
1

SSeennssoorr DDaattaa FFuussiioonn ffoorr CCoonntteexxtt--AAwwaarree
CCoommppuuttiinngg UUssiinngg DDeemmppsstteerr--SShhaaffeerr TThheeoorryy

Huadong Wu

CMU-RI-TR-03-52

Submitted in partial fulfillment of the

Requirements for the degree of
Doctor of Philosophy in Robotics

Thesis Committee:
Mel Siegel, Chair
Daniel Siewiorek

Jie Yang
Wolfgang Grimm, Robert Bosch Corporation

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

December 2003

This work is partially supported by Motorola UPR
(University Partnerships in Research) grant

Copyright © 2003 Huadong Wu

2

3

ABSTRACT

Towards having computers understand human users� �context� information, this

dissertation proposes a systematic context-sensing implementation methodology that can

easily combine sensor outputs with subjective judgments. The feasibility of this idea is

demonstrated via a meeting-participant�s focus-of-attention analysis case study with

several simulated sensors using prerecorded experimental data and artificially generated

sensor outputs distributed over a LAN network.

The methodology advocates a top-down approach: (1) For a given application, a

context information structure is defined; all lower-level sensor fusion is done locally. (2)

Using the context information architecture as a guide, a context sensing system with

layered and modularized structure is developed using the Georgia Tech Context Toolkit

system, enhanced with sensor fusion modules, as its building-blocks. (3) Higher-level

context outputs are combined through �sensor fusion mediator� widgets, and the results

populate the context database.

The key contribution of this thesis is introducing the Dempster-Shafer theory of

evidence as a generalizable sensor fusion solution to overcome the typical context-

sensing difficulties, wherein some of the available information items are subjective,

sensor observations� probability (objective chance) distribution is not known accurately,

and the sensor set is dynamic in content and configuration. In the sensor fusion

implementation, this method is further extended in two directions: (1) weight factors are

introduced to adjust each sensor's voting influence, thus providing an �objective� sensor

performance justification; and (2) when the ground truth becomes available, it is used to

dynamically adjust the sensors' voting weights. The effectiveness of the improved

Dempster-Shafer method is demonstrated with both the prerecorded experimental data

and the simulated data.

4

Acknowledgements
I am very grateful to my advisor Dr. Mel Siegel for his help and support. It is really

one of the luckiest things in my whole life that I can pursue my Ph.D. under the best

people I can meet. I really appreciate his kindness towards me as my academic advisor as

well as one of my best friends, I can hardly find enough words to express my gratitude to

him.

I am also indebted to Dr. Wolfgang Grimm, who gave me lots of support and helped

me to go through my hardest time in Carnegie Mellon University. I would also like to

thank the other members of my thesis committee, Dr. Jie Yang and Dr. Daniel Siewiorek,

for their kind help. It would be very difficult to find another person that is as famous and

busy as Dr. Siewiorek, meanwhile is so nice and patient to help me to go through the

details with great care. Finally, my thanks are due to Dr. Yangsheng Xu and Mr. Sevim

Ablay, who gave me a precious opportunity and assisted me to pursue my goal.

5

TABLE OF CONTENTS

Chapter 1. Introduction and Motivation... 13

1.1. Sensor, Data, and Information Fusion ... 13

1.2. Context-Aware Computing, or Context-Aware Human-Computer-Interaction......... 17

1.3. Supporting Context-aware Computing.. 20
1.3.1 Sensing context information... 20
1.3.2 Context-aware computing research .. 22
1.3.3 Georgia Tech Context Toolkit... 24
1.3.4 To fill in the missing part � sensor fusion... 26

1.4. Outline of the Dissertation... 28

Chapter 2. Context and Context-Sensing.. 31

2.1. Context Contents and Presentation.. 31
2.1.1 Context classification ... 31
2.1.2 Context representation.. 38

2.1.2.1 Basic requirements for context representation ... 38
2.1.2.2 Modeling context ... 40
2.1.2.3 Context database implementation .. 43

2.1.3 Managing uncertainty information ... 45

2.2. Context Sensing... 47
2.2.1 Mapping sensory data into context information space 48
2.2.2 Sensor fusion architecture for context sensing... 50
2.2.3 Sensor fusion methods for context-aware computing .. 54

2.2.3.1 Classical inference and Bayesian inference method 55
2.2.3.2 Dempster-Shafer Theory of Evidence method ... 57

6

2.2.3.3 Voting fusion method ... 61
2.2.3.4 Fuzzy logic method .. 62
2.2.3.5 Neural network method.. 63

2.3. Chapter Summary .. 65

Chapter 3. Implementing Context Sensing ... 67

3.1. System Architectural Support .. 67
3.1.1 System architecture style for context-aware computing..................................... 68

3.1.1.1 The blackboard-style system architecture .. 68
3.1.1.2 The infrastructure-style system architecture .. 69
3.1.1.3 The widget-style system architecture ... 70

3.1.2 Improving the Context Toolkit system ... 71
3.1.3 Benefits from the system architecture improvement.. 74

3.2. Sensor Fusion with Dempster-Shafer Theory.. 76
3.2.1 Evidence combination in Dempster-Shafer frame.. 77

3.2.1.1 Challenge to the Dempster-Shafer evidence combination rule 77
3.2.1.2 Yager�s and Inagaki�s modification to evidence combination rule............. 79
3.2.1.3 Practical solution to resolve evidence conflicts ... 80

3.2.2 Weighting means non-democratic voting ... 81
3.2.3 Dynamic weighting means constant calibrating... 82

Chapter 4. Concept-Proving Experiments and Results 85

4.1. Application scenario and the sensory data... 85

4.2. Building the context information architecture ... 87

4.3. Implementing context-sensing architecture... 88

4.4. Sensor fusion effectiveness comparison.. 93

4.5. Conclusions from the experiments .. 96
4.5.1 Experiments testing methodology and system architecture 96
4.5.2 Experiments testing sensor fusion algorithm effectiveness................................ 97

7

Chapter 5. Adaptation of Dempster-Shafer Sensor Fusion Method............... 99

5.1. Methodology and theoretical explanation ... 99
5.1.1 Objective and subjective Bayesian statistics .. 99
5.1.2 Different explanations of the Dempster-Shafer theory..................................... 101
5.1.3 Where is Dempster-Shafer method more suitable? .. 104

5.2. Experiments with artificially generated data ... 107
5.2.1 Design of simulated experiments ... 107
5.2.2 Simulation data and data processing ...110
5.2.3 Experiments and their result analysis ..112

