
DEEP	NETWORKS
10-405

Where	we’re	going
• Assignment	out	Wed:
– build	framework	for	ANNs	that	will	automatically	
differentiate	and	optimize	any	architecture

• Outline
– History
– Motivation	
• for	ANN	framework	based	on	autodiff	and	matrix	
operations

– Backprop	101
– Autodiff	101

DEEP	LEARNING	AND	NEURAL	NETWORKS:	
BACKGROUND	AND	HISTORY

3

On-line	Resources
• http://neuralnetworksanddeeplearning.com/index.html
Online	book	by	Michael	Nielsen

• http://matlabtricks.com/post-5/3x3-convolution-kernels-
with-online-demo - of	convolutions

• https://cs.stanford.edu/people/karpathy/convnetjs/demo
/mnist.html - demo	of	CNN

• http://scs.ryerson.ca/~aharley/vis/conv/ - 3D	
visualization

• http://cs231n.github.io/ Stanford	CS	class	CS231n:	
Convolutional	Neural	Networks	for	Visual	Recognition.

• http://www.deeplearningbook.org/ MIT	Press	book	in	
prep	from	Bengio

A	history	of	neural	networks
• 1940s-60’s:

– McCulloch	&	Pitts;	Hebb:	modeling	real	neurons
– Rosenblatt,	Widrow-Hoff:	:	perceptrons
– 1969:	Minskey &	Papert,	Perceptrons book	showed	formal	
limitations	of	one-layer	linear	network

• 1970’s-mid-1980’s:		…
• mid-1980’s	– mid-1990’s:

– backprop and	multi-layer	networks
– Rumelhart and	McClelland	PDP book	set
– Sejnowski’s NETTalk,	BP-based	text-to-speech
– Neural	Info	Processing	Systems	(NIPS)	conference	starts

• Mid	1990’s-early	2000’s:	…
• Mid-2000’s	to	current:

– More	and	more	interest	and	experimental	success

Recent	history	of	neural	networks
• Mid-2000’s	to	current:

– Convolutional	neural	nets	(CNN)	trained	to	classify	large	image	
collections	(e.g.,	ImageNet)	become	widely	used	in	computer	vision	
• as	representation	of	images

– Word	embeddings	(word2vec,	GloVE,…)	and	recurrent	neural	
networks	(RNNs	– like	LSTMs,	GRUs,	…)	become	widely	used	in	
NLP	tasks
• as	representation	of	text

– Generative	adversarial	networks	(GANs)	and	variational	
autoencoders	(VAEs)
• as	representation	of	distributions	of	images

– …
• Progress	in

– Hardware platforms:	GPUs
– Optimization:	minibatch	SGD	(and	ADAM,	RMSProp,	…)	with	GPUs
– Experience:	which	NN	architectures	work	(CNNs,	LSTM,	…)
– Software platforms:	easily	combine	NN	components	

1990s	Multilayer	NN
• Simplest	case:	classifier	is	a	multilayer	network	of	logistic	
units

• Each	unit	takes	some	inputs	and	produces	one	output	using	a	
logistic	classifier	

• Output	of	one	unit	can	be	the	input	of	another

Input
layer

Output
layer

Hidden
layer

v1=S(wTX)
w0,1

x1

x2

1

v2=S(wTX)

z1=S(wTV)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

1990s	Learning	for	NNs
• Define	a	loss	(simplest	case:	squared	error)

– But	over	a	network	of	“units”
• Minimize	loss	with	gradient	descent

– You	can	do	this	over	complex	networks	if	you	can	take	the	
gradient of	each	unit:	every	computation	is	differentiable

€

JX,y (w) = y i − ˆ y i()
i
∑

2

v1=S(wTX)
w0,1

x1

x2

1

v2=S(wTX)

z1=S(wTV)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

1990s	Learning	for	NNs
• Mostly	2-layer	networks	or	else	carefully	
constructed	“deep”	networks	(eg CNNs)

• Worked	well	but	training	was	slow	and	finicky
Nov	1998	– Yann LeCunn,	
Bottou,	Bengio,	Haffner

