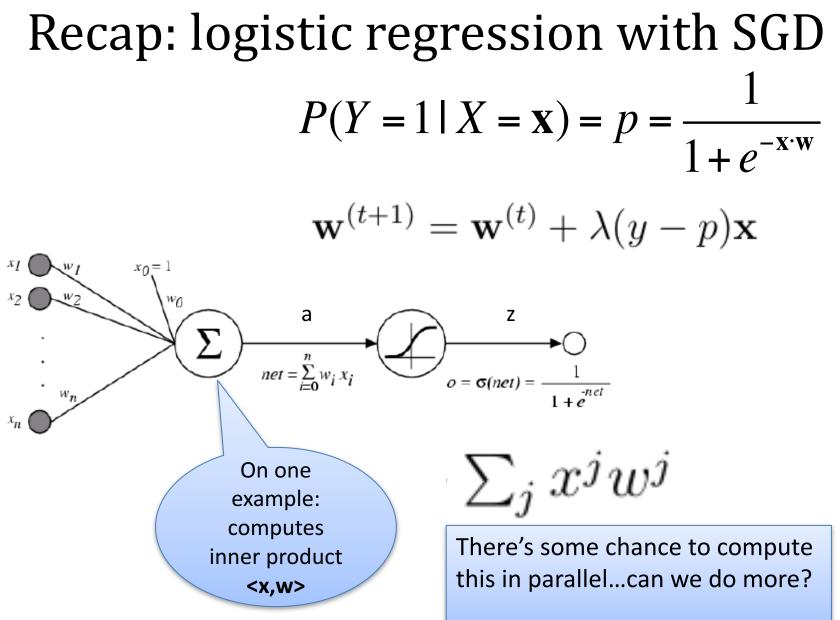
$$\frac{http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html
import numpy.random as random
from examples.utils.data_utils import gaussian_cluster
$$\frac{x}{from examples.utils.data_utils import gaussian_cluster
$$\frac{y}{from examples.utils.data_utils.$$

PARALLEL TRAINING FOR ANNS

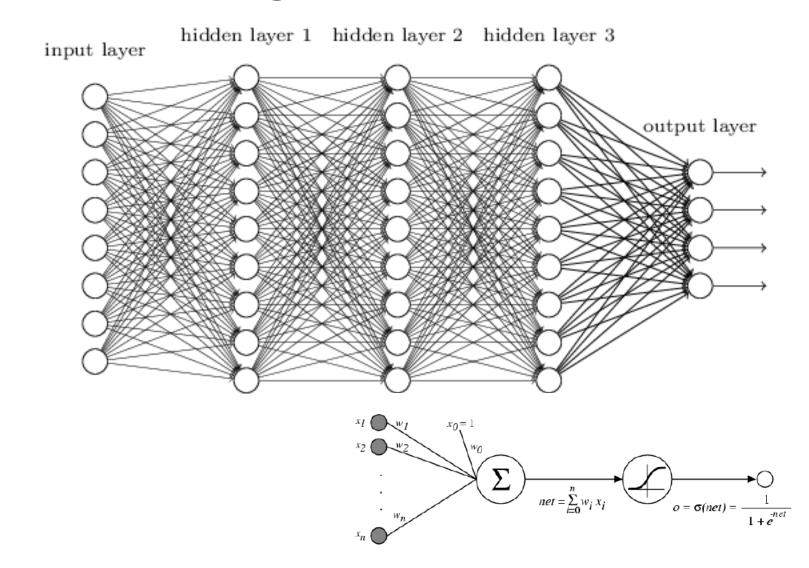
How are ANNs trained?

- Typically, with some variant of streaming SGD
 - Keep the data on disk, in a preprocessed form
 - Loop over it multiple times
 - Keep the model in memory
- Solution to big data: but long training times!
- However, *some* parallelism is often used....





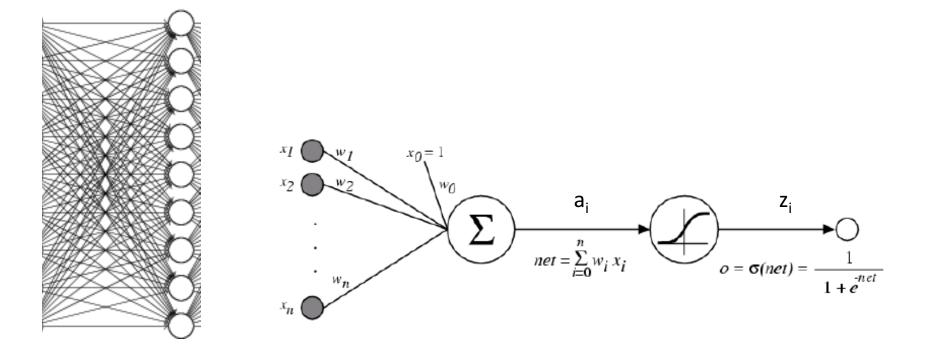
In ANNs we have many many logistic regression nodes



Recap: logistic regression with SGD

Let **x** be an example

Let \mathbf{w}_i be the input weights for the i-th hidden unit Then output $\mathbf{a}_i = \mathbf{x} \cdot \mathbf{w}_i$



Recap: logistic regression with SGD

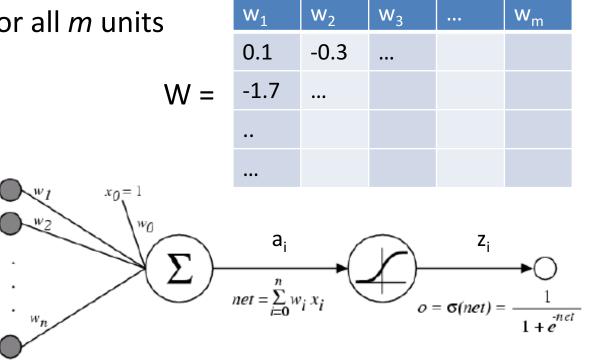
Let **x** be an example

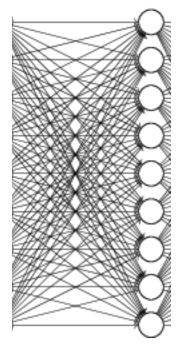
Let **w**_i be the input weights for the i-th hidden unit