5.2.3.1 Case I: sensors are approximately of the same precision
(°=== 20321 σσσ) ...112

5.2.3.2 Case II: sensors are conspicuously of different precision (°= 51σ ,
°= 102σ , and °= 203σ)..115

Chapter 6. Conclusion and Future Work.. 119

6.1. Methodology and Implementation Summary ...119
6.1.1 Context sensing ...119
6.1.2 Context sensing implementation .. 121

6.2. Dissertation contributions.. 123

6.3. Future research suggestions... 127

Appendix .. 129

Appendix A System Software Development .. 129
A.1. Tools and Environments Setup .. 129
A.2. Software architecture background ... 130
A.2.1. Middleware approach to build context-aware computing systems................. 131
A.2.2. System architecture for network-based computing .. 131
A.2.3. Event-based/agent architecture versus context-aware computing 134
A.3. Software package development ... 135

8

A.4. Dempster-Shafer algorithm implementation ... 137

Appendix B Concept-Proving Demonstration Experiments... 141
B.1. Specifying context information architecture.. 142
B.2. Implementing and demonstrating the focus-of-attention fusion case-study
application ... 154

Appendix C Sensor fusion API description .. 159
C.1. Class BeliefInterval ... 159
C.2. Class DSfusing... 160
C.2.1. private interface I_Comparator... 168
C.2.2. Class SortableVector... 168
C.2.3. Class Comparator implements I_Comparator... 169
C.3. Class Evidence... 170
C.4. Class Hypothesis.. 172
C.5. Class HypothesisSet... 174

References .. 181

9

LIST OF FIGURES

Figure 1. Georgia Tech Context Toolkit component and context architecture 24

Figure 2. Towards context understanding: this dissertation provides sensor fusion
support ... 28

Figure 3. The user-centered scheme to group context information 34

Figure 4. Context model: stage, users, objects, and events .. 42

Figure 5. The two basic semantic objects in a context information model....................... 42

Figure 6. Transfer context information model into relational database............................ 44

Figure 7. Sensor fusion process model: (a) direct data fusion, (b) feature level
fusion, and (c) declaration level fusion [53].. 52

Figure 8. Confidence interval is between �belief� and �plausibility� 59

Figure 9. System architecture to support sensor fusion in context-aware computing 73

Figure 10. Information layered structure and sensor fusion support 75

Figure 11. Meeting-participant�s focus-of-attention analysis experimental settings
seen from the central omni-camera ... 86

Figure 12. Concept-demonstration system architecture implementation using the
focus-of-attention scenario as central application ... 89

Figure 13. System architecture concept-proving demonstration experiment screen
shot, using prerecorded meeting-participant's focus-of-attention data, 91

Figure 14. Sensor fusion effects in terms of correcting visual sensor
misclassification .. 96

Figure 15. Simulation of a focus-of-attention estimation scenario................................. 108

Figure 16. Sensor fusion effects in simulation with sensors being of the same
precision but having different drift effects ...115

Figure 17. Sensor fusion effects in simulation with sensors being of significant
different precision with different drift effects...117

10

Figure 18. Sensor fusion techniques applicable to context-sensing 121

Figure 19. Original Context Toolkit System Software Package 135

Figure 20. Context sensing software package structure based on the Context
Toolkit system ... 136

Figure 21. Dempster-Shafer Theory of Evidence programming implementation 138

11

LIST OF TABLES

Table 1. A human user's physical environmental context description 35

Table 2. A human user's own activity context description.. 36

Table 3. A human user's state context description .. 36

Table 4. Context uncertainty management user-identification example........................... 46

Table 5. Context sensing achievable with commonly used sensors.................................. 49

Table 6. Property highlight of commonly implemented sensor fusion architectural
patterns .. 54

Table 7. Sensor fusion method comparison with prerecorded focus-of-attention
experimental data .. 94

Table 8. Situations where Bayesian or Dempster-Shafer method is more suitable
for sensor fusion .. 105

Table 9. Comparison of sensor fusion algorithm effectiveness using simulated
sensory data (sensor noise °=== 20321 σσσ) ...113

Table 10. Comparison of sensor fusion algorithm effectiveness using simulated
sensory data (sensor noise: °= 51σ , °= 102σ , and °= 203σ)116

Table 11. Comparison of sensor fusion options for context-aware computing............... 124

Table 12. Semantic object specifications for context information modeling.................. 143

Table 13. Context database table entries description and constraints............................. 148

13

Chapter 1.
Introduction and Motivation

1.1. Sensor, Data, and Information Fusion

Sensing and gathering environmental information is the first step and one of the most

fundamental tasks in building intelligent Human-Computer-Interaction (HCI) systems.

With the �intelligence� expectation increasing, using multiple sensors is the only way to

obtain the required breadth of information, and fusing the outputs from multiple sensors

is often the only way to obtain the required depth of information when a single sensing

modality is inadequate [157]. However, different sensors may use different physical

principles, cover different information space, generate data in different formats at

different updating rates, and the sensor-generated information may have different

resolution, accuracy, and reliability properties. Thus, how to properly fuse the sensed

information pieces from various sources is the key to produce the required information.

This is what sensor fusion stands for.

Techniques for multi-sensor data fusion are drawn from a diverse set of more

traditional disciplines including digital signal processing, statistical estimation, control

theory, artificial intelligence, and classic numerical methods [48]. The characteristics of

these commonly used techniques will be examined in Section 2.2.3 in order to find a

generalizable sensor fusion solution for a wide range of context-aware computing

applications. The following is only a brief discussion about sensor fusion related

terminology.

14

Sensor fusion technology was originally developed in the domain of military

applications research and robotics ([20], [53], [54], [60]). Since it is an interdisciplinary

technology independently growing out of various applications research, its terminology

has not reached a universal agreement yet. Generally speaking, the terms �sensor fusion�,

�sensor data fusion�, �multi-sensor data fusion�, �data fusion�, and �information fusion�

have been used in various publications without much discrimination ([47], [52], [61]).

The terminology confusion is well illustrated by a figure in Chapter 2 of [53], which

shows a Venn Diagram that purports to represent the relationship among these related

terms.

It seems that popular usage has shifted from �sensor fusion� to �data fusion�, and it is

now moving towards �information fusion1� ([51], [59], http://www.inforfusion.org for

International Society of Information Fusion). Following robotics convention, however,

the term �sensor fusion� is used in this dissertation. In most cases, all the other terms can

also be interchangeably applied without causing misunderstanding.