1990s	Learning	for	NNs
• Mostly	2-layer	networks	or	else	carefully	
constructed	“deep”	networks

• Worked	well	but	training	typically	took	weeks

SVM:	98.9-99.2%	accurate

CNNs:	98.3-99.3%	accurate

1990s	Teaching	Learning	for	NNs

δk ≡ tk − ak() ak 1− ak()

δ j ≡ δkwkj()
k
∑ aj 1− aj()

For nodes k in output layer:

For nodes j in hidden layer:

For all weights:

“Propagate errors
backward”
BACKPROP

wkj = wkj −ε δkaj
wji = wji −ε δ jai

Can carry this
recursion out
further if you have
multiple hidden
layers

2018	Learning	for	NNs

• We	need	to	understand	interaction	of:	hardware	platforms,	
software	platforms,	architectural	components,	
optimization	methods

• Start	off	with	a	new	high-level	language	for	NNs
– vectors/matrices/tensors
• tensor	=	k-dimensional	array	of	floats

– vector/matrix/tensor	operations
– built-in	gradient	computation	and	optimizers
– architectural	components	as	subroutines	

• A	lot	like	dataflow	languages	for	map-reduce	workflows	
(eg	GuineaPig)

Vectorizing logistic
regression

(review)

14

Vectorized minibatch logistic regression

• Computation	we’d	like	to	vectorize:
–For	each	x	in	the	minibatch,	compute

• For	each	feature	j:	update	w	j using

15

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch Xbatch,	compute

16

𝑿nopqr𝒘	 = 	
𝑥uu ⋯ 𝑥u

w

⋮ ⋱ ⋮
𝑥zu ⋯ 𝑥z

w

𝑤u

⋮
𝑤w

=
𝒘 | 𝒙𝟏
⋮

𝒘 | 𝒙𝑩

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch Xbatch,	compute

17

𝒘 | 𝒙𝟏
⋮

𝒘 | 𝒙𝑩
+ 1 in	numpy	if	M	is	a	matrix	

M+1	does	the	“right	thing”

so	does	np.exp(M)

Vectorizing logistic regression

• Computation	we’d	like	to	parallelize:
–For	each	x	in	the	minibatch,	compute

18

def logistic(X):		return	(-X.exp()+1).reciprocal()
p	=	logistic(Xb.dot(w))				#	B	rows,	1	column
grad	=	Xb.dot(y	– p).rowsum()	*	1/B
w	=	w	+	grad*rate

Binary to softmax logistic regression

19

𝑋nopqr𝒘	 = 	
𝑥uu ⋯ 𝑥u

w

⋮ ⋱ ⋮
𝑥zu ⋯ 𝑥z

w

𝑤u

⋮
𝑤w

=
𝒘 | 𝒙𝟏
⋮

𝒘 | 𝒙𝑩

Binary to softmax logistic regression

20

𝑝� 	≡
exp	(𝒙 | 𝒘�)

∑ exp	(𝒙 |�
�� 𝒘��)	

X𝑊	 = 	
𝑥uu ⋯ 𝑥u

w

⋮ ⋱ ⋮
𝑥zu ⋯ 𝑥z

w

𝑤u

⋮
𝑤w

=
𝒘 | 𝒙𝟏
⋮

𝒘 | 𝒙𝑩

XW	= 	
𝑥uu ⋯ 𝑥u

w

⋮ ⋱ ⋮
𝑥zu ⋯ 𝑥z

w

𝑤u
�u … 𝑤u

��

⋮ ⋱ ⋮
𝑤w
�u … 𝑤w

��
=

𝒘�u | 𝒙u … 𝒘�� | 𝒙u
⋮ ⋱ ⋮

𝒘�u | 𝒙z … 𝒘�� | 𝒙z

21

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

Matrix	multiply,;	then	
exponentiate

component-wise

Sum	the	columns	to	get	
the	denominator;	

keepdim=True	means…

𝑝� 	≡
exp	(𝒙 | 𝒘�)

∑ exp	(𝒙 |�
�� 𝒘��)	