Then $\mathbf{a} = \mathbf{x} W$

is output for all *m* units

 x_n





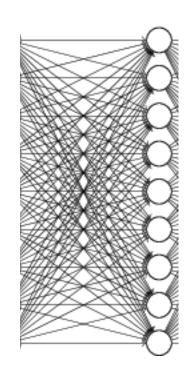
Recap: logistic regression with SGD

Let X be a matrix with k examples

Let **w**_i be the input weights for the i-th hidden unit

Then A = X W is output for all *m* units

for all k examples



					W ₁	W ₂	W	3		w _m
x ₁	1	0	1	1	0.1	-0.3				
x ₂					-1.7					
•••					0.3					
x _k					1.2					
There's a lot of chances to do				x ₁ . w ₁	x ₁ .w		x ₁ .w _m			
this in parallel			XW =							
	Minibatch SGD: batch size trades off									
	parallellism vs memory							x _k .	w _m	32

ANNs and multicore CPUs

- Modern libraries (Matlab, numpy, ...) do matrix operations fast, in parallel
- Many ANN implementations exploit this parallelism automatically
- Key implementation issue is working with matrices comfortably

ANNs and GPUs

- GPUs do matrix operations very fast, in parallel
 - For dense matrixes, not sparse ones!
- Training ANNs on GPUs is common
 - SGD and minibatch sizes of 128
- Modern ANN implementations can exploit this
- GPUs are not super-expensive
 - \$500 for high-end one
 - large models with O(10⁷) parameters can fit in a large-memory GPU (12Gb)
- Speedups of 20x-50x are typical

ANNs and multi-GPU systems

- There are ways to set up ANN computations so that they are spread across multiple GPUs
 - Sometimes involves some sort of IPM
 - Sometimes involves partitioning the model across multiple GPUs
 - Often needed for very large networks

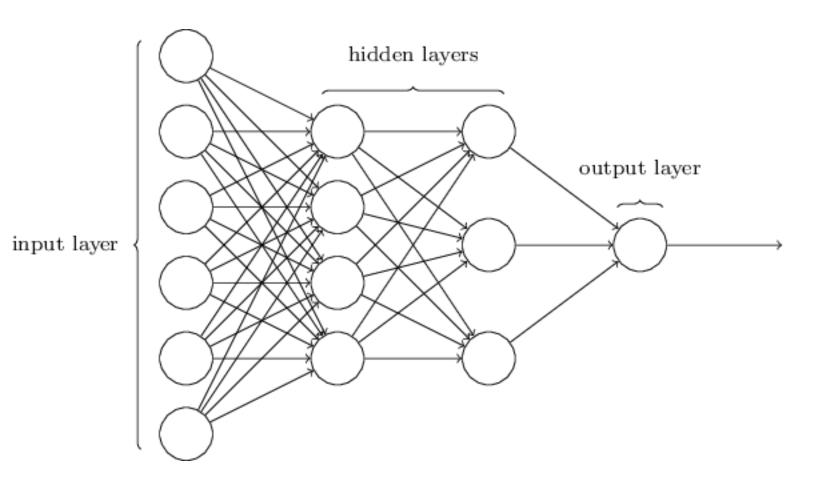
Where we're going

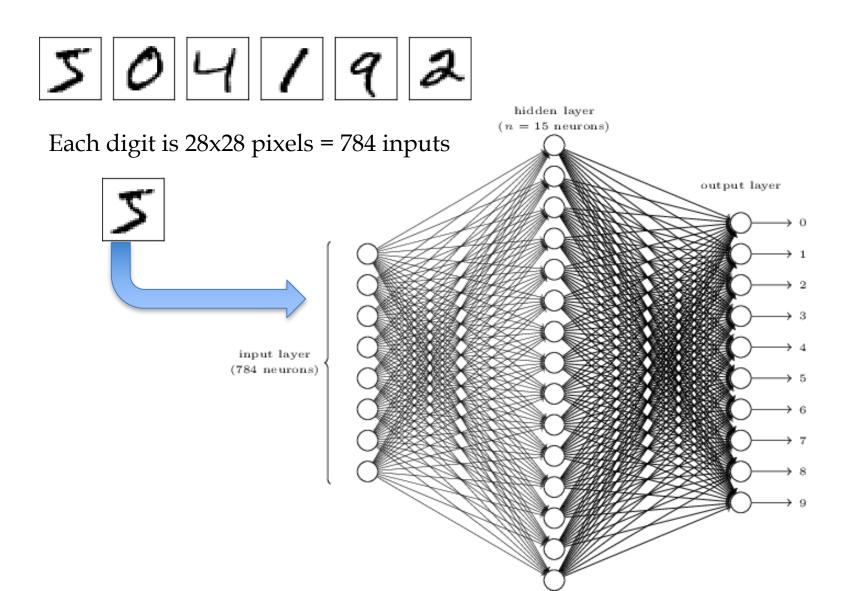
- Assignment out Wed:
 - build framework for ANNs that will automatically differentiate and optimize any architecture
- Outline
 - History
 - Motivation
 - for ANN framework based on autodiff and matrix operations
 - Backprop 101
 - Autodiff 101

