Overview of this week

—Sampling from a graph
* What is a good sample? (graph-statisties)
* What methods work? (PPR/RWR)
« HW: PageRank-Nibble method + Gephi




Common statistics for
graphs

William Cohen
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An important question

* How do you explore a dataset?

—compute statistics (e.g., feature histograms,
conditional feature histograms, correlation
coefficients, ...)

—sample and inspect
 run a bunch of small-scale experiments

* How do you explore a graph?
—compute statistics (degree distribution, ...)

—sample and inspect
* how do you sample?



Overview of this week
* Debugging tips for ML algorithms
* Graph algorithms
— A prototypical graph algorithm: PageRank

* In memory

* Putting more and more on disk ...
—Sampling from a graph

* What is a good sample? (graph statistics)

* What sampling methods work? (PPR/RWR)
« HW: PageRank-Nibble method + Gephi
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Brief summary

* Define goals of sampling:
— “scale-down” - find G’<G with similar statistics

— “back in time”: for a growing G, find G’<G that is similar
(statistically) to an earlier version of G

* Experiment on real graphs with plausible sampling methods,
such as

— RN - random nodes, sampled uniformly

* See how well they perform



Brief summary

* Experiment on real graphs with plausible
sampling methods, such as

— RN - random nodes, sampled uniformly
* RPN - random nodes, sampled by PageRank
* RDP - random nodes sampled by in-degree

—RE - random edges

— R]J - run PageRank’s “random surfer” for n
steps

—RW - run RWR’s “random surfer” for n steps

— FF - repeatedly pick r(i) neighbors of i to
“burn”, and then recursively sample from them



RWR/Personalized PageRank vs PR

* PageRank update:

Letvttl=cu + (1-c)Wvt

* Personalized PR/RWR update:

Letvttl=cs + (1-c)WVt

s is the seed vector or personalization vector
in RN it’s just a random unit vector
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D-statistic
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d-statistic measures agreement between
distributions

* D=max{|F(x)-F'(x)|} where F, F’ are cdf’s
* max over nine different statistics
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Static graph patterns

in-deg | out-deg | wcc sce hops | sng-val | sng-vec | clust
RN 0.084 0.145 0.814 | 0.193 | 0.231 0.079 0.112 0.327
RPN | 0.062 | 0.097 | 0.792 | 0.194 | 0.200 | 0.048 0.081 0.243
RDN || 0.110 0.128 0.818 | 0.193 | 0.238 0.041 0.048 0.256
RE 0.216 0.305 | 0.367 | 0.206 | 0.509 0.169 0.192 0.525
RNE || 0.277 0.404 0.390 | 0.224 | 0.702 0.255 0.273 0.709
HYB || 0.273 0.394 0.386 | 0.224 | 0.683 0.240 0.251 0.670
RNN || 0.179 0.014 0.581 | 0.206 | 0.252 0.060 0.255 0.398
RJ 0.132 0.151 0.771 | 0.215 | 0.264 | 0.076 0.143 | 0.235
RW 0.082 0.131 0.685 | 0.194 | 0.243 0.049 0.033 | 0.243
FF 0.082 0.105 0.664 | 0.194 | 0.203 | 0.038 0.092 | 0.244




Goal

* An efficient way of running RWR on a large
graph
—can use only “random access”

* you can ask about the neighbors of a node, you
can’'t scan thru the graph

e common situation with APIs

—leads to a plausible sampling strategy
* Jure & Christos’s experiments
* some formal results that justify it....
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What is Local Graph Partitioning?

A local graph partitioning algorithm finds a small
cut near the given seed(s) with running time

depending only on the size of the output.

Global Local




What is Local Graph Partitioning?

A bidding graph from Yahoo sponsored search

Phrases Advertiser 1Ds
e.g. Margarita Mix e.g. c8cbfdObd74ba8cc

On the left are search phrases, on the right are advertisers.
Each edge represents a bid by an advertiser on a phrase.

400K phrases, 200K advertisers, and 2 million edges.



What is Local Graph Partitioning?
Submarkets in bidding graph

The bidding graph has submarkets, sets of bidders and phrases
that interact mostly with each other.

Phrases about margarita mix Purveyors of margarita mix

These sets of vertices (containing both advertisers and phrases)
have small conductance.



What is Local Graph Partitioning?

Submarkets in the bigging graph
The bidding graph has numerous submarkets, related to real
estate, flower delivery, hotels, gambling, ...