XW	= 	
𝑥uu ⋯ 𝑥u

w

⋮ ⋱ ⋮
𝑥zu ⋯ 𝑥z

w

𝑤u
�u … 𝑤u

��

⋮ ⋱ ⋮
𝑤w
�u … 𝑤w

��
=

𝒘�u | 𝒙u … 𝒘�� | 𝒙u
⋮ ⋱ ⋮

𝒘�u | 𝒙z … 𝒘�� | 𝒙z

… that	this	line	will	work	
correctly	even	though	’a’	

and	‘a_sum’	have	
different	shapes

prob will	have	B	rows	
and	K	columns,	and	each	

row	will	sum	to	1

22

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

23

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

24

http://minpy.readthedocs.io/en/latest/get-started/logistic_regression.html

Error	on	each	
example	x	in	batch	
and	each	class	y

python	bug:	should	
be	x.T (transpose)	

The	gradient	step!

x.T	dy	= 	
𝑥uu ⋯ 𝑥zu
⋮ ⋱ ⋮
𝑥u
w ⋯ 𝑥z

w
|
𝑑𝑦�u

�u … 𝑑𝑦�u
��

⋮ ⋱ ⋮
𝑑𝑦�z

�u … 𝑑𝑦�z
��

PARALLEL	TRAINING	FOR	ANNS

How	are	ANNs	trained?
• Typically,	with	some	variant	of	streaming	SGD
– Keep	the	data	on	disk,	in	a	preprocessed	form
– Loop	over	it	multiple	times
– Keep	the	model	in	memory

• Solution	to	big	data:	but	long	training	times!

• However,	some parallelism	is	often	used….

Recap:	logistic	regression	with	SGD
P(Y =1| X = x) = p = 1

1+ e−x⋅w

27

This	part	
computes	

inner	product	
<x,w>

This	part	logistic	
of	<x,w>

Recap:	logistic	regression	with	SGD
P(Y =1| X = x) = p = 1

1+ e−x⋅w

28

On	one	
example:	
computes	

inner	product	
<x,w>

There’s	some	chance	to	compute	
this	in	parallel…can	we	do	more?

a z

In	ANNs	we	have	many	many	logistic	
regression	nodes

Recap:	logistic	regression	with	SGD

30

ai zi

Let	x	be	an	example
Let	wi be	the	input	weights	for	the	i-th hidden	unit
Then	output	ai =	x	.	wi

Recap:	logistic	regression	with	SGD

31

ai zi

Let	x	be	an	example
Let	wi be	the	input	weights	for	the	i-th hidden	unit
Then	a =	x	W
is	output	for	all	m	units w1 w2 w3 … wm

0.1 -0.3 …

-1.7 …

..

…

W	=

Recap:	logistic	regression	with	SGD

32

Let	X be	a	matrix	with	k examples
Let	wi be	the	input	weights	for	the	i-th hidden	unit
Then	A =	X W	is	output	for	all	m	units
for	all	k	examples

w1 w2 w3 … wm

0.1 -0.3 …

-1.7 …

0.3 …

1.2

x1 1 0 1 1
x2 …

…

xk

XW	=	

x1.w1 x1.w2 … x1.wm

xk.w1 … … xk.wm

There’s	a	lot	of	
chances	to	do	
this	in	parallel

Minibatch	SGD:	batch	size	trades	off	
parallellism	vs	memory

ANNs	and	multicore	CPUs
• Modern	libraries	(Matlab,	numpy,	…)	do	matrix	
operations	fast,	in	parallel

• Many	ANN	implementations	exploit	this	
parallelism	automatically

• Key	implementation	issue	is	working	with	
matrices	comfortably

ANNs	and	GPUs
• GPUs	do	matrix	operations	very	fast,	in	parallel
– For	dense	matrixes,	not	sparse	ones!