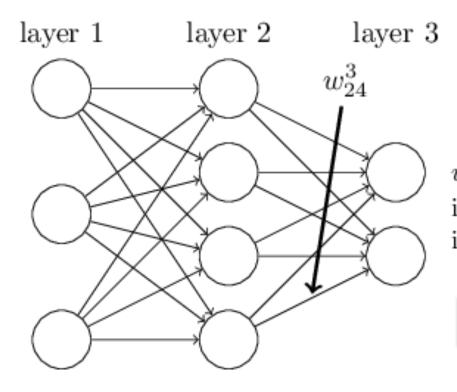
Vectorizing BackProp

BackProp in Matrix-Vector Notation

Michael Nielson: http://neuralnetworksanddeeplearning.com/

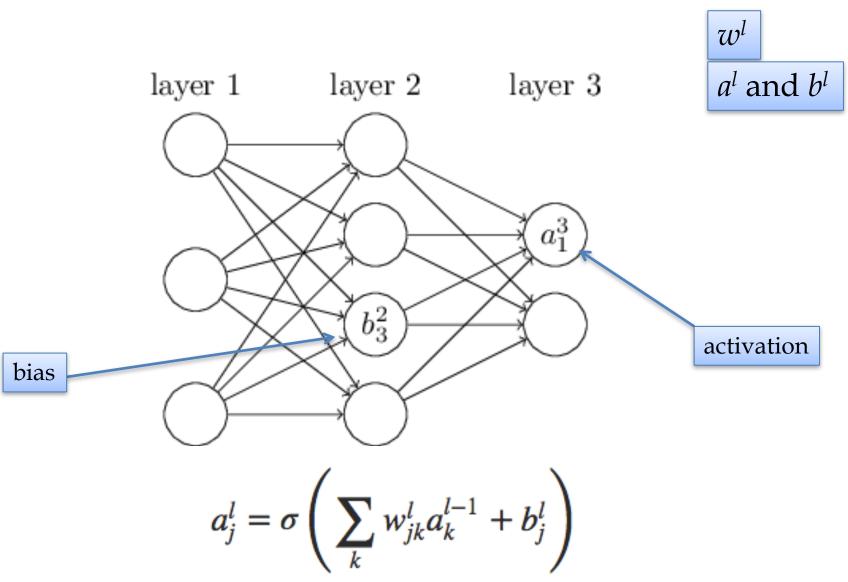


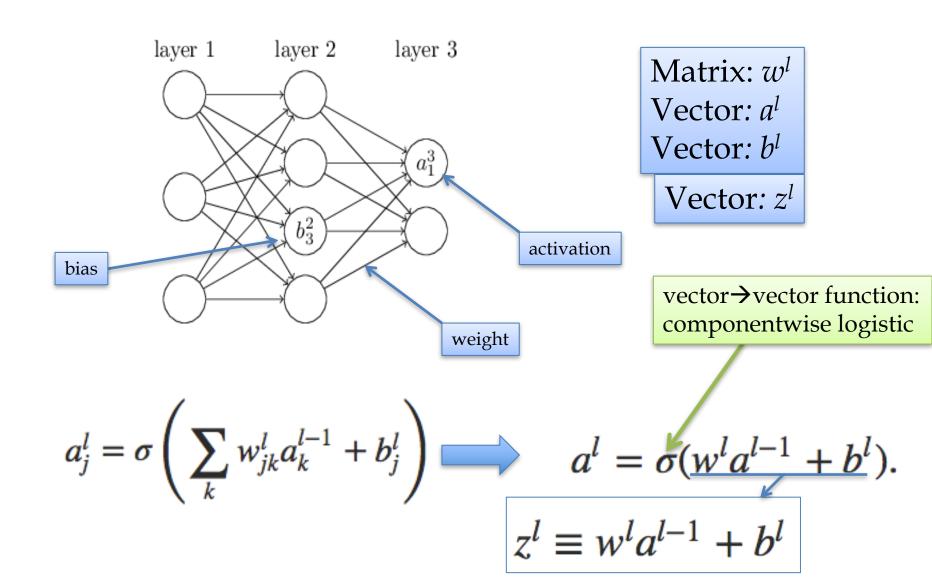




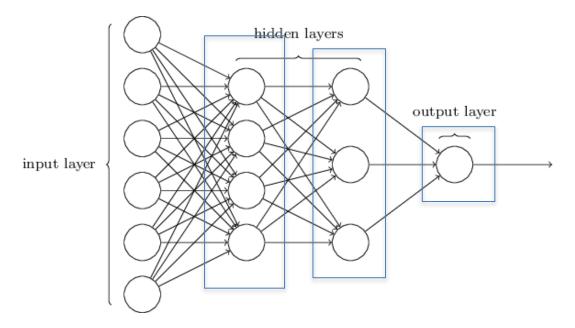
 w_{jk}^{l} is the weight from the k^{th} neuron in the $(l-1)^{\text{th}}$ layer to the j^{th} neuron in the l^{th} layer

 w^l is weight matrix for layer l

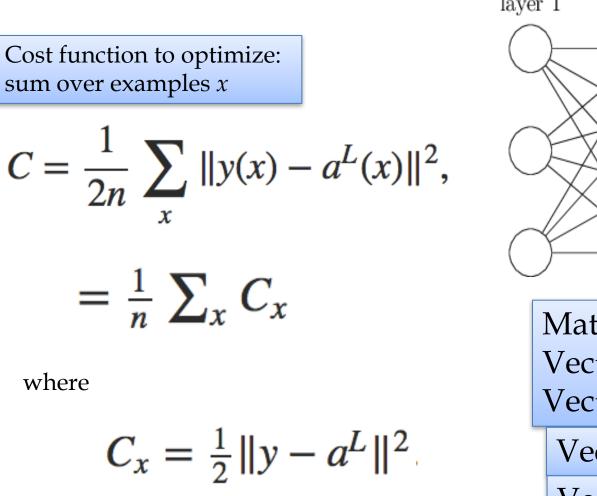




Computation is "feedforward"



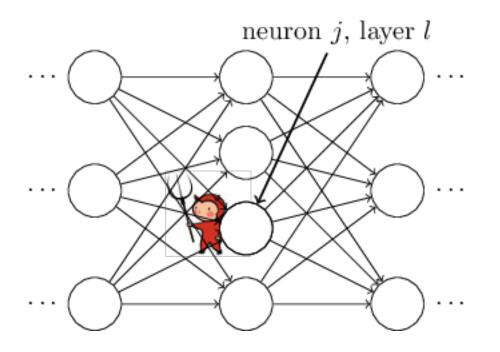
for
$$l=1, 2, ... L$$
:
 $a^{l} = \sigma(w^{l}a^{l-1} + b^{l}).$

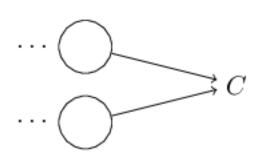


layer 1 layer 2 layer 3 a_1^3 b_3^2 Matrice sul

Matrix: w^l Vector: a^l Vector: b^l Vector: z^l

Vector: y





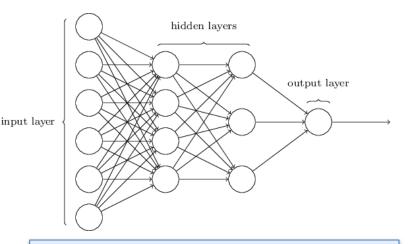
 $\delta_j^l \equiv \frac{\partial C}{\partial z_j^l}.$

BackProp: last layer

 $\delta_j^L = \frac{\partial C}{\partial a_i^L} \sigma'(z_j^L).$

Matrix form:

$$\delta^{L} = \nabla_{a} C \odot \sigma'(z^{L}).$$
components are $\frac{\partial C}{\partial a_{j}^{L}}$
components are $\sigma'(z_{j}^{L})$



Level *l* for *l*=1,...,*L* Matrix: *w*^{*l*} Vectors:

- bias b^l
- activation *a*^{*l*}
- pre-sigmoid activ: z^l
- target output y
- "local error" δ^l

