Model Checking Publish-

!'_ Subscribe Systems

David Garlan
Jung Soo Kim

Carnegie Mellon University

i Publish-Subscribe Systems

= The Problem:

= Publish-subscribe systems are ubiquitous
= CORBA, JMS, Visual Basic, MVC, ...

= But we don’'t have good ways to express properties or to
reason about their satisfaction

= Approach:

= Logical framework for reasoning about pub-sub systems
= Rely-guarantee approach
« Temporal logic used for property specifications
= Model checking tool tailored to pub-sub systems
= built-in checks for common properties
= tailorable to specific variant of pub-sub infrastructure

i publish-Subscribe Model
= Components | |

= Have local state and methods
= Announce (publish) events
= Register for (subscribe to) events by indicating a
method to be invoked when event is announced
s Events
= The unit of communication between components
= May carry additional information as parameters

= Event Connector (Dispatcher)

= Maintains event-method registrations

= Invokes registered methods when an event is
announced

* Example: Set and Counter

Event/Method Registration
EvAdd : Set.add
EvDel . Set.delete
EvAdd(n) | EvDel(n) EvAdded : Counter.increase
EvDeleted : Counter.decrease
Event
Connector
EvAdd(n) EvAdded EvAdded
EvDel(n) EvDeleted EvDeleted

Establish the invariant |S| = C

i Advantages

= Loosely coupled components

= A component that announces an event
does not know (and does not need to
know) the conseguence of announcement

= Improves system maintainability
»« Easy to add and remove components
= Easy to modify individual components

Disadvantages

= Lots of inherent non-determinism
= Order of events to deliver
= Order of invocation of multiple event recipients
= Timing of in-transit events
=« Order of completion of event handling

= Burden of correctness falls on system
Integrator
= Difficult to guarantee intended system behavior

= Difficult to choose the right event infrastructure

= many possible dispatch policies, concurrency disciplines,
synchronization schemes

i Difficult Questions

What do we want to say about such systems?
What’s an “invariant” and how to check it?

= Do the components announce the events that they
should announce?

= What will be the effect of announcing a particular
event?

= If a new component is added, will it break what is
already there?

s Can a different event infrastructure be used without
causing any problem?

Possible Solution:

* Model-Checking

Typical model-checking process

|

. Target Model
. System Checker

Exhaustive

|

Search

Pass/Fall
Result

Counter

Example
Ve

(when fails)

Pros and Cons

= The Good

= Exhaustive search over the state space
= Counter-example generation
= Mature theoretical foundations for reasoning

= [he Bad

= State explosion

= Steep learning curve

= Hard to construct a good model

= Hard to specify properties of interest

= The Ugly
= “Pass” does not mean that everything is all right
= Difficult to maintain and reuse the existing model

Focus of Research

Ease the burden of constructing models and properties
by providing domain-specific model-checking front end.

|

. Target Model | Exhaustive | Pass/Falil
. System | Checker | Search Result i
T Counter

Example

Ve

(when fails)

Approach

Reusable Modelj

“Natural”
specification

i Innovative Features

= Automatic model generation of the pub-sub
communication infrastructure

= Reduces the cost of constructing models for
publish-subscribe systems

= Reduces model errors

s Parameterized communication infrastructure
= Allows easy exploration of alternatives

= User-friendly component/property
specification
= Eases specification of component behavior

Reusable Infrastructure Model

Environment (external event source)

Delivery _ Event ... >
: Announcement
Policy | ... Dispatcher |
A A Data «
§ § Exchange
A 4 = = A 4 Event ----- »
Interface Interface Delivery
Comp 1 Comp N

<

Shared state

I

Infrastructure Design Space

= Announcement options
= Asynchronous: immediate return from announcement
= Synchronous: wait for complete event handling

= Dispatch order
= FCFS, Random, Prioritized

= Delivery options
= Guaranteed, Lossy

s Startup
= Synchronous, Random

= Concurrency options
= Single thread of control
= Separate threads of control

= Single thread per component

= Multiple threads per component
Concurrent invocation of different methods
Concurrent invocation of any method

i Initial Results

= Experimented with several systems
= Toy examples, such as set-counter
= Distributed resource management

= Reduced effort for model generation

= Typical reduction: 80% of the model automatically
generated, although depends on number and size
of components

= E.g., for set-counter 147/184 lines

i Limitations

= Component specification in XML

= Properties specified in LTL

= No support for dynamism

= No support for synchronous start up

= Subset of infrastructure options supported

= Counter examples in terms of lower-level
model

i Current Work

= Component specifications in stylized Java
= More intuitive link to implementations
= Can execute the specifications

= More complete enumeration of
communication alternatives
= Formal model of design space (Z & FSP)

= Support for dynamism
= Add/remove components/registrations

= Support for alternative startup policies

= Retargeted to Spin
= Better support for communication/dynamism

Counter | _ |
Example

Interpreted
Counter
Example Read Generate
—_———»

Component Specification: Old

<conponent nane = "Counter">
<l ocal -var nanme = "counter" type = "-2..5"> 0 </local -var>
<nmet hod nane = “increase">
<st at enent >
<assi gnnent var-nane = "counter"> counter + 1 </assignnent>
</ st at enent >
</ met hod>
<met hod nanme = “decrease">
<st at enent >
<assi gnnent var-nane = "counter"> counter — 1 </assignnment>
</ st at enent >
</ met hod>