As the lack of unifying terminology across application-specific boundaries had been a

barrier historically even within U.S. military applications [48], the U.S. Department of

Defense (DoD) Joint Directors of Laboratories (JDL) Data Fusion Working Group was

established in 1986 to improve communications among military researchers and system

developers. The Group worked out a general data fusion model and a Data Fusion

Lexicon ([53] Section 1.6).

The initial JDL Data Fusion Lexicon defined data fusion as ([53] Chapter 2): �A

process dealing with the association, correlation, and combination of data and

information from single and multiple sources to achieve refined position and identity

estimates, and complete and timely assessments of situations and threats, and their

significance. The process is characterized by continuous refinements of its estimates and

1 �Arguments about whether data fusion or some other label best describes this very broad concept

are pointless. Some people have adopted terms such as information integration in an attempt to
generalize earlier, narrower definition of data fusion �� ([53] Section 2.2).

15

assessments, and the evaluation of the need for additional sources, or modification of the

process itself, to achieve improved results.�

Despite the fact that the concept and implication of this definition can be generalized

to encompass a very broad range of application situations, it is also obvious that it is

greatly influenced by the patterns of thinking in the military application domain.

Revisions of the definition from U.S. DoD and many others choose slightly different

words, but basically they all refer to the same theme ([23], [52]).

Some other definitions, however, are more inclusive. For example, in Mahler�s

definition: �data fusion or information fusion is the problem of refining and pooling

multisenor, multitarget data so as to: 1) obtain improved estimates of target numbers,

identities, and locations, 2) intelligently allocate sensors, 3) infer tactical situations, and 4)

determine proper responses.� [56]

Trying to include more generalized situations, Steinberg et al. [61] suggest a formal

definition as, �data fusion is the process of combining data or information to estimate or

predict entity states.�

The work involved in developing this dissertation is in favor of this more inclusive

definition class. A formal sensor fusion definition would be: the information processing

that manages sensors and collects sensory or other relevant data from multiple sources or

from a single source over a period of time and produces (and manages its distribution of)

knowledge that is otherwise not obtainable, or that is more accurate or more reliable than

the individual origins.

The general data fusion model proposed by JDL Data Fusion Group initially included

four differentiating process levels. They are: [Level 1] Object Assessment: estimation and

prediction of entity states; [Level 2] Situation Assessment: estimation and prediction of

relations among entities; [Level 3] Impact Assessment (Threats): estimation and

prediction of effects on situations of planned or estimated actions by the participants; and

[Level 4] Process Refinement: adaptive data acquisition and processing to support

mission objectives ([52], [61], [62]).

16

In 1999, the JDL revised the model to incorporate an additional level, [Level 0] Sub-

Object Data Assessment: estimation and prediction of signal- or object-observable states,

in order to describe the preprocessing at signal level in further detail.

This data fusion model has gained great popularity. However, there also exists the

same concern that this model definition is heavily influenced by military operations

thinking patterns. As previous described, Steinberg et al. tried to broaden its implication

using more general terms [61]. Meanwhile Blasch et al. added a 5th level, [Level 5] User

Refinement: adaptive determination of who queries information and who has access to

information, to include knowledge management. [62].

This dissertation incorporates this 5-level data fusion model. The ultimate goal of

sensor data fusion is to collect and process lower-level signals to extract higher-level

knowledge that reveals the �best truth� � in terms of fulfilling the system�s mission or

providing functional utilities for the targeted applications.

Put it in a simple way, for a specified application, the purpose of sensor fusion is to

sense the environmental information of its users or the users� own activity information.

From deploying suitable sensors to detect the interested phenomena or parameters,

extracting necessary features, combining these features (information pieces), up to

dealing with the information storage and distribution, this research studies try to

recognize the similarities among different sensor fusion realizations across different

situations at different abstraction levels. It aims to form a generalizable solution for

building a system architecture that can support fulfilling the tasks of the most popular

situations of context-aware human-computer-interaction applications.

The thesis title �Sensor Fusion for Context-Aware Computing� emphasizes that the

research focus is on the sensor fusion methodology and its corresponding architectural

support, rather than on the context-aware applications themselves.

17

1.2. Context-Aware Computing, or Context-Aware
Human-Computer-Interaction

In terms of providing services to human users, an ordinary service person is much

smarter than the smartest computer-controlled machines of today, because the former can

react appropriately to the circumstances of the people being served, that is, a human

secretary or waiter extensively and implicitly uses �situational� or �context� information.

The ultimate goal of context-aware computing research is to have computer-controlled

systems behave like smart human secretaries, waiters, or other service personnel.

The idea of �context-aware computing� is to have computers understand the real

world so that human-computer interactions can happen at a much higher abstraction level

[84], hence to make the interactions much more pleasant or transparent to human users.

The following are some imagined application scenarios that can illustrate what

context-aware computing implies and how a �context-aware computing� technology

enabled system can enhance service quality or improve human users� personal

productivity.

o Example 1: Suppose the user of a context-aware computing system is new to a

place (a city, a mall, a tradeshow etc.), and would like to have the system

collect the relevant information and give him/her a tour. A good context-aware

computing technology enabled system should somehow be able to know its

user�s available time and his/her interests and preferences. It would tentatively

plan a tour for the user, get his/her feedback, and then guide him/her point-to-

point through the visiting. During the tour, the system should be able to sense

the user�s emotional states, to guide his/her focus of attention, and to respond to

the state changes. According to the user�s emotional status change, it would

consequently adjust the content description details, adaptively include or omit

some contents, and control the content delivery pace � in a manner that a smart

human tour guide does naturally.

18

o Example 2: Today�s cellular phone with pager function now has the functions of

connecting phone calls and delivering emails. Context-aware computing

research is trying to make it smarter ([50], [85]). A context-aware computing

enabled personal information management system should further know what its

user is doing and adjust its own behavior accordingly. Some examples of good

behaviors are: only the time-sensitive e-mails should be delivered to the cellular

phone set; the text-voice function should be automatically triggered to read out

the email contents whenever it is appropriate; it should be able to sort out

priority of the calls and use appropriate ringing methods, etc.

o Example 3: A context-aware computing enabled home service system should be

able to detect the activities of its occupants: the room temperature should be

adjusted not only based on the time of a day but also based on the occupants�

current activities and preferences. Some other potentially additional functions

are: it can tell whether young children or senior adults are doing well, it can

notice and remind the occupants regarding important evens, and it may

recognize and remember where things have been misplaced, etc.