BackProp: last layer

 $\delta_j^L = \frac{\partial C}{\partial a_i^L} \sigma'(z_j^L).$

input layer

Matrix form for square loss:

$$\delta^L = (a^L - y) \odot \sigma'(z^L).$$

Level *l* for l=1,...,LMatrix: w^l Vectors:

- bias b^l
- activation *a*^{*l*}
- pre-sigmoid activ: z^l

hidden layers

output layer

- target output *y*
- "local error" δ^l

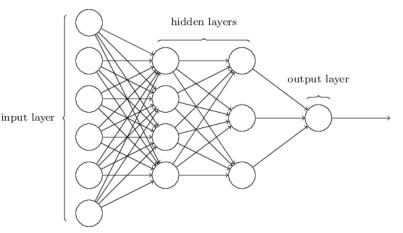
BackProp: error at level / in terms of error at level /+1

 $\delta^{l} = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$

which we can use to compute

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \implies \frac{\partial C}{\partial b} = \delta_j$$

$$\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \Longrightarrow \quad \frac{\partial C}{\partial w} = a_{\rm in} \delta_{\rm out}$$



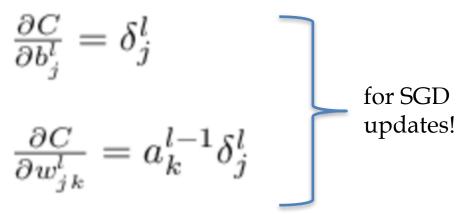
Level *l* for l=1,...,LMatrix: w^l Vectors:

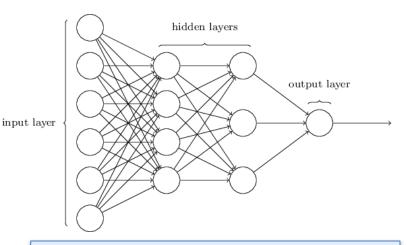
- bias b^l
- activation *a*^{*l*}
- pre-sigmoid activ: *z*^{*l*}
- target output *y*
- "local error" δ^l

BackProp: summary

$$\delta^L = \nabla_a C \odot \sigma'(z^L)$$

$$\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

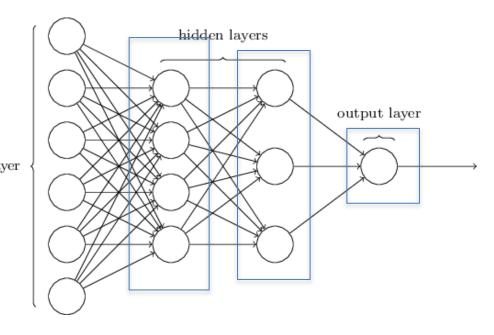




Level *l* for l=1,...,LMatrix: w^l Vectors:

- bias b^l
- activation *a*^{*l*}
- pre-sigmoid activ: z^l
- target output *y*
- "local error" δ^l

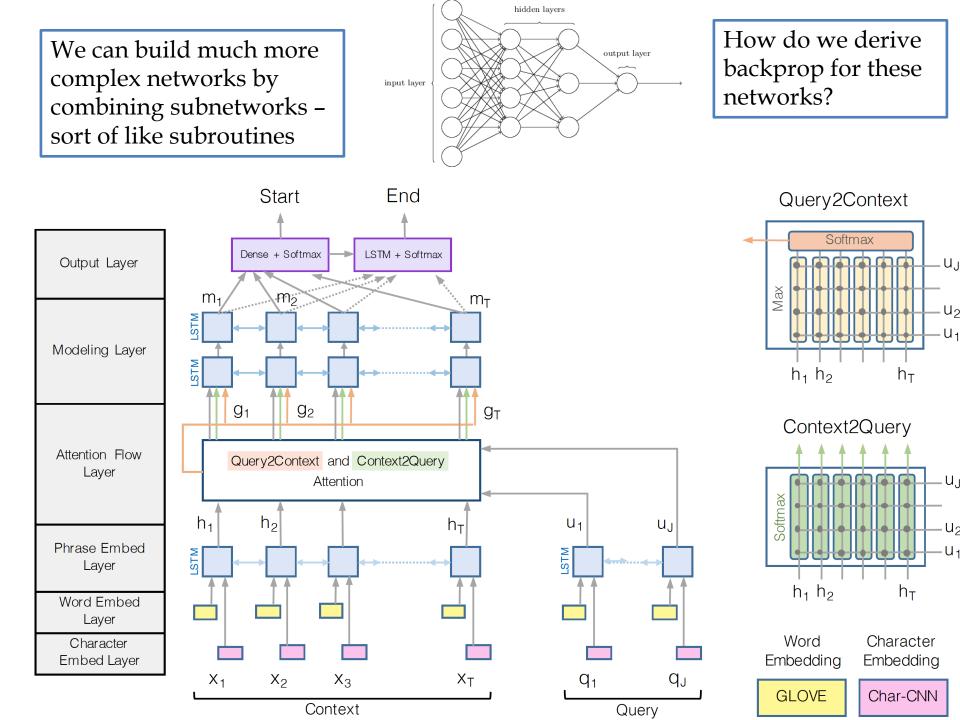
Computation propagates errors backward



$$\begin{split} \delta^{L} &= (a^{L} - y) \odot \sigma'(z^{L}). \\ \text{for } l = L - 1, \dots 1: \\ \delta^{l} &= ((w^{l+1})^{T} \delta^{l+1}) \odot \sigma'(z^{l}) \\ \frac{\partial C}{\partial b_{j}^{l}} &= \delta_{j}^{l} \\ \frac{\partial C}{\partial w_{jk}^{l}} &= a_{k}^{l-1} \delta_{j}^{l} \end{split}$$

BackProp 101

- Forward pass computes *z's* and *a's*
- Backward pass uses these to compute δ 's
- Simple to define each with matrix operators
 - Hence easy to run in parallel minibatch SGD process



How can we generalize BackProp to other ANNs? How can we automate BackProp for other ANNs?

Deep Neural Network Toolkits: What's Under the Hood?