It is useful to identify these submarkets.
» Find groups of related phrases to suggest to advertisers.

» Find small submarkets for testing and experimentation.



What is Local Graph Partitioning?

A local graph partitioning algorithm finds a small
cut near the given seed(s) with running time

depending only on the size of the output.

Global Local




Key idea: a ““sweep”

* Order all vertices in some way v, ;, Vi, ....

— Say, by personalized PageRank from a
seed

* Pickaprefixv,,, v;,, ... v;, that is “best”
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What is a ‘“‘good” subgraph?

0(S)={{zr,yl e E|lze S ye&S)

the edges leaving S

9(3)
min (vol(S), 2m — vol(S))

B(S) =

* vol(S) is sum of deg(x) for x in S
* for small S: Prob(random edge leaves YS)

21



Key idea: a ““sweep”

* Order all vertices in some way v, ;, v;,, ....
— Say, by personalized PageRank from a seed
Pick a prefix S={ v;,, v,, .... v;; } that is “best”
— Minimal “conductance” ¢(S)
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Main results of the paper

1. An approximate personalized PageRank computation
that only touches nodes “near” the seed

— but has small error relative to the true PageRank
vector

2. A proof that a sweep over the approximate PageRank
vector finds a cut with conductance sqrt(a In m)

— unless no good cut exists

* no subset S contains significantly more pass in the
approximate PageRank than in a uniform distribution
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Static graph patterns

in-deg | out-deg | wcc sce hops | sng-val | sng-vec | clust
RN 0.084 0.145 0.814 | 0.193 | 0.231 0.079 0.112 0.327
RPN || 0.062 | 0.097 | 0.792 | 0.194 | 0.200 | 0.048 0.081 0.243
RDN || 0.110 0.128 0.818 | 0.193 | 0.238 0.041 0.048 0.256
RE 0.216 0.305 | 0.367 | 0.206 | 0.509 0.169 0.192 0.525
RNE || 0.277 0.404 0.390 | 0.224 | 0.702 0.255 0.273 0.709
HYB || 0.273 0.394 0.386 | 0.224 | 0.683 0.240 0.251 0.670
RNN || 0.179 0.014 0.581 | 0.206 | 0.252 0.060 0.255 0.398
RJ 0.132 0.151 0.771 | 0.215 | 0.264 | 0.076 0.143 | 0.235
RW 0.082 0.131 0.685 | 0.194 | 0.243 0.049 0.033 | 0.243
FF 0.082 0.105 0.664 | 0.194 | 0.203 | 0.038 0.092 | 0.244

Result 2 explains Jure & Christos’s experimental results

with RW sampling:

RW approximately picks up a random subcommunity
(maybe with some extra nodes)
Features like clustering coefficient, degree should be
representative of the graph as a whole...

* which is roughly a mixture of subcommunities

24




Main results of the paper

1. An approximate personalized PageRank
computation that only touches nodes “near”
the seed

—but has small error relative to the true
PageRank vector

This is a very useful technique to know about...

25



Random Walks

G : a graph

P : transition probability matrix

1
— ifu: v, d:=thedegree of u.
P(u,v)= d / 4 ?

0 otherwise.

u

A lazy walk: J+ P
==

avoids messy “dead ends’....

26



Random Walks: PageRank

A (bored) surfer

- either surf a random webpage
with probability a

» or surf a linked webpage
with probability /- a

a . the jumping constant

p=a(, L, . Dt (-a)pW ;



Random Walks: PageRank

Two equivalent ways to define PageRank p=pr(a,s)
(1) p=as+(l-a)pW

(2) pzai(l—a)’(sWt)

S = (ysyreeny) = the (original) PageRank

s = some "seed”, e.q., (1,0,....,0)

—=> personalized PageRank



ﬂlashback: Zeno’s paradox

|+0.1+0.01+0.001+0.0001 +... =?

