Overview of this week

- Debugging tips for ML algorithms
- Graph algorithms
 - A prototypical graph algorithm: PageRank
 - In memory
 - Putting more and more on disk ...
 - Sampling from a graph
 - What is a good sample? (graph statistics)
 - What methods work? (PPR/RWR)
 - HW: PageRank-Nibble method + Gephi

Common statistics for graphs

William Cohen

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$
social	film actors	undirected	449913	25516482	113.43	3.48	2.3	0.20	0,78
	company directors	undiron	7 673	55 392	14.44	4.60	/ -	0.59	/.88
	math c nodes	adirected	253323	496 489	3.92	7.57	_	0.15	0.34
	physics	ndirected	2 909	245 500	9.2%	6.19	_	0.45	0.56
	biology coauthorship	undirected	1520251	$11/\sqrt{3064}$	15.53	4.9/2	_	0.09	0.60
	telephone call graph	undire	47000000	o 000 000 oo	3.16		2.1		
	email messages	red	59912	86 300	1.44	4.95	1.5/2.0		0.16
	email address	d	1680	57 ∕ ∠ 9	3.3//	5.22	_/		0.13
	student relat	eted	573	477	.66	1	clusteri	ng	0.001
	sexual contacts	undirected	2810				coefficie		
n	WWW nd.edu	directed	269 504	1 497 135	5.55	1			0.29
rtio	WWW Altavista	directed	203 549 046	2 130 000/	10.46	16	(homoph	iliy)	
rms	citation network	direct	7832	67	~		00/		1
information	Roget's Thesaurus	/g degree	/22	5 C	count				
	word co-occurrence	g degree	0 902	7 000 (00000				
	Internet	undirected	10 697	31!		,	(Original gra R-MAT gra	ph +
al	power grid	undirected	49	6.	10000 - *			n-war gia	PIII ~
technological	train routes	undire		19	1000	××			-
	software packages	diameter	439	1 '		××××			-
echi	software classes	diameter	1 377	2: ting 53: 0	1000				1
4	electronic circuits	undirected	24 097	53 : 중		7			-
	peer-to-peer network	undirect	880	1:	100		The same of the sa		1
biological	metabolic network	undir	765	3					
	protein interactions	ur 🚣 ed	2115	2:	10				-
	marine food		135				× -	BC+++++]
	freshwater for cooefficient of		92	!	1				
	neural netwo	e curve	307	2:	1	10	100 Out-degre	1000	0 1000

An important question

- How do you explore a dataset?
 - compute statistics (e.g., feature histograms, conditional feature histograms, correlation coefficients, ...)
 - -sample and inspect
 - run a bunch of small-scale experiments
- How do you explore a graph?
 - -compute statistics (degree distribution, ...)
 - -sample and inspect
 - how do you sample?

Overview of this week

- Debugging tips for ML algorithms
- Graph algorithms
 - A prototypical graph algorithm: PageRank
 - In memory
 - Putting more and more on disk ...
 - Sampling from a graph
 - What is a good sample? (graph statistics)
 - What sampling methods work? (PPR/RWR)
 - HW: PageRank-Nibble method + Gephi

Sampling from Large Graphs

Jure Leskovec School of Computer Science Carnegie Mellon University Pittsburgh, PA, USA jure@cs.cmu.edu Christos Faloutsos School of Computer Science Carnegie Mellon University Pittsburgh, PA, USA christos@cs.cmu.edu

KDD 2006

Brief summary

- Define goals of sampling:
 - "scale-down" find G'<G with similar statistics</p>
 - "back in time": for a growing G, find G'<G that is similar (statistically) to an earlier version of G
- Experiment on real graphs with plausible sampling methods, such as
 - RN random nodes, sampled uniformly
 - **—** ...
- See how well they perform

Brief summary

- Experiment on real graphs with plausible sampling methods, such as
 - RN random nodes, sampled uniformly
 - RPN random nodes, sampled by PageRank
 - RDP random nodes sampled by in-degree
 - RE random edges
 - RJ run PageRank's "random surfer" for n steps
 - RW run RWR's "random surfer" for n steps
 - -FF repeatedly pick r(i) neighbors of i to "burn", and then recursively sample from them

RWR/Personalized PageRank vs PR

PageRank update:

$$Let \mathbf{v}^{t+1} = c\mathbf{u} + (1-c)\mathbf{W}\mathbf{v}^t$$

Personalized PR/RWR update:

Let
$$\mathbf{v}^{t+1} = c\mathbf{s} + (1-c)\mathbf{W}\mathbf{v}^t$$

s is the seed vector or personalization vector in RN it's just a random unit vector

10⁰ RW, RJ, RDN Clustering Coefficient True RN 10⁻¹ FF, PRN RNN 10⁻² 10¹ 10² 10³ Degree

(a) S1: In-degree

(b) S9: Clustering coef.