The term �context-aware� was first introduced by Schilit et al ([2], [3]) in 1994 to

address the ubiquitous computing mode where a mobile user�s applications can discover

and react to changes in the environment they are situated. The three important aspects of

context that he identified are �where you are�, �who you are with�, and �what resources

are nearby�.

While the basic idea of context-aware computing may be easily understood using

some examples like the previously described ones, Dey and Abowd [1] tried to formally

define it as: �a system is context-aware if it uses2 context to provide relevant information

and/or services to the user, where relevancy depends on the user�s task.� They further

suggested formally classifying context-aware computing into three categories: (1)

2 We might suggest �� if it senses context �� because sensing context is more to the point the

characterizes such situation.

19

presentation of information and services to a user; (2) automatic execution of services for

a user; and (3) tagging of context to information for later retrieval.

Of Dey and Abowd�s three categories of context-aware computing applications, it is

obvious that they all deal with serving human users. The third category is slightly

different from the first two in that the context information is used as a means to aid

human memory [10]. Nevertheless, they are all for human-computer interactions.

Schmidt even described using context as one of the most basic benefits that enables the

change from explicit human-computer interaction mode to implicit human-computer

interaction mode [66]. Hence, perhaps the better term to describe this concept would be

context-aware human-computer interaction, or context-aware HCI. However, since the

terminology �context-aware computing� is well established, it will be used throughout

this dissertation.

Roughly speaking, the three terms �context-aware computing�, �ubiquitous

computing�, and �pervasive computing� have been interchangeably used in the computer

science research domain without much discrimination. The term �pervasive computing�

is slightly more popular among the many researchers who often cite Mark Weiser�s paper

�The Computer of 21 Century� [81] as the seminal document ([43], [76], [77], [78]) that

triggered the current global interest in developing the concept. Many other researchers,

however, regard context-aware as a subset of pervasive computing, or, only the necessary

means to realize the pervasive computing concept ([70], [73]).

This dissertation builds on the Context Toolkit system ([22], described in Section

1.3.3), so it follows the terminology used there. Thus the term �context-aware

computing� is used interchangeably with �pervasive computing� and �ubiquitous

computing� concept.

20

1.3. Supporting Context-aware Computing

1.3.1 Sensing context information

For a context-aware computing system to work, obviously it must be able to sense

and manage context information. However, the term �context� can imply an extremely

broad range of concepts. Almost any available information at the time of interaction can

be regarded as a piece of context potentially relevant to the human-computer interaction.

To give a formal definition, Dey et al. [1] did a survey of existing research work

regarded as context-aware computing and suggested: �Context is any information that

can be used to characterize the situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction between a user and an application,

including the user and application themselves.�

The following list is just an example of some commonly considered information

contents based on Korkea-aho�s [5] enumeration of context:

• Identity of the user

• Spatial information: locations, orientation, speed, acceleration, object

relationship in physical space, etc.

• Temporal information: time of the day, date, season of the year, etc.

• Environmental information: temperature, humidity, air quality, light, noise

pattern and level, etc.

• Social situation: whom the user is with, the nearby people, family relationships,

people that are accessible, etc.

• Nearby Resources: accessible devices, hosts, other facilities, etc.

• Resource usability: battery capacity, display resolution, network connectivity,

communication bandwidth and cost, etc.

• Physiological measurements: blood pressure, heart rate, respiration rate, muscle

activities, tone of voice, etc.

21

• User�s physical activity: talking, reading, walking, running, driving a car, etc.

• User�s emotional status: preferences, mood, focus of attention, etc.

• Schedules and agendas, conventional rules, policies, etc.

Since context is such a broad concept and the ultimate goal of context-aware

computing is to provide a ubiquitous computation model to ordinary human users� daily

usage [42], sensing context is very different from traditional sensing and sensor fusion

tasks in the following aspects:

o The goal is to provide computational services to human users anywhere at

anytime. Thus context-sensing needs to be implemented in mobile

environments using whatever sensors that are available, i.e., the sensor set is

highly dynamic;

o Context-aware computing is for human computer interactions, therefore the

context-sensing capabilities need to be commensurate with human perception

capabilities;

o The context information is for context-aware computing applications ―

running programs in the computers ― as well as for human users� reference

directly. The humans often prefer a descriptive semantic format over the

numerical parameter of most sensors� outputs; and

o For the system to be used for ordinary users� daily life, the sensors being used

cannot be very expensive.

In addition, compared with traditional desktop computing applications, context-aware

computing is a new computation mode that is much more complicated ([70], [76], [77],

[78]). For such a system to function correctly, it needs system architectural support,

which is much different from that of the traditional computer systems ([66], [79]).

22

1.3.2 Context-aware computing research

The current context-aware computing research and development is still at its infant

stage [76]: typically, in most published research projects, only one or very few pieces of

context information are sensed and used.

The most successfully used contextual information pieces thus far are human user�s

identity and location information [148]. Among those early successful location-aware

computing research projects, some commonly referenced are the Active Badge (1992-

1998) of Olivetti Research Ltd. (now AT&T Labs, Cambridge, U.K.) ([6], [88]) the

Xerox�s ParcTAB (1992-1993) [7], the Georgia Institute of Technology�s CyberGuide

(1995-1996) [8], and the University of Kent at Canterbury�s Fieldwork or Stick-e (1996-

1998) ([9], [10]).

In early ― and in many recent ― �Active Map� or �Tour Guide� application, the

user�s current location is the only context information being used: the vicinity map is

updated or the nearby point-of-interests are displayed blindly ― meaning that the system

does not know its user�s actual focus of attention, preference, intention or interest at that

time ([90], [91], [92], [94]).

More advanced context-aware computing research integrates more context

information. Examples include Microsoft�s EasyLiving, Georgia Institute of Technology�s

Aware Home, and Carnegie Mellon�s Aura project.

The Microsoft EasyLiving project (http://research.microsoft.com/easyliving/) aims at

developing prototype architecture and the necessary technologies for intelligent office

environments, where a group of dynamically collected smart devices can automatically

collaborate to provide human users a convenient interface to personalized information

and services. By the end of year 2001, the EasyLiving system could handle a single room

with about a dozen dynamically available devices, and one to three users can using the

facility simultaneously ([11], [12], [80]).