</ conponent >

Component Specification: Old

<event name = “EvAdded"/ >
<event nane “EvDel et ed"/ >

<conponent -i nst ance conponent - nane = "Counter"
| nstance-nane = "theCounter"> />
<event - bi ndi ng event - nane = "EvAdded">
<nmet hod- bi ndi ng i nstance-nane = "t heCounter”
nmet hod- nane = “increase"/>

</ event - bi ndi ng>

<event - bi ndi ng event-nane = “EvDel et ed">
<nmet hod- bi ndi ng i nstance-nane = "t heCounter”
nmet hod- nane = “decrease"/ >

</ event - bi ndi ng>

Component Specification: New

cl ass Exanpl e extends PubSub {

cl ass EvAdd extends Event { int elenent; }
cl ass EvAdded extends Event {}

cl ass Set extends Conponent {
bool ean[] el ements = new bool ean[MAX_ELEMENT] ;

void add (EvAdd ev) {
if (elenent[ev.element] == false) {
el ement[ev. el enent] = true;
announce (“Added"); |

}
}
}
Exanple () {
int cid,
| cid = create(“Set"); |
| subscri be(“EvAdd”’, “add”, cid); |
}

i Generated SPIN Model

nmype = {ev_added, ev_renoved, ...};

#def i ne Counter_proc_increase_id O
#defi ne Counter _proc_decrease id 1

inline Counter_proc_increase () {
counter ++;
recei ve_ack! param ei d;

}

inline Counter proc_decrease () {
counter --;
recei ve_ack! param ei d;

}
—> -
Dispatcher
>
event
Control channels
Component

A | v register
[.*.]]
|] subscribe

_N]

control

proctype Counter (chan register, subscribe, control) {

byte counter;

chan announce req = [1] of {ntype, attr};

chan announce_ack = [1] of {int};
chan receive_req = [1] of {int, ntype, attr};
chan receive _ack = [1] of {int};

nmtype event;
attr param

register!ps_join (_pid, announce_req, announce_ack
receive_req, receive_ack);

control ?ps_start;

do

:1 receive_reqg?Counter_proc_increase_id(event, paran
-> Counter_proc_increase();
recei ve_req?Counter_proc_increase_id(event, param
-> Count er_proc_decrease();

od;

regi ster!ps_| eave (_pid, announce_req, announce_ack
receive_req, receive_ack);

Sample Property: Old

Check the “invariant” |S| =C

Consi der at eEnvi r onnment
assert (G (~disp.evtBuffOverflow & ~updat el nvQueue. error));

St oppi ngEnvi r onnment
assert (F G (~announceUpdt));

Count er Cat chesUp
assert (G F (set.setSize = counter.count));

usi ng St oppi ngEnvi ronnent, Consi der at eEnvi r onnent
prove Count er Cat chesUp;

‘_L Sample Property: New

Check the “invariant” |S] =C

i nvariant (quiescent() -> Set.size = Counter.counter);

i Implementation Techniques

s Non-determinism

= Workaround

swtch (randonm(3)) {
case 0: /* do sonething */ break;
case 1. /* do sonething */ break;
case 2: /* do sonething */ break;

)
= Operations for event communication

= Reside In super classes

Cl ass PubSub {
Voi d subscribe (String, String, int) { ... }

}

* In-Progress

= Property specification
= Counter example explanation

s Case studies
=« NASA MDS

i Other Related Work (Posters)

= Architecture-based run time adaptation

= Formal architectural models used to
monitor and repair running systems

= Formal architecture design tools

= Enforcing constraints of a style
= NASA MDS case study
= Ford Motor Company MSE project

The End

i On-going Work

= Better linkage to implementation
= Stylized use of programming language for
specification
= Generates executable system as well as a
checkable model
= Counter example explanation
= Property specification primitives and
templates
= Hide the details of generated model
= Provide many of the common sanity checks
= Move towards push-button tools

i Current Work — (cont)

= New specification capabilities
= Dynamic component creation and binding
= Real-time properties

Examples
= Set-Counter T

= Set (S) has operations insert/delete Set Counter

= Counter (C) has operations inc/dec
= Establish “invariant” |S| = C

= Distributed Simulation (HLA)

= Arbitrary number of simulations publish values of objects that
they simulate

= Run-time infrastructure (RTI) maintains state (e.g.,
ownership of objects), mediates protocols of interaction

= Many invariants (e.g., each object is owned by a single

simulation) RTI %

Silm1 Sim

n

More Examples
(State-based duals)

» Shared-variable triggered systems Sensor/Actuator
= Aka “continuous query” systems Variables

= State changes trigger computations

- Com Com
= Components read/write shared P1 P2

variables, but are otherwise independent

= Real-time periodic tasks

= Tasks placed in periodically-scheduled buckets
= Tasks consume values of certain variables; produce values

of other variables Shared Variables

= Tasks within bucket must complete

before bucket period Task, , Task,, ,

Task, , Task, ,

Task, 3