10% sample – pooled on five datasets

d-statistic measures agreement between distributions

- D= $\max\{|F(x)-F'(x)|\}$ where F, F' are cdf's
- max over nine different statistics

	Static graph patterns								
	in-deg	out-deg	wcc	scc	hops	sng-val	sng-vec	clust	
RN	0.084	0.145	0.814	0.193	0.231	0.079	0.112	0.327	
RPN	0.062	0.097	0.792	0.194	0.200	0.048	0.081	0.243	
RDN	0.110	0.128	0.818	0.193	0.238	0.041	0.048	0.256	
RE	0.216	0.305	0.367	0.206	0.509	0.169	0.192	0.525	
RNE	0.277	0.404	0.390	0.224	0.702	0.255	0.273	0.709	
HYB	0.273	0.394	0.386	0.224	0.683	0.240	0.251	0.670	
RNN	0.179	0.014	0.581	0.206	0.252	0.060	0.255	0.398	
RJ	0.132	0.151	0.771	0.215	0.264	0.076	0.143	0.235	
$\mathbf{R}\mathbf{W}$	0.082	0.131	0.685	0.194	0.243	0.049	0.033	0.243	
\mathbf{FF}	0.082	0.105	0.664	0.194	0.203	0.038	0.092	$\boldsymbol{0.244}$	

Goal

- An efficient way of running RWR on a large graph
 - -can use only "random access"
 - you can ask about the neighbors of a node, you can't scan thru the graph
 - common situation with APIs
 - leads to a plausible sampling strategy
 - Jure & Christos's experiments
 - some formal results that justify it....

Local Graph Partitioning using PageRank Vectors

Reid Andersen University of California, San Diego

Fan Chung University of California, San Diego

Kevin Lang Yahoo! Research

FOCS 2006

A local graph partitioning algorithm finds a small cut near the given seed(s) with running time depending only on the size of the output.

A bidding graph from Yahoo sponsored search

Phrases Advertiser IDs
e.g. Margarita Mix e.g. c8cbfd0bd74ba8cc

On the left are search phrases, on the right are advertisers. Each edge represents a bid by an advertiser on a phrase.

400K phrases, 200K advertisers, and 2 million edges.

Submarkets in bidding graph

The bidding graph has submarkets, sets of bidders and phrases that interact mostly with each other.

Phrases about margarita mix

Purveyors of margarita mix

These sets of vertices (containing both advertisers and phrases) have small conductance.

Submarkets in the bigging graph

The bidding graph has numerous submarkets, related to real estate, flower delivery, hotels, gambling, ...

It is useful to identify these submarkets.

- ▶ Find groups of related phrases to suggest to advertisers.
- Find small submarkets for testing and experimentation.

A local graph partitioning algorithm finds a small cut near the given seed(s) with running time depending only on the size of the output.

Key idea: a "sweep"

- Order all vertices in some way $v_{i,1}$, $v_{i,2}$,
 - Say, by personalized PageRank from a seed
- Pick a prefix v_{i,1}, v_{i,2}, v_{i,k} that is "best"

What is a "good" subgraph?

$$\partial(S) = \{\{x,y\} \in E \mid x \in S, y \not\in S\}$$
 the edges leaving S

$$\Phi(S) = \frac{|\partial(S)|}{\min\left(\text{vol}(S), 2m - \text{vol}(S)\right)}.$$

- vol(S) is sum of deg(x) for x in S
- for small S: Prob(random edge leaves S)

Key idea: a "sweep"

- Order all vertices in some way v_{i,1}, v_{i,2},
 - Say, by personalized PageRank from a seed
- Pick a prefix $S = \{v_{i,1}, v_{i,2}, \dots v_{i,k}\}$ that is "best"
 - Minimal "conductance" $\phi(S)$

You can re-compute conductance incrementally as you add a new vertex so the sweep is fast