23

The Aware Home Research Initiative (http://www.cc.gatech.edu/fce/ahri/) in the

Georgia Institute of Technology creates a living laboratory for research in ubiquitous

computing for daily activities. The application target is to provide services to home life of

a typical small family or a couple. Many sub research projects have been conducted since

then (http://www.cc.gatech.edu/fce/ahri/projects/index.html). Generally speaking, these

ongoing projects and experiments are still case-studies with carefully controlled

environmental conditions ([13], [27], [86]). The initial goal of having hundreds of sensors

ubiquitous deployed has apparently been cut back to a few dozens at most, indicating the

practical difficulty of implementing this sort of advanced applications.

Carnegie Mellon�s Aura Consortium consists of a series of ubiquitous computing

research projects in Human-Computer-Interaction, wearable computers, intelligent

networking, and software composition etc. (http://www.cs.cmu.edu/~aura/). Emphasizing

minimizing distractions to users� attention, the research goal is to provide each user with

an invisible �halo� of computing and information services that persist regardless of

location so that the users can interact with their computing environments in terms of

high-level tasks (http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/aura/services/www/).

The Aura deployment has focused on two main areas. One is a set of contextual

information services, which provide information about entities of interest such as devices,

people, physical spaces, and networks. The other is to develop applications that exploit

the Aura infrastructure, such as predicting users� next activities and preparing relevant

equipment for the next task ([43], [107]).

Towards integrating more context information pieces and more complex context, one

important step is to modularize (and eventually standardize) the system building blocks

or components. Many context-ware computing research projects address or include this

topic in course of providing system architecture support ([44], [67], [71], [73], [79]). The

Context Toolkit system (http://www.cc.gatech.edu/fce/contexttoolkit/) developed in the

Georgia Institute of Technology GVU (Graphics, Visualization & Usability) Center is

regarded quite successful in supporting modularizing system components. It effectively

separates concerns of context from its usage [22]. This dissertation seeks to expand the

24

Context Toolkit system with context-sensing and context information management

modules.

1.3.3 Georgia Tech Context Toolkit

It is now a common practice for applications to use standard I/O device driver

interfaces and GUI functions, though it took many years to achieve this standardization.

Based on this observation, Dey et al. ([17], [21], [22]) developed the Context Toolkit

system to facilitate building context-aware applications with standard components. As

illustrated in Figure 1 from [16], the Context Toolkit consists of three basic building

blocks: context widgets, context aggregators and context interpreters.

Context
Widget

sensor

Context
Widget

sensor

Aggregator
InterpreterInterpreter

Application Application

Figure 1. Georgia Tech Context Toolkit component and context architecture

Figure 1 also shows the relationship between sample context components: arrows

indicate data flow. The context components are intended to be persistent: instantiated

independently of each other in separate threads or on separate computing devices, they

are executed all the time.

25

A Context Widget is a software wrapper or agent of a sensor. It provides a piece of

context through a uniform interface to components or applications that use the context.

Using Widgets hides the details of the under-lying context-sensing mechanism(s), and

allows the system to treat implicit and explicit input in the same manner. Widgets

maintain a persistent record of their sensed context, to be polled or subscribed by context-

consuming components in the system.

A Context Interpreter is a software agent for abstracting or interpreting context. For

example, a Context Interpreter may transfer a location context in form of latitude and

longitude to the form of a street name. A more complex interpreter may take context from

multiple Widgets in a conference room to infer that a meeting is taking place.

A Context Aggregator is a software agent that collects context from multiple sources,

usually for comprehensive information about a particular entity (person, place, or object).

Aggregation facilitates the access of distributed context about a single entity.

The Context Toolkit promotes hiding the details of the lower-level sensors�

implementation from context extraction, thus allowing the underlying sensors to be

replaced or substituted without affecting the rest of the system. However, since the

�context� usage is still far away from having any established conventions ― in contrast

to the highly-evolved computer GUI and keyboard/mouse usage ― to actually insulate

sensors� implementation from context sensing is now very difficult when many sensors

are deployed3.

3 Abowd et al say: �After a couple of years� experience using Context Toolkit, we still contend that

the basic separation of concerns and programming abstractions that it espouses are appropriate
for many situations of context-aware programming, and this is evidenced by a number of internal
and external applications developed using it. However, in practice, we did not see the
implementation of the Context Toolkit encourage programmers to design context-aware
applications that respected the abstractions and separation of concerns.� [27]

26

1.3.4 To fill in the missing part � sensor fusion

Dey, the Context Toolkit author, listed seven benefits (or seven requirements that

have to be fulfilled [22]) to use the toolkit. They are: (1) applications can specify what

context they require to the system; (2) separation of concerns and context handling; (3)

context interpretations convert single or multiple pieces of context into higher-lever

information; (4) transparent distributed communications; (5) constant availability of

context acquisition; (6) context widgets and aggregators automatically store context they

acquired; (7) the Discovers support resource discovery.

From the context-sensing point of view, because sensor fusion support was not

among its original design goals, the Context Toolkit system also has the following

limitations:

o No intrinsic support for context uncertainty indication: by default, any context

information was regarded as correct and unambiguous

o No direct sensor fusion support: an application needs to query or subscribe to

all available sensor widgets that can provide the context contents of interest,

and it is up to the application itself to decide whether there is any overlap or

conflict between any two pieces of the sensed context

o Difficult to scale up: when the sensor pool is large, it is not easy for an

application to track all sensors and to make all possible context-providers

collaborate.

A context-aware computing application system typically has many sensors in mobile

status: old sensors may disappear and new sensors may appear at any time. For sensors to

work in such a dynamical configuration, sensor fusion support is necessary. The direct

motivation of this dissertation is to provide the Context Toolkit system with the missing

part ― the sensor fusion support component.

27

The sensor fusion component obviously needs to provide the sensor fusion

functionality. It also needs to perform related administrative functions, such as tracking

the currently available sensors and their specifications, collecting relevant data,

integrating and maintaining the system information flow, etc. The developed

infrastructure has a long-term goal to provide a generalizable sensor fusion solution with

regard to two goals. First, the system configuration and architecture building blocks can

be easily reused for different context-sensing tasks in the same context-aware application

system or in different context-aware application systems. Second, the developed sensor

fusion algorithm is applicable to as many context-sensing tasks as possible, and its

implementation is modularized for reuse.

To achieve this goal, a systematic sensor fusion methodology is proposed and

demonstrated. This top-down approach suggests a two-step process: the first step is to

define a context information structure for a given context-aware application; using it as a

guideline, the second step is to design the information flow inside the sensor fusion

architecture.