* Lance Armstrong and the tortoise
have a race

e Lanceis 10x faster

* Tortoise has a 1m head start at
time O

® So,when Lance gets to Im the
tortoise is at |.Im

® So,when Lance gets to |.Im the

tortoiseisat |.1Im ...
® So,when Lance gets to |.l Im the
tortoiseisat |.1 |1 Im ... and Lance will

never catch up -?

unresolved until calculus was invented




@o: powned by telescoping sums\

Let x be less than 1. Then

y=l+x+x"+X +...+x"
y1-x)=l+x+x" +x +...+x")(1-x)

y1-x)=1—F+ x=x)+(x* - x)+..+(x" =x"")
y(l-x)=1-x""

~ l_xn+l
T
y=(1-x)"

K Example: x=0.1, and 1+0.1+0.01+0.001+.... = 1.11111 = 10/9. J
30



Graph = Matrix
Vector = Node = Weight
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ﬂ:ing through a graph? \

Let W[i,j] be Pr(walk to j from /)and let a be less than 1. Then:
Y =1+ aW +(aW)* + (aW)’ +...(aW)"
Y(I-aW) =T+ aW +(aW)* +(aW)’ +..)(I-aW)

Y(I-aW) = (I- W) + (oW - (aW)’ +...)1 - aW)

Y(I-aW)=1I-(aW)""
]

Y=({-aW)" Y[i, j]= - Pr(j | )

The matrix (I- aW) is the Laplacian of aW.

Generally the Laplacian is (D- A) where DJ[j,i] is the degree of i in the
adjacency matrix A.
32




Random Walks: PageRank

Two equivalent ways to define PageRank p=pr(a,s)
(1) p=as+(l-a)pW

(2) pzai(l—a)’(sWt)

S = (ysyreeny) = the (original) PageRank

s = some "seed”, e.q., (1,0,....,0)

—=> personalized PageRank



Approximate PageRank: Key Idea

By definition PageRank

w(a,s) = as+ (1 —a)pr(a, s)W,
is fixed point of: pr(c ) ( pr{a, )WV

Claim: pr(a,s) = as+ (1 — a)pr(a, sW).
oo
Proof: R, = « Z(l — (}')t["""’t
t=0
define a matrix for the *
pr operator: =o|l+ E(l — O!)MW”
Raszpr( o ,S) u=1

=al +(1- a)Wi(l —a)W'

=al+(1-a)WR,

34



Approximate PageRank: Key Idea

By definition PageRank

w(a,s) =as+ (1 — a)pr(a, s)W,
is fixed point of: pr(c, 5) ( Jpr{e, ¢

C|a|m: pr((_y’ S) — ('S + (1 _ (l‘)pl‘(a', bur)
PI‘OOf: RQ. e Z(l . (l,)t‘[,‘ﬂ,rt
t=0

= al+ (1 —-a)WR,.

pr(a,s) = sR,
= as+ (1 —a)sWR,
= as+ (1 —a)pr(a, sW).

35



Approximate PageRank: Key Idea

By definition PageRank

w(e. s) = as + (1 —a)pr(a. s)W,
is fixed point of: pr(e, s) = as + (1 = ajpria, )

Claim: pr(a,s) = as+ (1 — a)pr(a, sW).

Recursively compute PageRank of
“neighbors of s” (=sW), then adjust

Key idea in apr:
* do this “recursive step” repeatedly

* focus on nodes where finding PageRank from neighbors
will be useful

36



Approximate PageRank: Key Idea

pr(a,s) =as+ (1 —a)pr(a, sW). W= I+P

push,,(p,7):
1. Let p’ = p and r’ = r, except for the following changes:
(a) p'(u) = p(u) + ar(u).
(b) r'(u) = (1 — a)r(u)/2.
(¢) For each v such that (u,v) € E:  r'(v) =r(v) + (1 — a)r(u)/(2d(u)).
2. Return (p/,r").

* pis current approximation (start at 0)

e ris set of “recursive calls to make”
e residual error

e start with all mass on s
* uis the node picked for the next call

37




Analysis

Lemma 1. Let p’ and ' be the result of the operation push, on p and r. Then

p' +pr(a,r’) = p+ pr(a,r).

Proof of Lemma 1. After the push operation, we have

p= p+ar(u)xu
o= r—ru)x.+ (1 —a)r(u)x.W.
Using equation (5),
linearity
p+opr(a,r) = p+pr(a,r—r(u)x.) + pr(o, r(u)x.)

»= p+pr(a,r—r(u)xy) + [or(u)x, + (1 — a)pr(a, r(uw)x, W)
— [+ ar(u)x] + pr(as [r = (@) xu + (1 — a)r(u)xa W)
= p +pr(a, ). re-group & linearity
pr(a, r-r(wy,) +(1-a) pr(a, r(wx,W) = pr(e, r - r(wx, + (1-&) rx,W)
pr(a,s) = as+ (1 — a)pr(a, sW). 38 (5)




Approximate PageRank: Algorithm

ApproximatePageRank (v, a,€):
1. Let p=0, and 7 = y,.