• Training	ANNs	on	GPUs	is	common
– SGD	and	minibatch sizes	of	128

• Modern	ANN	implementations	can	exploit	this
• GPUs	are	not	super-expensive
– $500	for	high-end	one	
– large	models	with	O(107)	parameters	can	fit	in	a	
large-memory	GPU	(12Gb)

• Speedups	of	20x-50x	are	typical

ANNs	and	multi-GPU	systems
• There	are	ways	to	set	up	ANN	computations	so	
that	they	are	spread	across	multiple	GPUs
– Sometimes	involves	some	sort	of	IPM
– Sometimes	involves	partitioning	the	model	
across	multiple	GPUs

– Often	needed	for	very	large	networks

Where	we’re	going
• Assignment	out	Wed:
– build	framework	for	ANNs	that	will	automatically	
differentiate	and	optimize	any	architecture

• Outline
– History
– Motivation	
• for	ANN	framework	based	on	autodiff	and	matrix	
operations

– Backprop	101
– Autodiff	101

Vectorizing	BackProp

BackProp in	Matrix-Vector	Notation

Michael Nielson: http://neuralnetworksanddeeplearning.com/

Notation

Notation

Each digit is 28x28 pixels = 784 inputs

Notation

wl is weight matrix for layer l

Notation

activation
bias

wl

al and bl

Notation

Matrix: wl

Vector: al

Vector: bl

activation
bias

weight

vectoràvector function:
componentwise logistic

Vector: zl

Computation	is	“feedforward”

for l=1, 2, … L:

Notation

Cost function to optimize:
sum over examples x

where

Matrix: wl

Vector: al

Vector: bl

Vector: zl

Vector: y

Notation

BackProp:	last	layer

Level l for l=1,…,L
Matrix: wl

Vectors:
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl

Matrix form:

components are
components are

BackProp:	last	layer

Level l for l=1,…,L
Matrix: wl

Vectors:
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl

Matrix form for square loss:

BackProp:	error	at	level	l	in	terms	of	
error	at	level	l+1

Level l for l=1,…,L
Matrix: wl

Vectors:
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl

which we can use to compute

BackProp:	summary

Level l for l=1,…,L
Matrix: wl

Vectors:
• bias bl

• activation al

• pre-sigmoid activ: zl

• target output y
• “local error”δl

for SGD
updates!

Computation	propagates	errors	backward

for l=L-1,…1:

BackProp	101
• Forward	pass	computes	z’s	and	a’s
• Backward	pass	uses	these	to	compute	𝛿’s
• Simple	to	define	each	with	matrix	operators
–Hence	easy	to	run	in	parallel	minibatch	SGD	
process

We can build much more
complex networks by
combining subnetworks –
sort of like subroutines

How do we derive
backprop for these
networks?

Deep	Neural	Network	Toolkits:	
What’s	Under	the	Hood?

54

How can we generalize BackProp to other ANNs?
How can we automate BackProp for other ANNs?

55

Recap: Wordcount in GuineaPig

class variables
in the planner
are data
structures

56

Recap: Wordcount in GuineaPig

The general idea:
• Embed something that looks like code but, when executed, builds a data

structure
• The data structure defines a computation you want to do

• “computation graph”
• Then you use the data structure to do the computation

• stream-and-sort
• streaming Hadoop
• …

• We’re going to re-use the same idea: but now the graph both
supports computation of a function and differentiation of
that computation

57

computation graph, aka
tape, aka Wengert list

58

computation graph

add

square

add

x1 x2

z1

z2

f

59…

Definition
AP calculus rules

An algorithm to evaluate f’ at
fixed x1=c1,x2=c2

60

Generalizing	backprop

• Starting	point:	a	function	of	n	
variables

• Step	1:	eval	your	function	as	a	
series	of	assignments	

• Step	2:	back	propagate	by	going	
thru	the	list	in	reverse	order,	
starting	with…

• …and	using	the	chain	rule		

e.g.

Wengert list

return

inputs:
Step 1: forward

Step 2: backprop

https://justindomke.wordpress.com/

A function
eval’d at
this point

Computed in
previous step 61

Values

Recap:	logistic	regression	with	SGD

62

Let X be a matrix with k examples
Let wi be the input weights for the i-th hidden unit
Then Z = X W is output (pre-sigmoid) for all m units
for all k examples

w1 w2 w3 … wm

0.1 -0.3 …
-1.7 …
0.3 …
1.2

x1 1 0 1 1
x2 …
…
xk

XW =

x1.w1 x1.w2 … x1.wm

xk.w1 … … xk.wm

There’s a lot of
chances to do this
in parallel…. with
parallel matrix
multiplication