Dempster-Shafer evidence theory is chosen as the first core module to implement the

sensor fusion algorithm. This approach is shown to provide a sensor fusion performance

advantage over previous approaches, e.g., Bayesian Inference approach, because it can

better imitate human uncertainty-handling and reasoning process.

Compared to the original Context-Toolkit, the two-step with Dempster-Shafer theory

implementation approach further separates the concerns regarding the context-sensing

process from the usage of the sensed context. This work demonstrates the thesis that

synergistic interaction between sensor fusion and context information facilitates the

sensor fusion processes, which in turn provide more context information with higher

accuracy.

28

1.4. Outline of the Dissertation

Figure 2 illustrates the key features of this dissertation. Sensor fusion in traditional

context-aware computing systems was done in an ad hoc manner, so context-use was

highly coupled with the context-sensing sensors; the Context Toolkit system promotes

separating them by wrapping the sensors with widgets. This dissertation further

standardizes the context-sensing process by specifying a context information architecture

and by adding sensor fusion supporting modules. It is intended that this approach will

advance context-aware systems toward imitating human sensing and understanding

context in ways consistent with human intuition.

humans
understand

context
naturally &
effortlessly

Identification, representation, and understanding of context
Adapt behavior to context

Sensing hardware: cameras, microphones, etc.
Environment situation: people in the meeting room, objects around a moving car, etc.

traditional
system

Context
Toolkit
system

Toolkit
+ Sensor
Fusion

Towards Context Understanding

sensor
sensor

sensor sensor

Figure 2. Towards context understanding: this dissertation provides sensor
fusion support

29

This dissertation is organized as follows:

Chapter 1 introduces the background, goals, and terminology of context-aware

computing and the new sensor fusion challenges. It outlines the goal of this dissertation:

to provide a generalizable sensor fusion framework based on the Context Toolkit system.

Chapter 2 first discusses context information classification and representation issues,

presenting preliminary research results in context classification; then regarding context

sensing, typical sensor fusion methods are analyzed in seeking for a most generalizable

method. The context classification, representation, and the sensing technology discussion

ultimately leads to proposing a top-down methodology pursued throughout this

dissertation.

Chapter 3 addresses realization of the top-down methodology from two perspectives:

software architecture development and Dempster-Shafer algorithm implementation. The

system architecture discussion analyzes the architectural style characteristics of typical

context-aware computing systems, and justifies why the proposed system is an

improvement over existing systems. The Dempster-Shafer algorithm research describes

the existing typical conflict-handling proposals and introduces a weighting scheme that

mitigates conflicts.

Chapter 4 describes the experiments and results of a concept demonstration system. It

illustrates how the proposed top-down methodology was used in a meeting-participant�s

focus-of-attention analysis case study. The outcome demonstrates the concept feasibility,

and quantitative sensor fusion results compare the effectiveness of different sensor fusion

algorithms.

Chapter 5 further studies the adaptation of the Dempster-Shafer sensor fusion method

theoretically and numerically. The discussion of different interpretations of Dempster-

Shafer formalism helps to provide a deeper insight into the Dempster-Shafer theory, and

based on that, it explains in what situations the Dempster-Shafer method would be more

suitable than the most commonly used classical Bayesian inference framework. Using

30

artificially generated sensory simulation data, the numerical results compare how

different sensor fusion algorithms perform.

Chapter 6 summarizes the dissertation results in terms of system architecture

improvement and in terms of general sensor fusion advancement in context-aware

computing. The dissertation contributions are elucidated in two areas: (1) the system

development work adds a sensor fusion module to the Context Toolkit system, and this

promotes further separating concerns of context information usage from context-sensing

implementation; (2) introducing Dempster-Shafer Evidence Theory into context-aware

computing research area solves otherwise very difficult problems, and extending the

Dempster-Shafer method practically enhances sensor fusion performance. Finally further

research suggestions are given.

The Appendix mainly serves as the technical report documentation for the Motorola

University Partnership in Research program, which in part supported this work. It

comprises three parts. After an introduction of software architectural support issues for

context-aware computing, the first part describes the development process of the system

software package. Using the focus-of-attention case study as an example, the second part

illustrates how to build a context information database and how to use the software

package that was developed. The third part is the Dempster-Shafer sensor fusion module

API description manual; this software module is relatively independent, and can be used

in other applications with the help of this manual.

31

Chapter 2.
Context and Context-Sensing

Sensing context for context-aware computing faces a two-fold problem: to represent

context properly, and to map sensor outputs into this context representation. To address

this two-fold problem, context taxonomy, representation, and its uncertainty management

issues are addressed in the first part of this chapter. The second part of the chapter

addresses development of a generalizable sensor fusion method.

2.1. Context Contents and Presentation

2.1.1 Context classification

As described in subsection 1.3.1, the trend of context-aware computing development

is to integrate more context information. To provide a reference for better managing the

context elements, a taxonomy of context information needs to be developed. At the

beginning stage such a taxonomy reference can help to identify the most cost-effective

context sensing technology for implementation, in the long run it will help to properly

choose a course to scale the system up (integrating more context information) towards

developing a human-like context-aware system.

There is not much research published on classification of general context information.

The reason is perhaps that, at the current development stage, even the-state-of-the-art

context-aware computing research does not seriously think of a general context model

[109].

32

The first attempt towards a generalizable context classification is Schmidt et al�s

scheme [29], which suggests organizing context into two general categories ― �human

factors� and �physical environment�, with three subcategories each. The scheme suggests

defining �history� as an additional dimension of context information, orthogonal to the

�human factors� and the �physical environment� categories.

The human factors� category is organized into three subcategories: (1) information on

the users (e.g., instance knowledge of habits, mental state, or physiological characteristics,

etc.); (2) information on their social environment (e.g., proximity of other users, their

social relationship, collaborative tasks, etc.); and (3) information on their tasks (e.g.,

goal-directed activities, higher-level abstraction about general goals of the users, etc.).

The physical environment category also has three subcategories. They are: (1)

location information (absolute location, e.g., GPS-coordinates; or relative location, e.g.,

inside a car, etc.); (2) infrastructure information (e.g., surrounding computing and

communication equipment, etc.); and (3) physical conditions information (e.g., level of

noise, brightness, vibration, outside temperature, room lighting, etc.).

Not directly addressing context classification, but attacking a related problem from an

implementation perspective, Dey et al [1] suggested categorizing general contexts into a

two-tier system. The primary tier has four pieces of information (�location�, �identity�,

�time�, and �activity�) to characterize the situation of a particular entity. The secondary

tier is considered as contexts to be indexed by the primary tier contexts.