2. While max,cv ;(TZ% > €:

(a) Choose any vertex u where % > €.

(b) Apply push, at vertex u, updating p and r.

3. Return p, which satisfies p = apr(«, xv, ) with max,cy ;—%% < €.

push,,(p,7):

1. Let p’ = p and r’ = r, except for the following changes:

(a) p'(u) = p(u) + ar(u).
(b) (u) = (1 = a)r(u)/2.
(¢) For each v such that (u,v) € E:  r'(v) =r(v)+ (1 — a)r(u)/(2d(u)).

2. Return (p',r').

39




Analysis

Lemma 1. Let p’ and r' be the result of the operation push, on p and r. Then

p' +pr(a,r) =p+ pr(a,r).
So, at every point in the apr algorithm:
p+pr(a,r) = pr(a, x,).

Also, at each point, |r|, decreases by o * € *degree(u), so:
after T push operations where degree(i-th u)=d, we know

T |
d-ae<l mu) ;o]
Z 1 UE = ;(’, S ;

which bounds the size of rand p 0



Analysis

Theorem 1. ApproximatePageRank(v,«,¢€) runs in time ()(%), and computes an approximate

PageRank vector p = apr(a, x,,r) such that the residual vector r satisfies max,cy %% < €, and

such that vol(Supp(p)) < %

With the invariant: p+ pr(a,r) = pr(a, x,),

This bounds the error of p relative to the PageRank vector.

41



Comments - API

ApproximatePageRank (v, a,€):

p,rare hash tables - they are small (1/ca)

1. Let p=0, and 7 = Xw. Could implement with API:

2. While max,cy d( ; > e e List<Node> neighbor(Node u)
* intdegree(Node u)

r(u)

(a) Choose any vertex u where ) = €
(b) Apply push, at vertex u, updating p and r.

r(u)

3. Return p, which satisfies p = apr(«, xu, ) with max,cy ) < €

push, (p,7): push just needs p, r, and neighbors of u

1. Let p’ = p and ' = r, except for the following changes:

(a) p'(u) = pu) + ar(u).
(b) '(u) = (1 — a)r(u)/2.
(¢) For each v such that (u,v) € E:  r'(v) =r(v)+ (1 — a)r(u)/(2d(u)).

2. Return (p’,7"). d(v) = api.degree(v) 42




Comments - Ordering

ApproximatePageRank (v, a,€):

1. Let p=0, and 7 = yo.
might pick the largest r(u)/d(u) ... or...

2. While max,cv % > €:

(a) Choose any vertex u where % > €.

(b) Apply push, at vertex u, updating p and r.

3. Return p, which satisfies p = apr(«, xv, ) with max,cy ;—((% < €.

push,, (p,7):

1. Let p’ = p and r’ = r, except for the following changes:

(a) p'(u) = p(u) + ar(u).
(b) (u) = (1 = a)r(u)/2.
(¢) For each v such that (u,v) € E:  r'(v) =r(v)+ (1 — a)r(u)/(2d(u)).

2. Return (p',r').
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Comments - Ordering for Scanning

ApproximatePageRank (v, a,€):

1. Let p= 6 and r = Y.

2. While max,cv 27%% > €:

Scan repeatedly through an adjacency-list encoding of the graph

For every line you read u, v,,...,vy,, such that r(u)/d(u) > &:

(b) Apply push, at vertex u, updating p and r.

p . e . r{w
3. Return p, which satisfies p = apr(«, x,,r) with max,cy ﬁ < €.

benefit: storage is O(1/ca) for the hash tables, avoids any seeking
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Possible optimizations?

* Much faster than doing random access the first few scans, but
then slower the last few

» ..there will be only a few ‘pushes’ per scan
* Optimizations you might imagine:

— Parallelize?

— Hybrid seek/scan:

* Index the nodes in the graph on the first scan

 Start seeking when you expect too few pushes to justify a scan
— Say, less than one push/megabyte of scanning

— Hotspots:

» Save adjacency-list representation for nodes with a large r(u)/d(u)
in a separate file of “hot spots” as you scan

* Then rescan that smaller list of “hot spots” until their score drops
below threshold.
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Putting this together

* Given a graph
—that’s too big for memory, and/or
—that's only accessible via API
* ...we can extract a sample in an interesting area
— Run the apr/rwr from a seed node
— Sweep to find a low-conductance subset
 Then
— compute statistics
—test out some ideas
—visualize it...
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