
Model Checking Publish-
Subscribe Systems

David Garlan
Jung Soo Kim

Carnegie Mellon University

Publish-Subscribe Systems
! The Problem:

! Publish-subscribe systems are ubiquitous
! CORBA, JMS, Visual Basic, MVC, …

! But we don’t have good ways to express properties or to
reason about their satisfaction

! Approach:
! Logical framework for reasoning about pub-sub systems

! Rely-guarantee approach
! Temporal logic used for property specifications

! Model checking tool tailored to pub-sub systems
! built-in checks for common properties
! tailorable to specific variant of pub-sub infrastructure

Publish-Subscribe Model
! Components

! Have local state and methods
! Announce (publish) events
! Register for (subscribe to) events by indicating a

method to be invoked when event is announced
! Events

! The unit of communication between components
! May carry additional information as parameters

! Event Connector (Dispatcher)
! Maintains event-method registrations
! Invokes registered methods when an event is

announced

Comp 1 Comp 2 …

Example: Set and Counter

Set
Methods: add/delete

S = {a, b, c}

EvAdd(n)
EvDel(n)

EvAdded
EvDeleted

Counter
Methods: increase/decrease

C = 3

EvAdded
EvDeleted

Event/Method Registration
EvAdd : Set.add
EvDel : Set.delete
EvAdded : Counter.increase
EvDeleted : Counter.decrease

Event
Connector

Establish the invariant |S| = C

EvAdd(n) EvDel(n)

Environment

Advantages
! Loosely coupled components

! A component that announces an event
does not know (and does not need to
know) the consequence of announcement

! Improves system maintainability
! Easy to add and remove components
! Easy to modify individual components

Disadvantages
! Lots of inherent non-determinism

! Order of events to deliver
! Order of invocation of multiple event recipients
! Timing of in-transit events
! Order of completion of event handling

! Burden of correctness falls on system
integrator
! Difficult to guarantee intended system behavior
! Difficult to choose the right event infrastructure

! many possible dispatch policies, concurrency disciplines,
synchronization schemes

Difficult Questions
! What do we want to say about such systems?

What’s an “invariant” and how to check it?
! Do the components announce the events that they

should announce?
! What will be the effect of announcing a particular

event?
! If a new component is added, will it break what is

already there?
! Can a different event infrastructure be used without

causing any problem?

Possible Solution:
Model-Checking
Typical model-checking process

Abstraction

Properties
Elicitation

Exhaustive

Search

Model

Model
Checker

Pass/Fail
Result

Counter
Example

Target
System

(when fails)

Pros and Cons
! The Good

! Exhaustive search over the state space
! Counter-example generation
! Mature theoretical foundations for reasoning

! The Bad
! State explosion
! Steep learning curve
! Hard to construct a good model
! Hard to specify properties of interest

! The Ugly
! “Pass” does not mean that everything is all right
! Difficult to maintain and reuse the existing model

Focus of Research

Abstraction

Properties
Elicitation

Exhaustive

Search

Model

Model
Checker

Pass/Fail
Result

Counter
Example

Target
System

(when fails)

Ease the burden of constructing models and properties
by providing domain-specific model-checking front end.

Approach

Component/
Property

Specification

Model
Checker

Target
System

Model
Generator

Generated
Model

Infrastructure
Configuration

Generated
Model

Generated
Model

Reusable Model

“Natural”
specification

Innovative Features
! Automatic model generation of the pub-sub

communication infrastructure
! Reduces the cost of constructing models for

publish-subscribe systems
! Reduces model errors

! Parameterized communication infrastructure
! Allows easy exploration of alternatives

! User-friendly component/property
specification
! Eases specification of component behavior

Reusable Infrastructure Model

Environment (external event source)

Shared state

Delivery
Policy Dispatcher

Interface

Comp 1

Interface

Comp N…

Event
Announcement

Data
Exchange

Event
Delivery

Infrastructure Design Space
! Announcement options

! Asynchronous: immediate return from announcement
! Synchronous: wait for complete event handling

! Dispatch order
! FCFS, Random, Prioritized

! Delivery options
! Guaranteed, Lossy

! Startup
! Synchronous, Random

! Concurrency options
! Single thread of control
! Separate threads of control

! Single thread per component
! Multiple threads per component

! Concurrent invocation of different methods
! Concurrent invocation of any method

Initial Results

! Experimented with several systems
! Toy examples, such as set-counter
! Distributed resource management

! Reduced effort for model generation
! Typical reduction: 80% of the model automatically

generated, although depends on number and size
of components

! E.g., for set-counter 147/184 lines

Limitations

! Component specification in XML
! Properties specified in LTL
! No support for dynamism
! No support for synchronous start up
! Subset of infrastructure options supported
! Counter examples in terms of lower-level

model

Current Work
! Component specifications in stylized Java

! More intuitive link to implementations
! Can execute the specifications

! More complete enumeration of
communication alternatives
! Formal model of design space (Z & FSP)