Example:	2-layer	neural	network

return

inputs:
Step 1: forward

Inputs: X,W1,B1,W2,B2
Z1a = mul(X,W1) //	matrix	mult
Z1b = add*(Z1a,B1) //	add	bias	vec
A1 = tanh(Z1b) //element-wise
Z2a = mul(A1,W2)
Z2b = add*(Z2a,B2)
A2 = tanh(Z2b) //	element-wise
P = softMax(A2) //	vec to	vec
C = crossEntY(P) //	cost	function

Step 1: backprop

Target Y; N examples; K outs; D feats, H hidden 63

Example:	2-layer	neural	network

Inputs: X,W1,B1,W2,B2
Z1a = mul(X,W1) //	matrix	mult
Z1b = add*(Z1a,B1) //	add	bias	vec
A1 = tanh(Z1b) //element-wise
Z2a = mul(A1,W2)
Z2b = add*(Z2a,B2)
A2 = tanh(Z2b) //	element-wise
P = softMax(A2) //	vec to	vec
C = crossEntY(P) //	cost	function

Target Y; N examples; K outs; D feats, H hidden

X is N*D, W1 is D*H, B1 is 1*H,
W2 is H*K, …

Z1a is N*H
Z1b is N*H

A1 is N*H
Z2a is N*K

Z2b is N*K
A2 is N*K

P is N*K
C is a scalar

64

X W1 Z1A

mul

B1

add*

Z1B A1

tanh

W2 Z2A

mul

B2

add*

Z2B

tanh

A2

𝐩 𝒊 = 	
exp	(𝐚𝐢)
∑ exp	(𝐚𝒋)�
�

Example:	2-layer	neural	network

Inputs: X,W1,B1,W2,B2
Z1a = mul(X,W1) //	matrix	mult
Z1b = add*(Z1a,B1) //	add	bias	vec
A1 = tanh(Z1b) //element-wise
Z2a = mul(A1,W2)
Z2b = add*(Z2a,B2)
A2 = tanh(Z2b) //	element-wise
P = softMax(A2) //	vec to	vec
C = crossEntY(P) //	cost	function

Target Y; N examples; K outs; D feats, H hidden

X is N*D, W1 is D*H, B1 is 1*H,
W2 is H*K, …

Z1a is N*H
Z1b is N*H

A1 is N*H
Z2a is N*K

Z2b is N*K
A2 is N*K

P is N*K
C is a scalar

65

Z1A
B1

add*

Z1B A1

tanh

W2 Z2A

mul

B2

add*

Z2B

tanh

A2

𝐩 𝒊 = 	
exp	(𝐚𝐢)
∑ exp	(𝐚𝒋)�
�

softmax

P

Y

crossEnt

C

Inputs: X,W1,B1,W2,B2
Z1a = mul(X,W1) //	matrix	mult
Z1b = add*(Z1a,B1) //	add	bias	vec
A1 = tanh(Z1b) //element-wise
Z2a = mul(A1,W2)
Z2b = add*(Z2a,B2)
A2 = tanh(Z2b) //	element-wise
P = softMax(A2) //	vec to	vec
C = crossEntY(P) //	cost	function

Example:	2-layer	neural	network

return

inputs:
Step 1: forward Step 1: backprop

dC/dC = 1
dC/dP = dC/dC * dCrossEntY/dP
dC/dA2 = dC/dP * dsoftmax/dA2
dC/Z2b = dC/dA2 * dtanh/dZ2b
dC/dZ2a = dC/dZ2b * dadd*/dZ2a
dC/dB2 = dC/dZ2b * dadd*/dB2
dC/dA1 = …

Target Y; N rows; K outs; D feats, H hidden 66

Inputs: X,W1,B1,W2,B2
Z1a = mul(X,W1) //	matrix	mult
Z1b = add*(Z1a,B1) //	add	bias	vec
A1 = tanh(Z1b) //element-wise
Z2a = mul(A1,W2)
Z2b = add*(Z2a,B2)
A2 = tanh(Z2b) //	element-wise
P = softMax(A2) //	vec to	vec
C = crossEntY(P) //	cost	function