Recap: Wordcount in GuineaPig

```
# always start like this
from guineapig import *
import sys
# supporting routines can go here
def tokens(line):
   for tok in line.split():
      yield tok.lower()
#always subclass Planner
class WordCount(Planner):
   wc = ReadLines('corpus.txt') | Flatten(by=tokens) | Group(by=lambda x:x, reducingWith=ReduceToCount())
# always end like this
if name == " main ":
   WordCount().main(sys.argv)
class WordCount(Planner):
      lines = ReadLines('corpus.txt')
     words = Flatten(lines, by=tokens)
     wordCount = Group(words, by=lambda x:x, reducingTo=ReduceToCount())
class variables
in the planner
                  wordCount = Group(words, by=<function <lambda> at
are data
                     words = Flatten(lines, by=<function tokens at 0
                        lines = ReadLines("corpus.txt")
structures
```

Recap: Wordcount in GuineaPig

wordCount = Group(words,by=<function <lambda> at 0x10497aa28>,reducingTo=<guineapig.ReduceT | words = Flatten(lines, by=<function tokens at 0x1048965f0>).opts(stored=True) | lines = ReadLines("corpus.txt")

The general idea:

- Embed something that looks like code but, when executed, builds a data structure
- The data structure defines a computation you want to do
 - "computation graph"
- Then you use the data structure to do the computation
 - stream-and-sort
 - streaming Hadoop

• ...

• We're going to re-use the same idea: but now the graph both supports **computation** of a function and **differentiation** of that computation

$$\Rightarrow \begin{array}{rcrc} z_1 &=& \operatorname{add}(x_1, x_1) \\ z_2 &=& \operatorname{add}(z_1, x_2) \\ f &=& \operatorname{square}(z_2) \end{array}$$

computation graph, aka tape, aka Wengert list

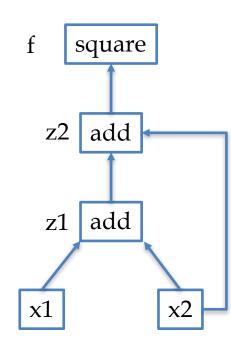
$$\begin{aligned} f(x_1, x_2) &= (2x_1 + x_2)^2 = 4x_1^2 + 4x_1x_2 + x_2^2 \\ \frac{df}{dx_1} &= 8x_1 + 4x_2 \\ \frac{df}{dx_2} &= 4x_1 + 2x_2 \end{aligned}$$

 $f(x_1, x_2) \equiv (2x_1 + x_2)^2$

$$f(x_1,x_2)\equiv (2x_1+x_2)^2$$
 \Longrightarrow z_1 = $\operatorname{add}(x_1,x_1)$
 $f = \operatorname{square}(z_2)$

f

computation graph



$$z_{1} = \operatorname{add}(x_{1}, x_{1})$$

$$z_{2} = \operatorname{add}(z_{1}, x_{2})$$

$$z_{1} = \operatorname{add}(x_{1}, x_{1})$$

$$z_{2} = \operatorname{add}(z_{1}, x_{2})$$

$$f = \operatorname{square}(z_{2})$$

$$f = \operatorname{square}(z_{2})$$

$$f = \operatorname{square}(z_{2})$$

$$df_{x_{1}} = \frac{dz_{2}^{2}}{dz_{2}} \cdot \frac{dz_{2}}{dx_{1}}$$

$$\frac{df}{dx_{1}} = 2z_{2} \cdot \frac{d(z_{1}+x_{2})}{dx_{1}}$$

$$\frac{df}{dx_{1}} = 2z_{2} \cdot \frac{d(z_{1}+x_{2})}{dx_{1}}$$

$$\frac{df}{dx_{1}} = 2z_{2} \cdot (1 \cdot \frac{dz_{1}}{dx_{1}} + 1 \cdot \frac{dx_{2}}{dx_{1}})$$

$$\frac{d(a+b)}{da} = \frac{d(a+b)}{db} = 1$$

• • •

_

$f(x_1, x_2) \equiv (2x_1 + x_2)^2$	$z_1 = \operatorname{add}(x_1, x_1)$ $z_2 = \operatorname{add}(x_1, x_2)$
Derivation Step	$f = \texttt{square}(z_2)$
$rac{df}{dx_1} = rac{dz_2^2}{dz_2} \cdot rac{dz_2}{dx_1}$	$f = z_2^2$
$rac{df}{dx_1} = 2 z_2 \cdot rac{dz_2}{dx_1}$	$rac{d(a^2)}{da}=2a$
$rac{df}{dx_1}=2z_2\cdotrac{d(z_1+x_2)}{dx_1}$	$z_2=z_1+x_2$
$rac{df}{dx_1} = 2z_2 \cdot \left(1 \cdot rac{dz_1}{dx_1} + 1 \cdot rac{dx_2}{dx_1} ight)$	$\frac{d(a+b)}{da} = \frac{d(a+b)}{db} = 1$

Generalizing backprop

- Step 1: eval your function as a series of assignments Wengert list
- Step 2: back propagate by going thru the list in reverse order, starting with... $\frac{dx_N}{dx_N} \leftarrow 1$

Values

Computed in

previous step

• ...and using the chain rule

 $\frac{dx_N}{dx_i} = \sum_{j:i\in\pi(j)} \frac{dx_N}{dx_j} \frac{\partial x_j}{\partial x_i}$

e.g.
$$\begin{array}{c|c} x_7 = x_2 + x_5 \\ \pi(7) = (2,5) \\ f_7 = \text{add} \end{array}$$

Step 1: forward inputs: $x_1, x_2, ..., x_n$ for i = n + 1, n + 2, ..., N $x_i \leftarrow f_i(\mathbf{x}_{\pi(i)})$ return x_N A function Step 2: backprop eval'd at this point for i = N - 1, N - 2, ..., 1 dx_N $\underline{dx_N}\,\underline{\partial f_j}$

Recap: logistic regression with SGD

Let X be a matrix with *k* examples

multiplication

Let \mathbf{w}_i be the input weights for the i-th hidden unit Then Z = X W is output (pre-sigmoid) for all m units for all k examples

							w ₁	W ₂	W	3	•••	w _m
7-	x ₁	1	0	1	1		0.1	-0.3	•••			
	x ₂						-1.7	•••				
J.	•••						0.3	•••				
E .	x _k						1.2					
\$												
The	There's a <i>lot</i> of				$\mathbf{x}_1 \cdot \mathbf{w}_1$		$\mathbf{x}_1 \cdot \mathbf{w}_2$		•••	\mathbf{x}_1 .	w _m	
cha	chances to do this											
in j	in parallel with			XW =								
-	parallel matrix											

