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Summary of Monday(1): Bayes nets 
•  Many problems can be solved 

using the joint probability P(X1,
…,Xn). 

•  Bayes nets describe a way to 
compactly write the joint. 

•  For a Bayes net: 

A B 

First guess The money 

C The goat 
D 

Stick or swap? 

E Second guess 

A P(A) 

1 0.33 

2 0.33 

3 0.33 

B P(B) 

1 0.33 

2 0.33 

3 0.33 

A B  C P(C|A,B) 

1 1 2 0.5 

1 1 3 0.5 

1 2 3 1.0 

1 3 2 1.0 

… … … … A C  D P(E|A,C,D) 

… … … … 
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•  Conditional independence: 
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Conditional Independence 

)()|(),( YPYXPYXP =

)|()|()|,( EYPEXPEYXP =

)()(),( YPXPYXP =Independence: 

Conditional independence: 

)|(),|()|,( EYPEYXPEYXP = (Fancy version of c.r.) 

)|()|()|,( EYPEXPEYXP = (Def’n of cond. Indep.) 

)|(),|( EXPEYXP =

Claim: if I<X,E,Y> then 

“It’s really a lot like independence” 
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Summary of Monday(2): d-separation 
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There are three ways 
paths from X to Y 
given evidence E can 
be blocked. 

X is d-separated from Y 
given E iff all paths 
from X to Y given E are 
blocked 

If X is d-separated 
from Y given E, then 
I<X,E,Y> 

All the ways paths 
can be blocked 
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d-separation continued… 

X    Y E Question: is 

)()|( YPXYP =

? {}|XY ⊥

? 
X P(X) 

0 0.5 

1 0.5 

X E P(E|X) 

0 0 0.01 

0 1 0.99 

1 0 0.99 

1 1 0.01 

XE ¬≅

E Y P(Y|E) 

0 0 0.5 

0 1 0.5 

1 0 0.5 

1 1 0.5 

E Y P(Y|E) 

0 0 0.01 

0 1 0.99 

1 0 0.99 

1 1 0.01 

EY ¬≅

It depends…on the CPTs 

)|()|()(
),|()|()(),,(

EYPXEPXP
XEYPXEPXPYEXP

=

=

This is why d-separation implies 
conditional independence but 

not the converse… 
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d-separation continued… 

X    Y E Question: is 

)|(),|( EYPXEYP =

?  | EXY ⊥

? 

)|()|()(
),|()|()(),,(

EYPXEPXP
XEYPXEPXPYEXP

=

=

Yes! 

)|()|()(
),|()|()(),,(

EYPXEPXP
XEYPXEPXPYEXP

=

=
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d-separation continued… 

X    Y E Question: is 

)|(),|( EXPYEXP =

?  | EYX ⊥

? Yes! 

)|()|()(
),|()|()(),,(

EYPXEPXP
XEYPXEPXPYEXP

=

=

)(
)()|()|(

YP
XPXYPYXP =

)|(
)|(),|(),|(

EYP
EXPEXYPEYXP =

Bayes rule 

Fancier version 
of B.R. 

From previous slide… 
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d-separation 
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d-separation 
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d-separation continued… 

X    Y E Question: is 

)|(),|( EYPXEYP =

?  | EXY ⊥

? Yes! 

)|()|()(
),|()|()(),,(

EYPEXPEP
XEYPEXPEPYXEP

=

=

)|()|()(
),|()|()(),,(

EYPEXPEP
XEYPEXPEPYXEP

=

=
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d-separation continued… 

X    Y E Question: is 

)()|( YPXYP =

?  {}|XY ⊥

? No 

)|()|()(
),|()|()(),,(

EYPEXPEP
XEYPEXPEPYXEP

=

=

E P(E) 

0 0.5 

1 0.5 

EX ≅ EY ≅

1)1|1( ≅== XYP
5.0)1( ≅=YP
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d-separation 
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d-separation continued… 

X    Y E Question: is 

)()|( YPXYP =

?  {}|XY ⊥

? Yes! 

),|()()(
),|()|()(),,(

YXEPYPXP
YXEPXYPXPEYXP

=

=

),|()()(
),|()|()(),,(

YXEPYPXP
YXEPXYPXPEYXP

=

=
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d-separation continued… 

X    Y E Question: is 

)|(),|( EYPXEYP =

?  | EXY ⊥

? 