Main results of the paper

- 1. An *approximate* personalized PageRank computation that only touches nodes "near" the seed
 - but has small error relative to the true PageRank vector
- 2. A proof that a sweep over the approximate PageRank vector finds a cut with conductance $sqrt(\alpha \ln m)$
 - unless no good cut exists
 - no subset S contains significantly more pass in the approximate PageRank than in a uniform distribution

	Static graph patterns									
	in-deg	out-deg	wcc	scc	hops	sng-val	sng-vec	clust		
RN	0.084	0.145	0.814	0.193	0.231	0.079	0.112	0.327		
RPN	0.062	$\boldsymbol{0.097}$	0.792	0.194	0.200	0.048	0.081	0.243		
RDN	0.110	0.128	0.818	0.193	0.238	0.041	0.048	0.256		
RE	0.216	0.305	0.367	0.206	0.509	0.169	0.192	0.525		
RNE	0.277	0.404	0.390	0.224	0.702	0.255	0.273	0.709		
HYB	0.273	0.394	0.386	0.224	0.683	0.240	0.251	0.670		
RNN	0.179	0.014	0.581	0.206	0.252	0.060	0.255	0.398		
RJ	0.132	0.151	0.771	0.215	0.264	0.076	0.143	0.235		
$\mathbf{R}\mathbf{W}$	0.082	0.131	0.685	0.194	0.243	0.049	0.033	0.243		
\mathbf{FF}	0.082	0.105	0.664	0.194	0.203	0.038	0.092	0.244		

Result 2 explains Jure & Christos's experimental results with RW sampling:

- RW approximately picks up a random subcommunity (maybe with some extra nodes)
- Features like clustering coefficient, degree should be representative of the graph as a whole...
 - which is roughly a mixture of subcommunities

Main results of the paper

- 1. An *approximate* personalized PageRank computation that only touches nodes "near" the seed
 - but has small error relative to the true
 PageRank vector

This is a very useful technique to know about...

Random Walks

G: a graph

P: transition probability matrix

$$P(u,v) = \begin{cases} \frac{1}{d_u} & \text{if } u : v, \quad d_u := \text{the degree of } u. \\ 0 & \text{otherwise.} \end{cases}$$

A lazy walk:
$$W = \frac{I+P}{2}$$
 avoids messy "dead ends"....

Random Walks: PageRank

A (bored) surfer

- either surf a random webpage with probability α
 - or surf a linked webpage with probability 1- α

 α : the jumping constant

$$p = \alpha(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}) + (1 - \alpha)pW$$

Random Walks: PageRank

Two equivalent ways to define PageRank $p=pr(\alpha,s)$

(1)
$$p = \alpha s + (1 - \alpha) pW$$

(2)
$$p = \alpha \sum_{t=0}^{\infty} (1-\alpha)^{t} (sW^{t})$$

$$S = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$$
 \Longrightarrow the (original) PageRank

$$s = \text{some "seed", e.g., } (1,0,...,0)$$

personalized PageRank

Flashback: Zeno's paradox

- Lance Armstrong and the tortoise have a race
- Lance is 10x faster
- Tortoise has a 1m head start at time 0
- So, when Lance gets to Im the tortoise is at I.Im
- So, when Lance gets to 1.1m the tortoise is at 1.11m ...
- So, when Lance gets to I.IIm the tortoise is at I.IIIm ... and Lance will never catch up -?

unresolved until calculus was invented

Zeno: powned by telescoping sums

Let x be less than 1. Then

$$y = 1 + x + x^{2} + x^{3} + \dots + x^{n}$$

$$y(1-x) = (1+x+x^{2}+x^{3}+\dots+x^{n})(1-x)$$

$$y(1-x) = (1-x) + (x-x^{2}) + (x^{2}-x^{3}) + \dots + (x^{n}-x^{n+1})$$

$$y(1-x) = 1-x^{n+1}$$

$$y = \frac{1-x^{n+1}}{(1-x)}$$

$$y \approx (1-x)^{-1}$$

Example: x=0.1, and 1+0.1+0.01+0.001+... = 1.11111 = 10/9.

Graph = Matrix

Vector = Node → Weight

								IVI			
	A	В	С	D	E	F	G	Н	1	J	
A	_	I	I			I					
В	I	_	ı								
С	I	I	_								
D				_	I	I					
E				I	_	I					
F	I			I	I	_					
G							_		ı	I	
Н								_	ı	I	
1							I	I	_	I	
J							I	ı	I	_	

R A

Racing through a graph?