If a candidate list of all feasible context-sensing technologies and their usage

situations is required to find and organize �killer� applications for implementation, or if a

reference is required to help find and organize context-sensing technology development

directions to pursue, neither Schmidt�s nor Dey�s classification can help very much. A

more detailed classification scheme is needed.

Intuitively, a systematic way to classify a user�s context information would be to

explore its contents in physical and temporal dimensions, and to attempt classification in

terms of intention, mood, etc. The ultimate organizing scheme, well beyond the practical

33

scope of this dissertation, might be something like the one described by Takeo Kanade in

CMU Robotics Seminar of November 1, 2002. Kanade suggested a model to describe

human functions and behaviors within the computer�s virtual world. His model comprises

three classes of functions: physio-anatomical, motion-mechanical, and psycho-cognitive.

The physio-anatomical sub-model sees the human body as a living entity that regulates

and controls various parts, organs and circulatory systems. It describes the shapes,

material properties, physiological parameters, and their relationships to internal and

external stimulations. The motion-mechanical sub-model sees the human as a machine

that can walk and run, move and manipulate objects. It concerns kinematic, dynamic, and

behavioral analysis of human motions. Finally, the psycho-cognitive sub-model deals

with human�s psychological and cognitive behaviors as they interact with events, other

people, and environments.

The true difficulty in context classification is not how to define some orthogonal

dimensions that can categorize the context contents, but rather its origin is in the nature of

the far-reaching implications of context information itself. For example, at different

abstraction levels, a user�s activity context description can be �fingers tapping the

keyboard�, �typing on a computer keyboard�, �typing a report�, �preparing a report for a

task�, �working�, etc. The number of ways to describe an event or object is unlimited,

and there is not a standard or even a guideline regarding granularity of context

information.

Because classification of general context information is not feasible at the current

research stage of context-aware computing, a pragmatic approach is adopted. The

adopted context classification scheme is a user-centered approach that groups context into

three categories: (1) the physical environment around the user; (2) the user�s own activity;

and (3) the user�s physiological states. The relationship of the three context categories is

illustrated in Figure 3, and the context elements are listed in Table 1, Table 2, and Table 3.

As discussed in Section 1.2, context-aware computing is for human-computer

interaction purposes, so using the user-centered scheme to classify context is a natural

evolution in context information management. Notice that because the state-of-the-art

34

context-understanding level varies in different aspects of human user context, the

boundaries among the three context classification tables may not be crisply clear.

However, the three classification tables per se should be valuable for providing a

reference to context-aware computing application developers, because they include all

the context information elements that have be used or even mentioned in all the literature

the author have found.

Figure 3. The user-centered scheme to group context information

Referring to Table 1, environmental context description includes the following

aspects of information:

• Location related information in terms of large area, absolute physical position, or

geographic and climate implication etc.; when it changes, it means the user is

traveling.

• Proximity related information in terms of small area, which includes where the

user is in at the current time, what the environment means to humans, and what

facilities and devices he/she can reach and possibly use; when the proximity is

changing, it means that the user is walking or running away from one place to

another.

User�s own activity

User�s
physiological

state

User�s Physical environment

Content of Table 3

Content of Table 2

Content of Table 1

35

• Time related information which can be either in the absolute sense such as time

of the day (it implies darkness of the sky, etc.), season in a year (it implies

feelings humans would have in out-door activities, etc.); or in the sense of the

expected activities (including other people�s activities) such as time for work, for

lunch, for a vacation etc.

Table 1. A human user's physical environmental context description

perspectives contents transition extension

location
(absolute)

community, street, city, geographic
information, (altitude etc); weather
(cloudiness, rain, snow, temperature,
humidity, barometer pressure, forecast)

Location-
change:
traveling,
speed,
heading,

Proximity
(relative)

orientation, building (name, structure,
facilities, etc.), room, car, devices
(function, states, etc.), vicinity
temperature, humidity, vibration,
oxygen-richness, smell, etc.

Proximity-
change: walk
or run, speed,
heading

time time, day, date, season; occasion (show,
meeting, cock tail party, etc.); function-
time (work, vocation, etc.)

Function-time
change: lunch
time, etc.

history,
schedule,
expectation

people individual, group; interaction (casual
chatting, formal meeting, eye contact,
attention arousing); non face-to-face
interaction

interruption:
incoming
calls,
encounter,
leave, etc.

social
relationship

audiovisual man-made voice (bearing information),
music, etc.; noise-level; in-sight
objects, surrounding scenery;
brightness

computing
connectivity

computing environment (processing
power, information availability & cost),
network connectivity, communication
bandwidth, communication cost

36

Table 2. A human user's own activity context description

Mental activity Work, rest, play, etc;
Task-ID, value, objective, means, interruptible? etc.

Corporal:
 drive, walk, sit, �

Visual:
 read, watch TV, sight-seeing, �,
 people interaction - eye contact

Physical action
(global)

Aural:
 information content - work, entertainment, living chore, etc., �

Physical action
(local details)

Hands & other body-parts:
 type, write, use mouse, etc., �

Table 3. A human user's state context description

Sensation:
 cold, hot, warm, tight, loose, painful, etc.

Mood:
 tranquil, exciting, happy, merry, sad, grief, etc.

Agitation & tiredness:
 curious, energetic, numb, sleepy, etc.

Stress:
 serene, composing, nervous, anxious, etc.

Feeling

Concentration:
 focus of attention, indulging, interesting, indifferent, etc.

Preference Habitual bias: love, hate, passion, etc.
Current likeness: appreciate, enjoy, disgust, suffer, etc.

Physical
characteristics

Name, address, contact information, etc.
Height, weight, heart rate, metabolism, health condition, etc.

37

• People around the user, which mostly decides what interactions the user might

engage in; the users� social relationship will also be reflected here.

• Audiovisual information, which describes what the user can hear and see.

• Computing and connectivity information, which describes what computation

services (perhaps other context-aware services) the user may use.

Without an appropriate granularity reference for specific application or domain, it is

not easy to describe the user�s activities. Table 2 shows the structure of a model with

three abstraction layers. The highest layer is a description of the user�s conceptual

activities. It uses abstractive vocabularies (such as �working�, �resting�, or �playing� etc.)

to convey information regarding the activities� value, objective, means etc. The middle

layer is a description of the user�s physical activities from the global status. It conveys the

information regarding the user�s physical engagement in such activities ― the actions the

user takes, and the contents the user handles, etc. The lowest layer is a description of the

user�s physical activities from local and detailed interaction. It conveys information

regarding the user�s body posture, head orientation, hands and feet movement, using tools

and interaction with objects, etc.