5.0)( =YP5.0)( =XP

YXE ∨≅
X Y  E P(E|X,Y) P(E,X,Y) 

0 0 0 0.96 0.24 

0 0 1 0.04 0.01 

0 1 0 0.04 0.01 

0 1 1 0.96 0.24 

1 0 0 0.04 0.01 

1 0 1 0.96 0.24 

1 1 0 0.04 0.01 

1 1 1 0.96 0.24 

),|()()(
),|()|()(),,(

YXEPYPXP
YXEPXYPXPEYXP

=

=

25.0
24.0

=
==

===

====

)0,1(
)0,1,1(          

)0,1|1(

XEP
XEYP

XEYP
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d-separation continued… 

X    Y E Question: is 

)|(),|( EYPXEYP =

?  | EXY ⊥

? No! 

5.0)( =YP5.0)( =XP

YXE ∨≅
X Y  E P(E|X,Y) P(E,X,Y) 

0 0 0 0.96 0.24 

0 0 1 0.04 0.01 

0 1 0 0.96 0.01 

0 1 1 0.96 0.24 

1 0 0 0.04 0.01 

1 0 1 0.96 0.24 

1 1 0 0.04 0.01 

1 1 1 0.96 0.24 

),|()()(
),|()|()(),,(

YXEPYPXP
YXEPXYPXPEYXP

=

=

1

P(Y =1| E =1,X = 0) =

          P(Y =1,E =1,X = 0)
P(E =1,X = 0)

≅

3/2
)1(
)1,1()1|1( ≅

=

==
===

EP
EYPEYP
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d-separation continued… 

X    Y E Question: is 

)|(),|( EYPXEYP =

?  | EXY ⊥

? No! 

5.0)( =YP5.0)( =XP

YXE ∨≅
X Y  E P(E|X,Y) P(E,X,Y) 

0 0 0 0.96 0.24 

0 0 1 0.04 0.01 

0 1 0 0.96 0.01 

0 1 1 0.96 0.24 

1 0 0 0.04 0.01 

1 0 1 0.96 0.24 

1 1 0 0.04 0.01 

1 1 1 0.96 0.24 

),|()()(
),|()|()(),,(

YXEPYPXP
YXEPXYPXPEYXP

=

=

5.0=
==

===

====

)1,1(
)1,1,1(          

)1,1|1(

XEP
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“Explaining away” 

X    Y E 

5.0)( =YP5.0)( =XP

YXE ∨≅
{}|
|

YX
EYX

⊥

⊥ NO 

YES 

This is “explaining away”: 

•  E is common symptom of two causes, X and Y 

•  After observing E=1, both X and Y become more probable 

•  After observing E=1 and X=1, Y becomes less probable 
(compared to just E=1) 

•  since X alone is enough to “explain” E=1 
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INFERENCE IN DGM 

from: Russell and Norvig 



Great	Ideas	in	ML:	Message	Passing	

3	
behind	
you	

2	
behind	
you	

1	
behind	
you	

4	
behind	
you	

5	
behind	
you	

1		
before	
you	

2	
before	
you	

there's	
1	of	me	

3	
before	
you	

4	
before	
you	

5	
before	
you	

Count the soldiers 

20	
adapted	from	MacKay	(2003)	textbook	 Thanks Matt Gormley 



Great	Ideas	in	ML:	Message	Passing	

3	
behind	
you	

2	
before	
you	

there's	
1	of	me	

Belief:	
Must	be	
2	+	1	+	3	=	6	of	
us	

only	see	
my	incoming	
messages	

2	 3	1	

Count the soldiers 

21	
adapted	from	MacKay	(2003)	textbook	

2	
before	
you	

Thanks Matt Gormley 



Great	Ideas	in	ML:	Message	Passing	

4	
behind	
you	

1	before	
you	

there's	
1	of	me	

only	see	
my	incoming	
messages	

Count the soldiers 

22	
adapted	from	MacKay	(2003)	textbook	

Belief:	
Must	be	
2	+	1	+	3	=	6	of	
us	
2	 3	1	

Belief:	
Must	be	
1	+	1	+	4	=	6	of	
us	
1	 4	1	

Thanks Matt Gormley 



Great	Ideas	in	ML:	Message	Passing	

7	here	

3	here	

11	here	
(=	7+3+1)	

1	of	me	

Each soldier receives reports from all branches of  tree 

23	
adapted	from	MacKay	(2003)	textbook	



Great	Ideas	in	ML:	Message	Passing	

3	here	

3	here	

7	here	
(=	3+3+1)	

Each soldier receives reports from all branches of  tree 

24	
adapted	from	MacKay	(2003)	textbook	



Great	Ideas	in	ML:	Message	Passing	

7	here	

3	here	

11	here	
(=	7+3+1)	