Let W[i,j] be Pr(walk to j from i)and let α be less than 1. Then:

$$\mathbf{Y} = \mathbf{I} + \alpha \mathbf{W} + (\alpha \mathbf{W})^{2} + (\alpha \mathbf{W})^{3} + \dots (\alpha \mathbf{W})^{n}$$

$$\mathbf{Y}(\mathbf{I} - \alpha \mathbf{W}) = (\mathbf{I} + \alpha \mathbf{W} + (\alpha \mathbf{W})^{2} + (\alpha \mathbf{W})^{3} + \dots)(\mathbf{I} - \alpha \mathbf{W})$$

$$\mathbf{Y}(\mathbf{I} - \alpha \mathbf{W}) = (\mathbf{I} - \alpha \mathbf{W}) + (\alpha \mathbf{W} - (\alpha \mathbf{W})^{2} + \dots)(\mathbf{I} - \alpha \mathbf{W})$$

$$\mathbf{Y}(\mathbf{I} - \alpha \mathbf{W}) = \mathbf{I} - (\alpha \mathbf{W})^{n+1}$$

$$\mathbf{Y} \approx (\mathbf{I} - \alpha \mathbf{W})^{-1}$$

$$\mathbf{Y}[i, j] = \frac{1}{Z} \Pr(j \mid i)$$

The matrix (I- α W) is the *Laplacian* of α W.

Generally the Laplacian is (**D-A**) where D[i,i] is the degree of i in the adjacency matrix **A**.

Random Walks: PageRank

Two equivalent ways to define PageRank $p=pr(\alpha,s)$

(1)
$$p = \alpha s + (1 - \alpha) pW$$

(2)
$$p = \alpha \sum_{t=0}^{\infty} (1 - \alpha)^{t} (sW^{t})$$

$$S = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$$
 \Longrightarrow the (original) PageRank

$$s = \text{some "seed", e.g., } (1,0,...,0)$$

personalized PageRank

By definition PageRank is fixed point of:

$$pr(\alpha, s) = \alpha s + (1 - \alpha)pr(\alpha, s)W,$$

Claim:

$$pr(\alpha, s) = \alpha s + (1 - \alpha)pr(\alpha, sW).$$

Proof:

define a matrix for the pr operator: R_{α} s=pr(α ,s)

$$R_{\alpha} = \alpha \sum_{t=0}^{\infty} (1 - \alpha)^{t} W^{t}$$

$$= \alpha \left(I + \sum_{u=1}^{\infty} (1 - \alpha)^{u} W^{u} \right)$$

$$= \alpha I + (1 - \alpha) W \sum_{t=0}^{\infty} (1 - \alpha)^{t} W^{t}$$

$$= \alpha I + (1 - \alpha) W R_{\alpha}$$

By definition PageRank is fixed point of:

$$pr(\alpha, s) = \alpha s + (1 - \alpha)pr(\alpha, s)W,$$

Claim:

$$\operatorname{pr}(\alpha, s) = \alpha s + (1 - \alpha)\operatorname{pr}(\alpha, sW).$$

Proof:

$$R_{\alpha} = \alpha \sum_{t=0}^{\infty} (1 - \alpha)^{t} W^{t}$$
$$= \alpha I + (1 - \alpha) W R_{\alpha}.$$

$$\operatorname{pr}(\alpha, s) = sR_{\alpha}$$

 $= \alpha s + (1 - \alpha)sWR_{\alpha}$
 $= \alpha s + (1 - \alpha)\operatorname{pr}(\alpha, sW).$

By definition PageRank is fixed point of:

$$pr(\alpha, s) = \alpha s + (1 - \alpha)pr(\alpha, s)W,$$

Claim:

$$\operatorname{pr}(\alpha, s) = \alpha s + (1 - \alpha)\operatorname{pr}(\alpha, sW).$$

Recursively compute PageRank of "neighbors of s" (=sW), then adjust

Key idea in apr:

- do this "recursive step" repeatedly
- focus on nodes where finding PageRank from neighbors will be useful

$$\operatorname{pr}(\alpha, s) = \alpha s + (1 - \alpha)\operatorname{pr}(\alpha, sW). \quad W = \frac{I + P}{2}$$