 $X_k.W_1$

 $X_k.W_m$

inputs:
$$x_1, x_2, ..., x_n$$

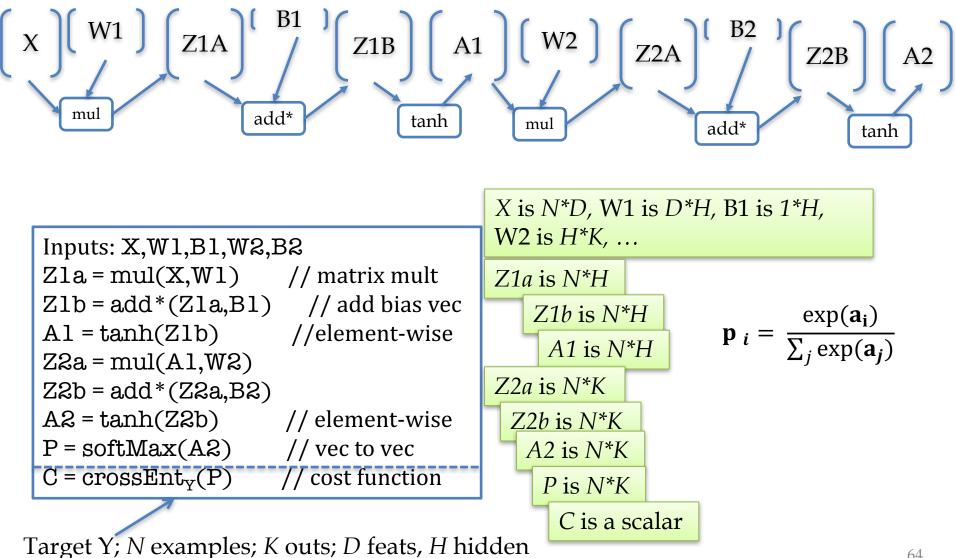
for $i = n + 1, n + 2, ..., N$
 $x_i \leftarrow f_i(\mathbf{x}_{\pi(i)})$

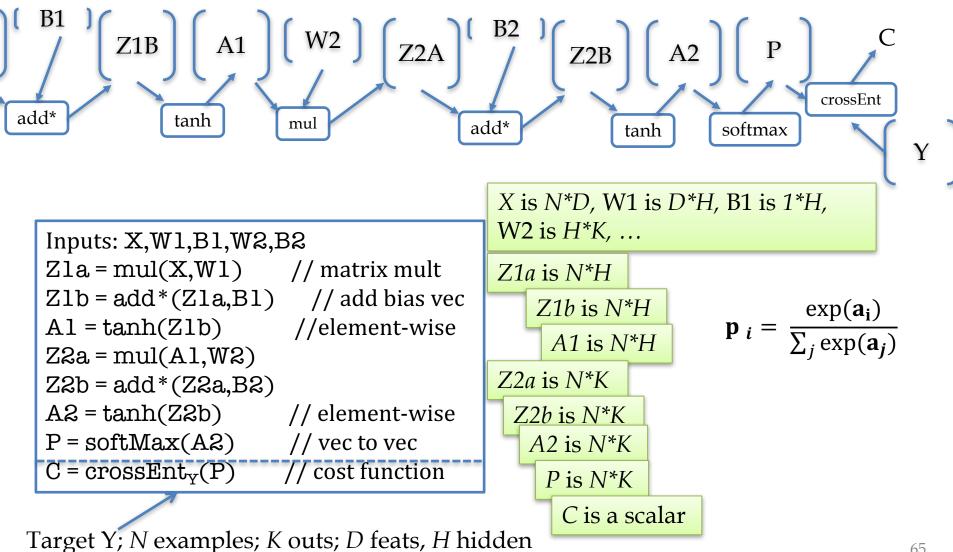
return x_N

Target Y; *N* examples; *K* outs; *D* feats, *H* hidden

Step 1: backprop
for
$$i = N - 1, N - 2, ..., 1$$

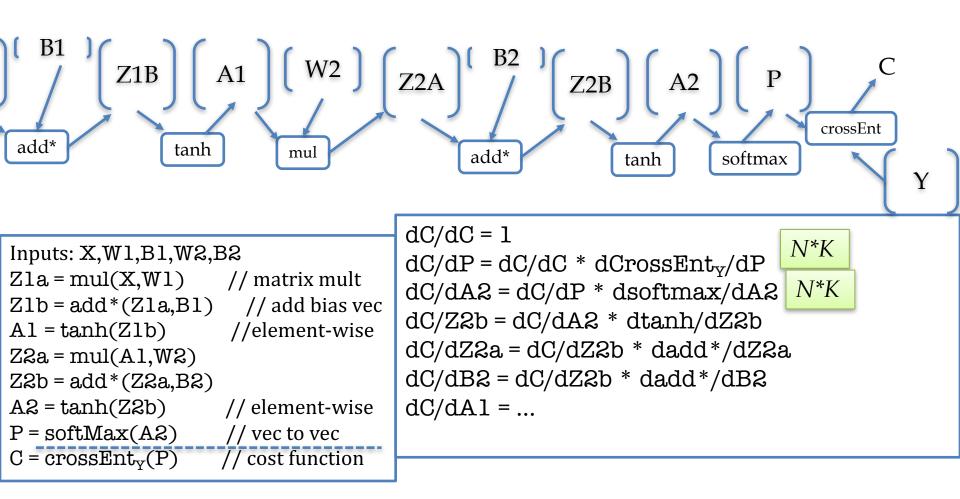
 $\frac{dx_N}{dx_i} \leftarrow \sum_{j:i \in \pi(j)} \frac{dx_N}{dx_j} \frac{\partial f_j}{\partial x_i}$



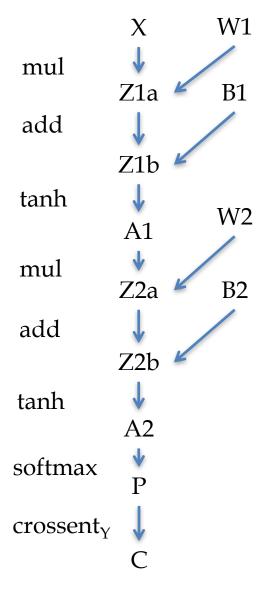


Step 1: forward	Step 1: backprop						
inputs: $x_1, x_2,, x_n$	for $i = N - 1, N - 2,, 1$						
for $i = n + 1, n + 2,, N$							
$x_i \leftarrow f_i(\mathbf{x}_{\pi(i)})$	$\frac{dx_N}{dx_i} \leftarrow \sum_{\substack{j:i \in \pi(j)}} \frac{dx_N}{dx_j} \frac{\partial f_j}{\partial x_i}$						
returnx _N	$ax_i \qquad \underbrace{j:i\in\pi(j)}_{j:i\in\pi(j)} ax_j \ Ox_i$						
	dC/dC = 1						
Inputs: X,W1,B1,W2,B2	$dC/dP = dC/dC * dCrossEnt_v/dP$						
Zla = mul(X,Wl) // matrix mult	dC/dA2 = dC/dP * dsoftmax/dA2						
Z1b = add*(Z1a,B1) // add bias vec	dC/Z2b = dC/dA2 * dtanh/dZ2b						
Al = tanh(Zlb) //element-wise	dC/dZa = dC/dZb * dadd*/dZa						
Z2a = mul(A1,W2)							
Z2b = add*(Z2a,B2)	dC/dB2 = dC/dZ2b * dadd*/dB2						
A2 = tanh(Z2b) // element-wise	dC/dA1 =						
P = softMax(A2) // vec to vec							
$C = crossEnt_{Y}(P)$ // cost function							