Each soldier receives reports from all branches of  tree 

25	
adapted	from	MacKay	(2003)	textbook	 Thanks Matt Gormley 



Great	Ideas	in	ML:	Message	Passing	

7	here	

3	here	

3	here	

Belief:	
Must	be	
14	of	us	

Each soldier receives reports from all branches of  tree 

26	
adapted	from	MacKay	(2003)	textbook	 Thanks Matt Gormley 



Great	Ideas	in	ML:	Message	Passing	
Each soldier receives reports from all branches of  tree 

7	here	

3	here	

3	here	

Belief:	
Must	be	
14	of	us	

wouldn't	work	correctly	

with	a	'loopy'	(cyclic)	graph	

27	
adapted	from	MacKay	(2003)	textbook	 Thanks Matt Gormley 



Message	Passing	and	Inference	

•  Message	passing:	
– Handles	the	“simple”	(and	tractable)	case	of	
polytree*	exactly	

– Handles	intractable	cases	approximately	
– Often	an	important	part	of	exact	algorithms	for	
more	complex	cases		

28	



Message	Passing	and	Counting	

•  Message	passing	is	almost	counting	
•  Instead	of	passing	counts,	we’ll	be	passing	
probability	distributions	(beliefs)	of	various	
types	

29	



Inference	in	Bayes	Nets	
•  The	belief	propagation	algorithm	

30	
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Inference in Bayes nets 

•  General problem: given 
evidence E1,…,Ek compute 
P(X|E1,..,Ek) for any X 

•  Big assumption: graph is 
“polytree”  
•  <=1 undirected path 

between any nodes X,Y 

•  Notation: 

 X  

Y1 Y2 

Z2 Z1 

U2 U1 

Xfor  support" evidential"  

Xfor  support" causal"  

=

=
−

+

X

X

E
E  −XE

 +XE



Great	Ideas	in	ML:	Message	Passing	
Each soldier receives reports from all branches of  tree 

7	here	

3	here	

3	here	

Belief:	
Must	be	
14	of	us	

wouldn't	work	correctly	

with	a	'loopy'	(cyclic)	graph	

32	
adapted	from	MacKay	(2003)	textbook	 Thanks Matt Gormley 
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Hot* or not? 

A B 

First guess The money 

C The goat 
D 

Stick or 
swap? 

E 

*Hot = polytree 
(Must be one undirected path between every pair of nodes) 
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Inference in Bayes nets: P(X|E) 

),|()|( −+= XX EEXPEXP

)|(
)|(),|(

+−

++−

=
XX

XXX

EEP
EXPEXEP

)(
)()|()|(

BP
APABPBAP =

)|(
)|(),|(),|(

CBP
CAPCABPCBAP =

)|()|()|( +−∝ XX EXPXEPEXP

)....|( start with lets +
XEXP

X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XE

E+: causal support 
E-: evidential support 
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Inference in Bayes nets: P(X|E+) 

=+ )|( XEXP

)|,(), |( 21,21
, 21

++∑ XX
uu

EuuPEuuXP
d-sep. 

X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XE
d-sep – write as product 

P(X |
u1,u2

∑  U1 = u1,U2 = u2,....)
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Inference in Bayes nets: P(X|E+) 

=+ )|( XEXP

)|,(), |( 21,21
, 21

++∑ XX
uu

EuuPEuuXP X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XE 1+
XE  2+

XE

∏∑ +=
j

j
Xj

uu
EuPuuXP )|(), |( ,21

, 21

CPT table lookup Recursive call to P(.|E+) 
So far: simple way of 
propagating requests 

for “belief due to 
causal evidence” up 

the tree 

= P(X |
u
∑  u) P(uj | EUj \X )

j
∏

Evidence for Uj that 
doesn’t go thru X I.e. info on Pr(X|E+) flows down 
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Inference in Bayes nets: P(X|E) 

),|()|( −+= XX EEXPEXP

)|(
)|(),|(

+−

++−

=
XX

XXX

EEP
EXPEXEP

)|()|()|( +−∝ XX EXPXEPEXP

now: P(EX
− | X)....

X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XE
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)|()|()|( +−∝ XX EXPXEPEXP

X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XE

P(EX
− | X) = P(EYj \X

− | X)
j
∏

 1−
XE  2−

XE

=   P(yjk | X)
yjk

∑
j
∏ P(EYj \X

− | X, yjk )

j
j

Y YE
j

for support  evidential : −

EYj \X  : evidence for Yj

excluding support through X

Inference in Bayes nets: P(E-|X) simplified 

d-sep + polytree 

=   P(yjk | X)
yjk

∑
j
∏ P(EYj

− j | yjk )

Recursive call to P(E-|.) 