$\operatorname{push}_u(p,r)$:

- 1. Let p' = p and r' = r, except for the following changes:
 - (a) $p'(u) = p(u) + \alpha r(u)$.
 - (b) $r'(u) = (1 \alpha)r(u)/2$.
 - (c) For each v such that $(u, v) \in E$: $r'(v) = r(v) + (1 \alpha)r(u)/(2d(u))$.
- 2. Return (p', r').
- p is current approximation (start at 0)
- r is set of "recursive calls to make"
 - residual error
 - start with all mass on s
- u is the node picked for the next call

Analysis

Lemma 1. Let p' and r' be the result of the operation $push_n$ on p and r. Then

$$p' + \operatorname{pr}(\alpha, r') = p + \operatorname{pr}(\alpha, r).$$

Proof of Lemma 1. After the push operation, we have

$$p' = p + \alpha r(u)\chi_u.$$

$$r' = r - r(u)\chi_u + (1 - \alpha)r(u)\chi_uW.$$

Using equation (5),
$$p + \operatorname{pr}(\alpha, r) = p + \operatorname{pr}(\alpha, r - r(u)\chi_u) + \operatorname{pr}(\alpha, r(u)\chi_u)$$

$$= p + \operatorname{pr}(\alpha, r - r(u)\chi_u) + [\alpha r(u)\chi_u + (1 - \alpha)\operatorname{pr}(\alpha, r(u)\chi_u W)]$$

$$= [p + \alpha r(u)\chi_u] + \operatorname{pr}(\alpha, [r - r(u)\chi_u + (1 - \alpha)r(u)\chi_u W])$$

$$= p' + \operatorname{pr}(\alpha, r').$$
re-group & linearity

$$pr(\alpha, r - r(u)\chi_u) + (1-\alpha) pr(\alpha, r(u)\chi_u W) = pr(\alpha, r - r(u)\chi_u + (1-\alpha) r(u)\chi_u W)$$

$$\operatorname{pr}(\alpha, s) = \alpha s + (1 - \alpha)\operatorname{pr}(\alpha, sW).$$

Approximate PageRank: Algorithm

ApproximatePageRank (v, α, ϵ) :

- 1. Let $p = \vec{0}$, and $r = \chi_v$.
- 2. While $\max_{u \in V} \frac{r(u)}{d(u)} \ge \epsilon$:
 - (a) Choose any vertex u where $\frac{r(u)}{d(u)} \ge \epsilon$.
 - (b) Apply $push_u$ at vertex u, updating p and r.
- 3. Return p, which satisfies $p = \operatorname{apr}(\alpha, \chi_v, r)$ with $\max_{u \in V} \frac{r(u)}{d(u)} < \epsilon$.

$\operatorname{push}_u(p,r)$:

- 1. Let p' = p and r' = r, except for the following changes:
 - (a) $p'(u) = p(u) + \alpha r(u)$.
 - (b) $r'(u) = (1 \alpha)r(u)/2$.
 - (c) For each v such that $(u, v) \in E$: $r'(v) = r(v) + (1 \alpha)r(u)/(2d(u))$.
- 2. Return (p', r').

Analysis

Lemma 1. Let p' and r' be the result of the operation $push_u$ on p and r. Then

$$p' + \operatorname{pr}(\alpha, r') = p + \operatorname{pr}(\alpha, r).$$

So, at every point in the apr algorithm:

$$p + \operatorname{pr}(\alpha, r) = \operatorname{pr}(\alpha, \chi_v),$$

Also, at each point, $|r|_1$ **decreases** by $\alpha * \varepsilon * \text{degree}(u)$, so: after T push operations where degree(i-th u)=d_i, we know

$$\sum_{i} d_{i} \cdot \alpha \varepsilon \leq 1 \qquad \Longrightarrow \qquad \sum_{i=1}^{T} d_{i} \leq \frac{1}{\epsilon \alpha}.$$

which bounds the size of r and p

Analysis

Theorem 1. ApproximatePageRank (v, α, ϵ) runs in time $O(\frac{1}{\epsilon \alpha})$, and computes an approximate PageRank vector $p = \operatorname{apr}(\alpha, \chi_v, r)$ such that the residual vector r satisfies $\max_{u \in V} \frac{r(u)}{d(u)} < \epsilon$, and such that $\operatorname{vol}(\operatorname{Supp}(p)) \leq \frac{1}{\epsilon \alpha}$.