Target Y; *N* rows; *K* outs; *D* feats, *H* hidden

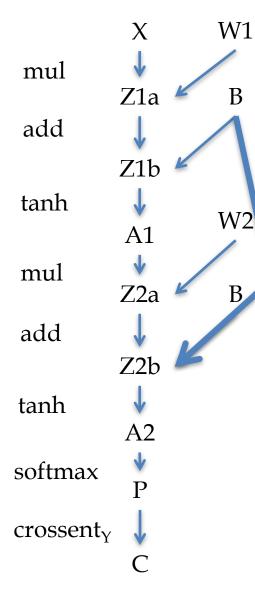


Target Y; *N* rows; *K* outs; *D* feats, *H* hidden



dC/dC = 1 $dC/dP = dC/dC * dCrossEnt_v/dP$ dC/dA2 = dC/dP * dsoftmax/dA2dC/dZ2b = dC/dA2 * dtanh/dZ2bdC/dZa = dC/dZb * dadd*/dZa• dC/dB2 = dC/dZ2b * dadd*/dB2dC/dA1 = dC/dZ2a * dmul/dA1• dC/dW2 = dC/dZ2a * dmul/dW2dC/dZ1b = dC/dA1 * dtanh/dZ1b $dC/dZ_{1a} = dC/dZ_{1b} * dadd*/dZ_{1a}$ • dC/dB1 = dC/dZ1b * dadd*/dB1dC/dX = dC/dZla * dmul*/dZla• dC/dW1 = dC/dZ1a * dmul*/dW1

with "tied parameters"



dC/dC = 1 dC/dP = dC/dC * dCrossEnt_y/dP dC/dA2 = dC/dP * dsoftmax/dA2 dC/dZ2b = dC/dA2 * dtanh/dZ2b dC/dZ2a = dC/dZ2b * dadd*/dZ2a • dC/dB2 = dC/dZ2b * dadd*/dB dC/dA1 = dC/dZ2a * dmul/dA1 • dC/dW2 = dC/dZ2a * dmul/dW2

dC/dZlb = dC/dAl * dtanh/dZlb
dC/dZla = dC/dZlb * dadd*/dZla
• dC/dBl = dC/dZlb * dadd*/dB
dC/dX = dC/dZla * dmul*/dZla
• dC/dWl = dC/dZla * dmul*/dWl

В

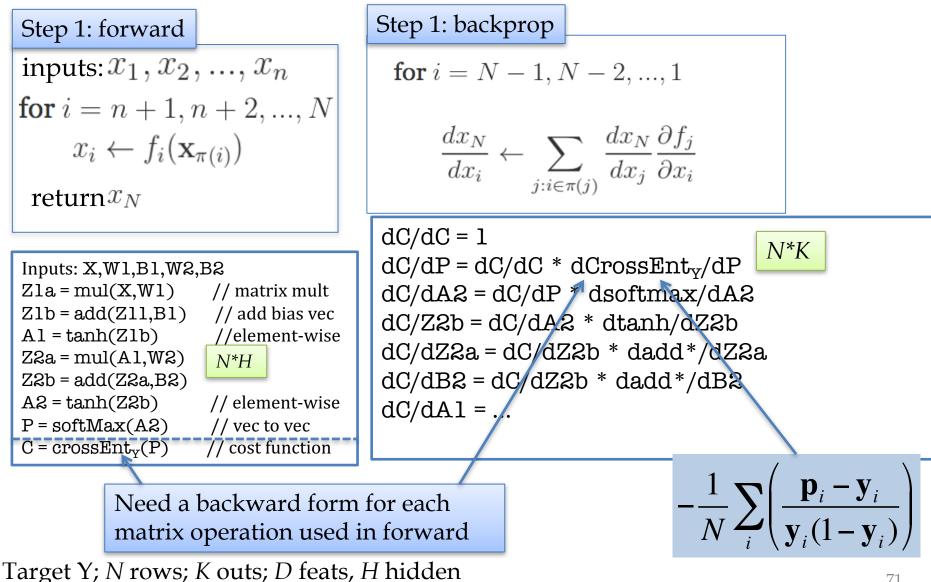
B

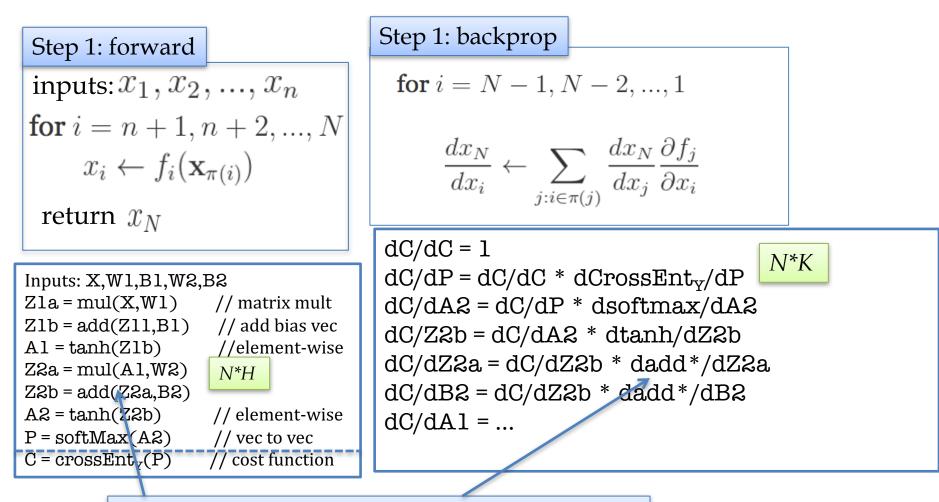
with "tied parameters"

