
Bogor
An extensible and highly-modular 

model checking framework

http://bogor.projects.cis.ksu.edu
SAnToS Laboratory, Kansas State University, USA

Matt Dwyer
John Hatcliff

Principal Investigators

Support

US Army Research Office (ARO) 
NSF CCR-SEL

Students

Robby



Model Checking-based Analyses

n Rich-class of correctness properties
n Precise semantic reasoning

n Relative to typical static analyses

Pros

Cons
n Scalability
n Mapping software artifact onto model 

checking framework



Checking Behavioral Software Models

n Requirements
n Chan, Atlee, Heitmeyer, Chechik, Heimdahl …

n Architectural
n Garlan, Magee & Kramer, …

n Design
n State-machines, HERMES, Cadena, …

n Implementation
n JPF, Bandera, SLAM, MAGIC, BLAST, …



Experience with Existing Tools

n Significant experience using existing tools
n hand-crafted models 
n as target of translation

n Clever mappings required 
n to express artifact features, e.g., heap data
n for efficiency, e.g., symmetry reductions

n Often times additional state variables were needed
n to express events in state-based formalisms
n to state properties over extent of a reference type
n to implement scheduling policies



Custom Model Checkers
n Modifying a model checker is daunting

n dSpin (Iosif)
n SMV (Chan)

n Building a custom model checker is a 
point-solution
n JPF, SLAM, …

n Tool-kits don’t yield optimized checkers
n NuSMV, Concurrency Factory, “The Kit”, …

Bogor incorporates the advantages of 
each of these approaches



We would like ….

n Rich core input language for modeling dynamic 
and concurrent system

n Extensible input language
n Minimizes syntactic modification when extending
n Minimizes effort for customized semantics

n Highly-capable core checker
n State-of-the-art reduction algorithms

n Customizable checker components
n Eases specialization or adaptation to a particular 

family of software artifacts
n Domain-experts with some knowledge of model 

checking can customize the checker on their own



Rich Input Language

n Built on guarded-assignment language
n Natural to model concurrent system

n Features to support dynamic, concurrent 
software artifacts
n Dynamic creation of threads and objects
n Automatic memory management (ala Java)
n Inheritance, exceptions, (recursive) functions
n Type-safe function pointers



Extensible Input Language
n Allow model checker input language to directly 

support natural domain abstractions
n For example, chan in Promela

n Hides intricate details of how a communication 
channel is implemented

n Only focuses on the behavior of the channel that is 
relevant, e.g., synchronous, rendezvous, etc.

n Fewer details of states that need to be stored, and 
possibly less states that needs to be explored

n Syntax does not need to change, and new 
abstractions can be added on demand



Extensible Input Language —
Resource Contention Example

Process#1

Process#3

Process#2

Process#4

acquire acquire

acquire acquire

release

release

release

release
Resource Pool



Extensible Input Language —
Resource Contention Example

Process#1

Process#3

Process#2

Process#4

acquire acquire

Resource Pool



Extensible Input Language —
Resource Contention Example

Process#1

Process#3

Process#2

Process#4

release release
Resource Pool

How do we represent the resource pool if 
we are checking for example deadlock?

How do we represent the resource pool if 
we are checking for example deadlock?

How do we encode the representation in 
the model?

How do we encode the representation in 
the model?



Extensible Input Language —
Set Extension Example (Syntax)

n Bogor allows new abstract types and abstract 
operations as first-class construct



Extensible Input Language —
Set Extension Example (Semantics)

public class MySet implements INonPrimitiveExtValue {
protected HashSet set = new HashSet();
protected boolean isNonPrimitiveElement;

public void add(IValue v) { set.add(v); }

public byte[][] linearize(..., int bitsPerNPV,
ObjectIntTable npvIdMap) {
Object[] elements = set.toArray();
BitBuffer bb = new BitBuffer();
if (isNonPrimitiveElement) {
int[] elementIds = new int[elements.length];
for (int i = 0; i < elements.length; i++)

elementIds[i] = npvIdMap.get(elements[i]);
Arrays.sort(elementIds);
for (int i = 0; i < elements.length; i++) 

bb.append(elementIds[i], bitsPerNPV);
} else ...
return new byte[][] { bb.toByteArray() };

} ...

n Implementing the set value for the set type

Reuse Java collection to implement setReuse Java collection to implement set

Wrapper for add operationWrapper for add operation

Constructs a bit vector that represents the set
instead of encoding the HashSet instance

Constructs a bit vector that represents the set
instead of encoding the HashSet instance



Extensible Input Language —
Set Extension Example (Semantics)

R G B

Suppose the references to 
resources are represented as 
integers R, G, B

Suppose the references to 
resources are represented as 
integers R, G, B

<R,G,B>

The state of the set consists 
of encodings of the references 
to resources

The state of the set consists 
of encodings of the references 
to resources

<B,G,R>

And ordered!And ordered!



Extensible Input Language —
Observable Extension Example

n Expression/action extensions can:
n be non-deterministic
n have access to all the information in the 

current state and all previous states in the 
DFS stack

n Easy to express predicates/functions over 
dynamic data
n e.g., non-deterministically choose a reachable 

heap instance from a given reference



Extensible Input Language —
Observable Extension Example (Syntax)

n An invariant example using Bogor function 
expressions

n Function expressions can be recursive 

…
…



Extensible Input Language —
Observable Extension Example (Semantics)

public IValue forAll(IExtArguments arg) {
String predFunId = ..
MySet set = (MySet) arg.getArgument(1);
IValue[] els = set.elements();
for (int i = 0; i < els.length; i++) {
IValue val = ee.evaluateApply(predFunId,

new IValue[] {els[i] });
if (isFalse(val)) 
return getBooleanValue(false);

}
return getBooleanValue(true);

}



Highly Capable Core Checker

Bogor implements state-of-the-art reduction 
techniques

n Collapse compression [Holzmann ’97]
n Heap symmetry [Iosif ‘02]
n Thread symmetry [Bosnacki ‘02]
n Partial-order reduction [Dwyer-al ‘03]



Verified

Counter
Example

Lexer

Parser

Type Checking

Semantic
Analyses

IExpEvaluator ITransformer ISearcher

IActionTaker IBacktrackIF IStateMgr

IValueFactory ISchedulingStg IStateFactory

.bir

.config

Customizable Architecture



Assessment

n Dynamic Escape Analysis for POR (150 LOC, 20x)
n Rich-forms of heap quantification
n Dynamic atomicity (5 LOC, 5x)
n Middle-ware model
n Priority Scheduling (200 LOC, 10x)
n Relative-time environment (10x)
n Lazy-time environment (240 LOC, 100x)
n Frame-bounded safety properties
n Quasi-cyclic search (200 LOC, 100x)



Tool Availability (Summer ’03)

http://bogor.projects.cis.ksu.edu