So far: simple way of 
propagating requests for 
“belief due to evidential 
support” down the tree 

I.e. info on Pr(E-|X) flows up 
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)|()|()|( +−∝ XX EXPXEPEXP

X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XE

 1−
XE  2−

XE

j
j

Y YE
j

for support  evidential : −

EYj \X  : evidence for Yj

excluding support through X

Inference in Bayes nets: P(E-|X) simplified 

=   P(yjk | X)
yjk

∑
j
∏ P(EYj

− j | yjk )

Recursive call to P(E-|.) 

Usual implementation is message passing: 
•  Send values for P(E-|X) up the tree (vertex 

to parent) 
•  Wait for all children’s msgs before 

sending 
•  Send values for P(X|E+) down the tree 

(parent to child) 
•  Wait for all parent’s msgs before sending 

•  Compute P(X|E) when after all msgs to X 
are recieved 

*  P(X |
u1,u2

∑  u1,u2, ) P(uj | EX
+ j )

j
∏

Recursive call to P(.|E+) 
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)|()|()|( +−∝ XX EXPXEPEXP
X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XE

recursion P(EX
− | X) = P(EYj \X | X)

j
∏

 1−
XE  2−

XE
= ⋅  P(EYj

− j | X, yjk, zjk )
yjk ,z jk

∑
j
∏  ⋅P(EYj \X

+ j | X, yjk, zjk )

⋅=∏ ∑
j zy

jkjk
jkjk

XzyP
,

)|,(  

=   P(yjk, zjk | X)
yjk ,z jk

∑
j
∏ P(EYj \X | X, yjk, zjk )

j
j

Y YE
j

for support  evidential : −

EYj \X  : evidence for Yj

excluding support through X

= P(EYj
− j | yjk ) P(EYj \X

+ j | zjk
z jk

∑
yjk

∑ )
j
∏ P(yjk, zjk | X)

Inference in Bayes nets: P(E-|X) 

our decomposition 

d-sep 
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X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XE

∏ −− =
j

j
XX XEPXEP )|()|(

 1−
XE  2−

XE

)|,()|()|( \ XzyPzEPyEP jkjk
j

jk
y z

XYjk
j

Y
jk jk

jj∏∑ ∑ +−=

)(

)()|(
)|( \\

\
jk

XYXYjk
jkXY zP

EPEzP
zEP jj

j

++

+ =

)|(),|()|,( XzPzXyPXzyP jkjkjkjkjk =

),|()|()|( \ jkjk
j y z

XYjkjjk
j

Y zXyPEzPyEP
jk jk

jj∏∑ ∑ +−= β

Inference in Bayes nets: P(E-|X) 
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X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XE

∏ −− =
j

j
XX XEPXEP )|()|(

 1−
XE  2−

XE

),|()|()|( \ jkjk
j y z

XYjkjjk
j

Y zXyPEzPyEP
jk jk

jj∏∑ ∑ +−= β

∏∑ ∑−=
j y z

YZjkjkjkjk
j

Y
jk jk

kjj
EzPzXyPyEP )|(),|()|( \β

∏= jββwhere 
Recursive call to P(E-|.) 

CPT Recursive call 
to P(.|E) 

Inference in Bayes nets: P(E-|X) 
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X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XERecap: Message Passing for BP 

•  We reduced P(X|E) to product of two 
recursively calculated parts: 

•  P(X=x|E+) 

•  i.e., CPT for X and product of “forward” 
messages from parents  

•  P(E-|X=x) 

•  i.e., combination of “backward” messages 
from parents, CPTs, and P(Z|EZ\Yk), a 
simpler instance of P(X|E) 

•  This can also be implemented by 
message-passing (belief propagation) 

•  Messages are distributions – i.e., vectors 

∏∑ +=
j

j
Xj

uu
EuPuuXP )|(), |( ,21

, 21

∏∑ ∑−=
j y z

YZjkjkjkjk
j

Y
jk jk

kjj
EzPzXyPyEP )|(),|()|( \β
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X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XERecap: Message Passing for BP 

•  Top-level algorithm 
 

•  Pick one vertex as the “root” 
•  Any node with only one edge is a “leaf”  

•  Pass messages from the leaves to the root 
•  Pass messages from root to the leaves 

•  Now every X has received P(X|E+) and 
P(E-|X) and can compute P(X|E) 
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From Russell 
and Norvig 