Example:	2-layer	neural	network

dC/dC = 1
dC/dP = dC/dC * dCrossEntY/dP
dC/dA2 = dC/dP * dsoftmax/dA2
dC/Z2b = dC/dA2 * dtanh/dZ2b
dC/dZ2a = dC/dZ2b * dadd*/dZ2a
dC/dB2 = dC/dZ2b * dadd*/dB2
dC/dA1 = …

Target Y; N rows; K outs; D feats, H hidden

N*K

67

Z1A
B1

add*

Z1B A1

tanh

W2 Z2A

mul

B2

add*

Z2B

tanh

A2

softmax

P

Y

crossEnt

C

N*K

Example:	2-layer	neural	network

dC/dC = 1
dC/dP = dC/dC * dCrossEntY/dP
dC/dA2 = dC/dP * dsoftmax/dA2
dC/dZ2b = dC/dA2 * dtanh/dZ2b
dC/dZ2a = dC/dZ2b * dadd*/dZ2a
• dC/dB2 = dC/dZ2b * dadd*/dB2
dC/dA1 = dC/dZ2a *dmul/dA1
• dC/dW2 = dC/dZ2a *dmul/dW2

dC/dZ1b = dC/dA1 * dtanh/dZ1b
dC/dZ1a = dC/dZ1b * dadd*/dZ1a
• dC/dB1 = dC/dZ1b * dadd*/dB1
dC/dX = dC/dZ1a * dmul*/dZ1a
• dC/dW1 = dC/dZ1a * dmul*/dW1

68
C

P

A2

Z2b

B2Z2a

A1

Z1b

B1Z1a

W2

W1X

crossentY

softmax

tanh

add

mul

tanh

add

mul

Example:	2-layer	neural	network

dC/dC = 1
dC/dP = dC/dC * dCrossEntY/dP
dC/dA2 = dC/dP * dsoftmax/dA2
dC/dZ2b = dC/dA2 * dtanh/dZ2b
dC/dZ2a = dC/dZ2b * dadd*/dZ2a
• dC/dB2 = dC/dZ2b * dadd*/dB
dC/dA1 = dC/dZ2a *dmul/dA1
• dC/dW2 = dC/dZ2a *dmul/dW2

dC/dZ1b = dC/dA1 * dtanh/dZ1b
dC/dZ1a = dC/dZ1b * dadd*/dZ1a
• dC/dB1 = dC/dZ1b * dadd*/dB
dC/dX = dC/dZ1a * dmul*/dZ1a
• dC/dW1 = dC/dZ1a * dmul*/dW1

69
C

P

A2

Z2b

BZ2a

A1

Z1b

BZ1a

W2

W1X

crossentY

softmax

tanh

add

mul

tanh

add

mul

with “tied parameters”

Example:	2-layer	neural	network

dC/dC = 1
dC/dP = dC/dC * dCrossEntY/dP
dC/dA2 = dC/dP * dsoftmax/dA2
dC/dZ2b = dC/dA2 * dtanh/dZ2b
dC/dZ2a = dC/dZ2b * dadd*/dZ2a
• dC/dB2 = dC/dZ2b * dadd*/dB
dC/dA1 = dC/dZ2a *dmul/dA1
• dC/dW2 = dC/dZ2a *dmul/dW2

dC/dZ1b = dC/dA1 * dtanh/dZ1b
dC/dZ1a = dC/dZ1b * dadd*/dZ1a
• dC/dB1 = dC/dZ1b * dadd*/dB
dC/dX = dC/dZ1a * dmul*/dZ1a
• dC/dW1 = dC/dZ1a * dmul*/dW1

70
C

P

A2

Z2b

BZ2a

A1

Z1b

BZ1a

W2

W1X

crossentY

softmax

tanh

add

mul

tanh

add

mul

with “tied parameters”

dC/dB +=

dC/dB +=

dC/dC = 1
dC/dP = dC/dC * dCrossEntY/dP
dC/dA2 = dC/dP * dsoftmax/dA2
dC/Z2b = dC/dA2 * dtanh/dZ2b
dC/dZ2a = dC/dZ2b * dadd*/dZ2a
dC/dB2 = dC/dZ2b * dadd*/dB2
dC/dA1 = …