W1 Х mul Z1a add Z1b tanh W2 A1 mul Z2a add Z2b tanh A2 softmax Р crossent_Y

dC/dC = 1 $dC/dP = dC/dC * dCrossEnt_v/dP$ dC/dA2 = dC/dP * dsoftmax/dA2dC/dZ2b = dC/dA2 * dtanh/dZ2bdC/dZa = dC/dZb * dadd*/dZadC/dB += dC/dZ2b * dadd*/dBdC/dA1 = dC/dZ2a * dmul/dA1• dC/dW2 = dC/dZ2a * dmul/dW2

dC/dZlb = dC/dAl * dtanh/dZlbdC/dZla = dC/dZlb * dadd*/dZla $\cdot dC/dB += dC/dZ1b * dadd*/dB$ dC/dX = dC/dZla * dmul*/dZla• dC/dWl = dC/dZla * dmul*/dWl





Need a backward form for each matrix operation used in forward, with respect to each argument

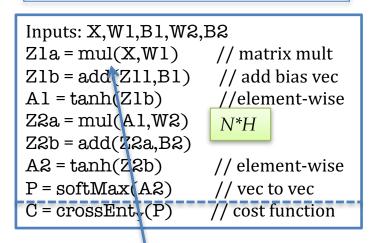
Target Y; *N* rows; *K* outs; *D* feats, *H* hidden

Step 1: forward

inputs:
$$x_1, x_2, ..., x_n$$

for $i = n + 1, n + 2, ..., l$
 $x_i \leftarrow f_i(\mathbf{x}_{\pi(i)})$

return x_N



An autodiff package usually includes

- A collection of matrix-oriented operations (mul, add*, ...)
- For each operation
 - A forward implementation
 - A backward implementation for each argument

Need a backward form for each matrix operation used in forward, with respect to each argument

Target Y; *N* rows; *K* outs; *D* feats, *H* hidden

Stopped Monday

What's Going On Here?

Differentiating a Wengert list: a simple

High school: *symbolic* differentiation, compute a symbolic form of the deriv of f

$$egin{array}{rcl} z_1 &=& f_1(z_0) \ z_2 &=& f_2(z_1) \end{array}$$

$$z_m = f_m(z_{m-1})$$

case

. . .

Now: *automatic differentiation,* find an algorithm to compute f'(a) at any point *a*

$$\frac{dz_m}{dz_0} = \frac{dz_m}{dz_{m-1}} \frac{dz_{m-1}}{dz_0} \\ = \frac{dz_m}{dz_{m-1}} \frac{dz_{m-1}}{dz_{m-2}} \frac{dz_{m-2}}{dz_0} \\ \dots \\ \frac{dz_m}{dz_m} \frac{dz_{m-1}}{dz_{m-1}} \frac{dz_1}{dz_0}$$

$$\overline{dz_{m-1}}\,\overline{dz_{m-2}}\,\cdots\,\overline{dz_0}$$

Differentiating a Wengert list: a simple

case

Now: *automatic differentiation*, find an algorithm to compute f'(a) at any point a

$$egin{array}{rcl} z_1&=&f_1(z_0)&a_1&=&f_1(a)\ z_2&=&f_2(z_1)&a_2&=&f_2(f_1(a)) \end{array}$$

 $z_m = f_m(z_{m-1}) \quad a_m = f_m(f_{m-1}(f_{m-2}(\dots f_1(a)\dots)))$

Notation: $h_{i,j} \rightarrow \frac{dz_i}{dz_j}$ a_i is the *i*-th output on input a

Differentiating a Wengert list: a simple case

What did Liebnitz mean with this?

 $egin{array}{rll} z_1 &=& f_1(z_0) \ z_2 &=& f_2(z_1) \end{array} & egin{array}{rll} \displaystyle rac{dz_m}{dz_0} &=& \displaystyle rac{dz_m}{dz_{m-1}} \displaystyle rac{dz_{m-1}}{dz_0} \end{array}$

 $z_m = f_m(z_{m-1})$ for all a

$$h_{m,0}(a) = f'_m(a_m)^* h_{m-1,0}(a)$$

Notation: $h_{i,j} \rightarrow \frac{dz_i}{dz_j}$ a_i is the *i*-th output on input a

Differentiating a Wengert list: a simple case

Differentiating a Wengert list: a simple case

$$\begin{aligned} \frac{dz_m}{dz_0} &= \frac{dz_m}{dz_{m-1}} \frac{dz_{m-1}}{dz_{m-2}} \dots \frac{dz_1}{dz_0} \\ for all a & & \\ h_{m,0}(a) &= f'_m(a_m) \cdot f'_{m-1}(a_{m-1}) \cdots f'_2(a_1) \cdot f'_1(a) \\ backprop routine \ compute \ order & & \\ h_{m,0}(a) &= \left(\left(\left(\left(f'_m(a_m) \cdot f'_{m-1}(a_{m-1}) \right) \cdot f'_{m-2}(a_{m-2}) \right) \dots f'_2(a_1) \right) \right) \cdot f'_1(a) \\ delta[z_i] &= f'_m(a_m) \dots f'_i(a_i) \end{aligned}$$

Differentiating a Wengert list

```
DG = { "add" : [ (lambda a,b: 1), (lambda a,b: 1) ],
        "square": [ lambda a:2*a ] }
```

```
[ ("z1", "add", ("x1", "x1")), 
("z2", "add", ("z1", "x2")), 
("f", "square", ("z2")) ]
def backprop(f,val)
initialize delta: delta[f] = 1
for (z,g, (y<sub>1</sub>,..., y<sub>k</sub>)) in the list, in reverse order:
for i = 1, ..., k:
op<sub>i</sub> = DG[g][i]
if delta[y<sub>i</sub>] is not defined set delta[y<sub>i</sub>] = 0
delta[y<sub>i</sub>] = delta[y<sub>i</sub>] + delta[z] * op<sub>i</sub>(val[y<sub>1</sub>], ..., val[y<sub>k</sub>])
```

Generalizing backprop

- Starting point: a function of *n* variables
- Step 1: code your function as a series of assignments Wengert list

Step 1: forward
inputs:
$$x_1, x_2, ..., x_n$$

for $i = n + 1, n + 2, ..., N$
 $x_i \leftarrow f_i(\mathbf{x}_{\pi(i)})$
return x_N

- Better plan: overload your matrix operators so that when you use them in-line they build an expression graph
- Convert the expression graph to a Wengert list when necessary