With the invariant:
$$p + \operatorname{pr}(\alpha, r) = \operatorname{pr}(\alpha, \chi_v),$$

This bounds the error of p relative to the PageRank vector.

Comments - API

ApproximatePageRank (v, α, ϵ) :

p,r are hash tables – they are small $(1/\epsilon\alpha)$

- 1. Let $p = \vec{0}$, and $r = \chi_v$.
- 2. While $\max_{u \in V} \frac{r(u)}{d(u)} \ge \epsilon$:

- Could implement with API:
- List<Node> neighbor(Node *u*)
- int degree(Node *u*)
- (a) Choose any vertex u where $\frac{r(u)}{d(u)} \ge \epsilon$.
- (b) Apply $push_u$ at vertex u, updating p and r.
- 3. Return p, which satisfies $p = \operatorname{apr}(\alpha, \chi_v, r)$ with $\max_{u \in V} \frac{r(u)}{d(u)} < \epsilon$.

$\operatorname{push}_u(p,r)$:

push just needs p, r, and neighbors of u

- 1. Let p' = p and r' = r, except for the following changes:
 - (a) $p'(u) = p(u) + \alpha r(u)$.
 - (b) $r'(u) = (1 \alpha)r(u)/2$.
 - (c) For each v such that $(u, v) \in E$: $r'(v) = r(v) + (1 \alpha)r(u)/(2d(u))$.
- 2. Return (p', r').

$$d(v) = api.degree(v)$$

Comments - Ordering

ApproximatePageRank (v, α, ϵ) :

- 1. Let $p = \vec{0}$, and $r = \chi_v$.
- 2. While $\max_{u \in V} \frac{r(u)}{d(u)} \ge \epsilon$:

might pick the **largest** r(u)/d(u) ... **or...**

- (a) Choose any vertex u where $\frac{r(u)}{d(u)} \ge \epsilon$.
- (b) Apply $push_u$ at vertex u, updating p and r.
- 3. Return p, which satisfies $p = \operatorname{apr}(\alpha, \chi_v, r)$ with $\max_{u \in V} \frac{r(u)}{d(u)} < \epsilon$.

$\operatorname{push}_u(p,r)$:

- 1. Let p' = p and r' = r, except for the following changes:
 - (a) $p'(u) = p(u) + \alpha r(u)$.
 - (b) $r'(u) = (1 \alpha)r(u)/2$.
 - (c) For each v such that $(u, v) \in E$: $r'(v) = r(v) + (1 \alpha)r(u)/(2d(u))$.
- 2. Return (p', r').

Comments – Ordering for Scanning

ApproximatePageRank (v, α, ϵ) :

- 1. Let $p = \vec{0}$, and $r = \chi_v$.
- 2. While $\max_{u \in V} \frac{r(u)}{d(u)} \ge \epsilon$:

Scan repeatedly through an adjacency-list encoding of the graph

For every line you read $u, v_1, ..., v_{d(u)}$ such that $r(u)/d(u) > \varepsilon$:

- (b) Apply $push_u$ at vertex u, updating p and r.
- 3. Return p, which satisfies $p = \operatorname{apr}(\alpha, \chi_v, r)$ with $\max_{u \in V} \frac{r(u)}{d(u)} < \epsilon$.

benefit: storage is $O(1/\epsilon\alpha)$ for the hash tables, avoids any *seeking*

Possible optimizations?

- Much faster than doing random access the first few scans, but then slower the last few
 - ...there will be only a few 'pushes' per scan
- Optimizations you might imagine:
 - Parallelize?
 - Hybrid seek/scan:
 - Index the nodes in the graph on the first scan
 - Start seeking when you expect too few pushes to justify a scan
 - Say, less than one push/megabyte of scanning
 - Hotspots:
 - Save adjacency-list representation for nodes with a large r(u)/d(u) in a separate file of "hot spots" as you scan
 - Then rescan that smaller list of "hot spots" until their score drops below threshold.

Putting this together

- Given a graph
 - that's too big for memory, and/or
 - that's only accessible via API
- ...we can extract a *sample* in an interesting area
 - Run the apr/rwr from a seed node
 - Sweep to find a low-conductance subset
- Then
 - compute statistics
 - test out some ideas
 - visualize it...