Example:	2-layer	neural	network

return

inputs:
Step 1: forward

Inputs: X,W1,B1,W2,B2
Z1a = mul(X,W1) //	matrix	mult
Z1b = add(Z11,B1) //	add	bias	vec
A1 = tanh(Z1b) //element-wise
Z2a = mul(A1,W2)
Z2b = add(Z2a,B2)
A2 = tanh(Z2b) //	element-wise
P = softMax(A2) //	vec to	vec
C = crossEntY(P) //	cost	function

Step 1: backprop

Target Y; N rows; K outs; D feats, H hidden

−
1
N

pi − yi
yi (1− yi)
"

#
$

%

&
'

i
∑

N*K

N*H

Need a backward form for each
matrix operation used in forward

71

dC/dC = 1
dC/dP = dC/dC * dCrossEntY/dP
dC/dA2 = dC/dP * dsoftmax/dA2
dC/Z2b = dC/dA2 * dtanh/dZ2b
dC/dZ2a = dC/dZ2b * dadd*/dZ2a
dC/dB2 = dC/dZ2b * dadd*/dB2
dC/dA1 = …

Example:	2-layer	neural	network

return

inputs:
Step 1: forward

Inputs: X,W1,B1,W2,B2
Z1a = mul(X,W1) //	matrix	mult
Z1b = add(Z11,B1) //	add	bias	vec
A1 = tanh(Z1b) //element-wise
Z2a = mul(A1,W2)
Z2b = add(Z2a,B2)
A2 = tanh(Z2b) //	element-wise
P = softMax(A2) //	vec to	vec
C = crossEntY(P) //	cost	function

Step 1: backprop

Target Y; N rows; K outs; D feats, H hidden

N*K

N*H

Need a backward form for each matrix operation
used in forward, with respect to each argument

72

Example:	2-layer	neural	network

return

inputs:
Step 1: forward

Inputs: X,W1,B1,W2,B2
Z1a = mul(X,W1) //	matrix	mult
Z1b = add(Z11,B1) //	add	bias	vec
A1 = tanh(Z1b) //element-wise
Z2a = mul(A1,W2)
Z2b = add(Z2a,B2)
A2 = tanh(Z2b) //	element-wise
P = softMax(A2) //	vec to	vec
C = crossEntY(P) //	cost	function

Target Y; N rows; K outs; D feats, H hidden

N*H

Need a backward form for each matrix operation
used in forward, with respect to each argument

An autodiff package usually includes
• A collection of matrix-oriented

operations (mul, add*, …)
• For each operation

• A forward implementation
• A backward implementation for

each argument

73

Stopped	Monday

What’s	Going	On	Here?

Differentiating	a	Wengert list:	a	simple	
case

76

High school: symbolic
differentiation,
compute a symbolic
form of the deriv of f

Now: automatic
differentiation, find an
algorithm to compute
f’(a) at any point a

Differentiating	a	Wengert list:	a	simple	
case

Notation: à
ai is the i-th output
on input a

77

Now: automatic
differentiation, find an
algorithm to compute
f’(a) at any point a

Differentiating	a	Wengert list:	a	simple	
case

Notation: à

for all a

78

What did Liebnitz
mean with this?

ai is the i-th output
on input a

hm,0(a) = f’m(am)*hm-1,0(a)

Differentiating	a	Wengert list:	a	simple	
case

Notation: à

for all a

79

Differentiating	a	Wengert list:	a	simple	
case

for all a

backprop routine compute order

80

Differentiating	a	Wengert list

81

Generalizing	backprop

• Starting	point:	a	function	of	n	
variables

• Step	1:	code	your	function	as	a	
series	of	assignments Wengert list return

inputs:
Step 1: forward

https://justindomke.wordpress.com/

• Better	plan:	overload	your	matrix	
operators	so	that	when	you	use	
them	in-line	they	build	an	
expression	graph

• Convert	the	expression	graph	to	a	
Wengert list	when	necessary

82