46	

Pr(X2=1|X1=1)	

Pr(X3=1|X2=2)	

~ count the total weight of paths from E to X 

Evidential	
support	

Causal	
support	
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More on message passing/BP 

•  BP for other graphical models 
• Markov networks 
•  Factor graphs 

•  BP for non-polytrees: 
•  Small tree-width graphs 
•  Loopy BP 
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Markov blanket 

•  The Markov blanket for a random variable A 
is the set of variables B1,…,Bk that A is not 
conditionally independent of 
•  I.e., not d-separated from 

 
•  For DGM this includes 

parents, children, and 
“co-parents” (other 
parents of children) 
• why? explaining away 
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Markov network 

•  A Markov network is a set of 
random variables in an 
undirected graph where 
•   each variable is conditionally 

independent of all other 
variables given its neighbors 

•  E.g:   
•  I<B,{A,D},C> 
•  I<B,{A,D},E> 
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Markov networks 

•  A Markov network is a set of 
random variables in an 
undirected graph where 
•   each variable is conditionally 

independent of all other 
variables given its neighbors 

•  E.g:   
•  I<B,{A,D},C> 
•  I<B,{A,D},E> 

•  Instead of CPTs there are clique 
potentials 

 

C E ϕ 

0 0 1 

0 1 10 

1 0 10 

1 1 1 

So the Markov 
blanket, d-sep stuff 

is much simpler 

But there’s no 
“generative” story 
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Markov networks 

•  Instead of CPTs there are clique 
potentials which define a joint 

 

C E ϕ 

0 0 1 

0 1 10 

1 0 10 

1 1 1 

A B D ϕ 

0 0 0 1 

0 0 1 3.5 

0 1 0 2.7 

… … … … 

1 1 1 1 

Pr(X1,...,Xn = x1,..., xn )

=
1
Z

ϕ(XC,1,...,
C
∏ XC,k = xC,1,..., xC,k )

clique C vars in clique C 

these value 
mapped to 

these variable 
indices 

these values 
mapped to 

these variable 
indices 
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More on message passing/BP 

•  BP can be extended to other graphical 
models 
• Markov networks, if they are polytrees 
•  “Factor graphs”---which are a generalization of 

both Markov networks and DGMs 
•  Arguably cleaner than DGM BP 

•  BP for non-polytrees: 
•  Small tree-width graphs 
•  Loopy BP 
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Small tree-width graphs 

A B 

First guess The money 

C The goat 
D 

Stick or swap? 

E 

Not a polytree 

B 

The money 

ACE 

Guesses A,E 
and the goat C D 

Stick or swap? 

A polytree 

B D ACE P(ACE|B,D) 

0 0 1,1,1 … 

0 0 1,1,2 … 

… … … … 

0 0 3,3,3 … 

0 1 1,1,1 … 

… … … … 
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Small tree-width graphs 

A B 

First guess The money 

C The goat 
D 

E 

Not a polytree 

B 

The money 

ACE 

Guesses A,E 
and the goat C D 

A polytree 

X 

… 

W 

… … 

X 

… 

W 

… … 
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More on message passing/BP 

•  BP can be extended to other graphical 
models 
• Markov networks, if they are polytrees 
•  “Factor graphs” 

•   BP for non-polytrees: 
•  Small tree-width graphs:  

• convert to polytrees and run normal BP 
•  Loopy BP 



Great	Ideas	in	ML:	Message	Passing	
Each soldier receives reports from all branches of  tree 

7	here	

3	here	

3	here	

Belief:	
Must	be	
14	of	us	

wouldn't	work	correctly	

with	a	'loopy'	(cyclic)	graph	

56	
adapted	from	MacKay	(2003)	textbook	 Thanks Matt Gormley 



X 

Y1 Y2

Z2Z1

U2U1

 −XE

 +XERecap:	Loopy	BP	

•  Top-level	algorithm	
	

–  Initialize	every	X’s	messages	P(X|E+)	and	P(E-|X)	to	
vectors	of	all	1’s.	

–  Repeat:	
•  Have	every	X	send	its	children/parents	messages	

– Which	will	be	incorrect	at	first	
•  For	every	X,	update	P(X|E+)	and	P(E-|X)	based	on	last	
messages	
– Which	will	be	incorrect	at	first	

–  In	a	tree	this	will	eventually	converge	to	the	right	values	

–  In	a	graph	if	might	converge	
•  Non-trivial	to	predict	when	and	if	but…	
•  it’s	often	a	good	approximation	

	