! Support for dynamism
! Add/remove components/registrations

! Support for alternative startup policies
! Retargeted to Spin

! Better support for communication/dynamism

Code for Event
Infrastructure

Code for Event
Infrastructure

Model
Checker 1

Model
Checker 2

New Framework

Component
Specification in Java

Model
Checker 3

Target
System

Generated
Model

Infrastructure
Configuration

Generated
Model

Generated
Model

Java Code for
Event Infrastructure

Java
Compiler

Counter
Example

Java
Executable

Model
Checking

Framework

Read Generate

Interpreted
Counter
Example

Component Specification: Old
<component name = "Counter">

<local-var name = "counter" type = "-2..5"> 0 </local-var>

<method name = “increase">

<statement>

<assignment var-name = "counter"> counter + 1 </assignment>

</statement>

</method>

<method name = “decrease">

<statement>

<assignment var-name = "counter"> counter – 1 </assignment>

</statement>

</method>

</component>

Component Specification: Old
<event name = “EvAdded"/>

<event name = “EvDeleted"/>

<component-instance component-name = "Counter"

instance-name = "theCounter"> />

<event-binding event-name = "EvAdded">

<method-binding instance-name = "theCounter"

method-name = “increase"/>

</event-binding>

<event-binding event-name = “EvDeleted">

<method-binding instance-name = "theCounter"

method-name = “decrease"/>

</event-binding>

Component Specification: New
class Example extends PubSub {

class EvAdd extends Event { int element; }

class EvAdded extends Event {}

...

class Set extends Component {

boolean[] elements = new boolean[MAX_ELEMENT];

void add (EvAdd ev) {

if (element[ev.element] == false) {

element[ev.element] = true;

announce (“Added");

}

}

...

}

Example () {

int cid;

cid = create(“Set");

subscribe(“EvAdd”, “add”, cid);

...

}

}

Generated SPIN Model
proctype Counter (chan register, subscribe, control) {

byte counter;

chan announce_req = [1] of {mtype, attr};
chan announce_ack = [1] of {int};

chan receive_req = [1] of {int, mtype, attr};
chan receive_ack = [1] of {int};

mtype event;
attr param;

register!ps_join (_pid, announce_req, announce_ack,
receive_req, receive_ack);

control?ps_start;

do
:: receive_req?Counter_proc_increase_id(event, param)

-> Counter_proc_increase();
:: receive_req?Counter_proc_increase_id(event, param)

-> Counter_proc_decrease();

od;

register!ps_leave (_pid, announce_req, announce_ack,

receive_req, receive_ack);
}

mtype = {ev_added, ev_removed, ...};

#define Counter_proc_increase_id 0
#define Counter_proc_decrease_id 1

inline Counter_proc_increase () {
counter ++;
receive_ack!param.eid;

}

inline Counter_proc_decrease () {
counter --;
receive_ack!param.eid;

}

Component

register

subscribe

control

Dispatcher

event
channelsControl

Sample Property: Old
Check the “invariant” |S| = C

ConsiderateEnvironment :

assert (G (~disp.evtBuffOverflow & ~updateInvQueue.error));

StoppingEnvironment :

assert(F G (~announceUpdt));

CounterCatchesUp :

assert(G F (set.setSize = counter.count));

using StoppingEnvironment, ConsiderateEnvironment

prove CounterCatchesUp;

Sample Property: New
Check the “invariant” |S| = C

invariant (quiescent() -> Set.size = Counter.counter);

Implementation Techniques
! Non-determinism

! Workaround
switch (random(3)) {

case 0: /* do something */ break;
case 1: /* do something */ break;
case 2: /* do something */ break;

}

! Operations for event communication
! Reside in super classes

Class PubSub {
Void subscribe (String, String, int) { ... }
...

}

In-Progress
! Property specification
! Counter example explanation
! Case studies

! NASA MDS

Other Related Work (Posters)
! Architecture-based run time adaptation

! Formal architectural models used to
monitor and repair running systems

! Formal architecture design tools
! Enforcing constraints of a style
! NASA MDS case study
! Ford Motor Company MSE project

The End

On-going Work
! Better linkage to implementation

! Stylized use of programming language for
specification

! Generates executable system as well as a
checkable model

! Counter example explanation
! Property specification primitives and

templates
! Hide the details of generated model
! Provide many of the common sanity checks
! Move towards push-button tools

Current Work – (cont)
! New specification capabilities

! Dynamic component creation and binding
! Real-time properties

Examples
! Set-Counter

! Set (S) has operations insert/delete
! Counter (C) has operations inc/dec
! Establish “invariant” |S| = C

! Distributed Simulation (HLA)
! Arbitrary number of simulations publish values of objects that

they simulate
! Run-time infrastructure (RTI) maintains state (e.g.,

ownership of objects), mediates protocols of interaction
! Many invariants (e.g., each object is owned by a single

simulation)

Set Counter

Sim1 Simn
…

RTI

More Examples
(State-based duals)

! Shared-variable triggered systems
! Aka “continuous query” systems
! State changes trigger computations
! Components read/write shared

variables, but are otherwise independent

! Real-time periodic tasks
! Tasks placed in periodically-scheduled buckets
! Tasks consume values of certain variables; produce values

of other variables
! Tasks within bucket must complete

before bucket period

Comp1 Comp2

Sensor/Actuator
Variables

Task1,1 Taskn,1

Shared Variables

Task1,2 Taskn,2

Taskn,3