With regarding to the user�s personal character and feeling, if the user is cooperative

to the system, at the physical embodiment level, his/her personal information such as

address, height, weight, health condition etc. can be recorded and used without much

difficulty [149]. At the middle level, this user�s general preferences or altitude towards

certain objects, events, or stimuli can also be recorded and used � although his/her

current likeness cannot so be so easily sensed, it is still possible to collect and use such

information if the user is willing to cooperate. However, at the most intangible level, it

would be even too difficult for an ordinary user to describe his/her feelings or emotional

status verbally to another person consistently. Given that this is one of the most important

aspects of context information worth further investigation, a few items are tentatively

listed as candidates in Table 3 for consideration.

38

When the information granularity is not specified, there can be many ways to

describe the same event or situation. To avoid such possible confusion, a practical

solution is to carefully pre-specify an information description vocabulary set for given

applications. The resulted context classification tables are thus further elaborated for the

given application scenarios. The tables and their content representation are called

�information architecture� thereafter.

2.1.2 Context representation

A knowledge-based system (KBS) has two essential parts: the reasoning or problem-

solving process (R part) and the knowledge (K part). According to Edward A.

Feigenbaum, building the K part is a much more difficult task (Forward of [13]). A

successful context-aware system is also a knowledge-based system in that it includes

managing and extracting a large scope of information. Building a context information

architecture that can be sustainable in the long run is a really big challenge, and it may be

a reciprocal process as the result being improved with each trial. It would be beneficial to

draw the experiences gained from building knowledge-based systems.

2.1.2.1 Basic requirements for context representation

Analogous to the fact that an object has molecular properties under microscopic scale

observation whereas it has geometric shape and texture properties under human

perceptible or palpable scale observation, the same context information can have different

property descriptions at different detail levels. Also analogous to the fact that an object

can be observed from different perspectives, from different distances, and under different

lighting conditions, the same context information can be represented in many different

ways. Building a general context information model to capture all aspects of a user�s

information is an impossible task.

However, analogous to the fact that perspective machine drawings are valuable in

making complex machine, by limiting information granularity and confining its

39

vocabulary, a complexity-reduced context set would be valuable to facilitate human-

computer interactions [111].

Using symbols to describe knowledge or facts (referred as the �context� here) is a

registration and recognition process ([19] page 32). The key is to make the information

representation consistent over different applications and perhaps endurable for future

development, thus, to make it generalizable.

For the representation to be a generalizable, it has to be explicit or declarative ([19]

page 80). It should have the following three basic properties. First is modularity: the

representation needs to be self-contained and autonomous. In other words, there should

be an identifiable and bounded set of symbol structures that make up the representation.

The symbols ought to be distinct and separate from the interpreter programs that use them,

and there should be a set of well-defined and narrowly prescribed interfaces by which

other parts of the system can access and manipulate the symbol representations.

Second is semantics: the representation must have well-understood semantics.

Properly choosing presentation formats (using descriptive words, figures, etc.) so that

their meaning is obvious to users is especially important for direct human-computer

interaction applications.

Third is causal connection: there must be a causal connection such that changing the

representation causes the system to change its behavior in a way that is appropriate for

the change to the representation and its semantics. This causal connection provides the

basis by which the representation governs reasoning and behavior of the system.

The combination of modularity, semantics, and causal connection makes it easier to

change explicit representations than implicit representations. In reality, whether an

explicit context representation is generalizable also depends on how much the context

information architecture can correctly anticipate the nature and extent of the different

situations in which the system must operate [89].

40

2.1.2.2 Modeling context

Context-aware computing strives to bridge the gap between the real world and the

virtual computational world ([77], [78]). Modeling the connection between real world

objects and their counterparts in the digital virtual world will influence system

architecture realization.

To model a context-aware application situation is the necessary first step to represent

its complex content systematically. To model a situation is to analyze the human users,

objects, and events to identify relevant properties and relationships of interest, in order to

form a simplified abstract world that corresponds to the real application situation.

Since �context� is the �circumstances in which an event occurs�4, a sensible way to

model a simplified but expandable world of concern is to set up a stage on or in which

context-aware applications play themselves out. On the other hand, since context-aware

computing applications are for human-computer interactions, so, naturally the context

model developed in this dissertation contains two basic semantic entities5: �STAGE� and

�USER�, defined as follows.

A STAGE entity is an abstract representation, or a software agent, of a place where

context-aware applications take place. It physically corresponds to a central facility or

place that has the desired functionalities relevant to the expected context-aware

applications. Different applications play out on different stages. Some examples stages

are an individual�s home office, a small conference room used by a small group of

colleagues, a computer cluster room, etc.

4 American Heritage Dictionary, 3rd Edition, 1992
5 �Entity�, �primary key�, �foreign key�, �attribute�, �group attribute� etc. are conventional

modeling and database terminologies. Their meanings are quite self-explanatory in the contexts
used here; more and detailed explanation can be found in information modeling and database
literatures, e.g., [19], [34].

41

A USER entity is an abstract representation of, or a software agent on behalf of, a

human user. For context-aware system targeted human users, their applications

commonly required information is usually pre-registered.

User identification and location information are the most commonly used context in

today�s context-aware applications. To include more context elements in a generalizable

model, two more kinds of entities are defined, the �OBJECT� and �EVENT� entities.

An OBJECT entity is an abstract representation of, or a software agent of, an object

in real world. A �real world object� is an object in a broad sense that collectively consists

of the settings in the STAGE. It can be a piece of furniture, a device, or a software

program, etc.

An EVENT entity is an abstract representation of an interaction among USER,

OBJECT, or STAGE entity. Some examples of an EVENT are a USER appears in a

STAGE, an incoming phone call, an automatically executed program, etc.

Considering that a USER�s one EVENT would be a piece of �context information� to

other EVENT�s of the same USER or other USER�s, this information modeling approach is

the right way to work with the user-centered context information classification scheme

described in subsection 2.1.1. With this modeling scheme to analyze and simplify

context-aware situations, new context information items are expected to be more easily

included. Figure 4 illustrates the relationships among these entities.

Figure 5 illustrates an example of a context information model that comprises a

STAGE and a USER basic semantic entity. Each of the entities can contain some basic

properties and some child entities (OBJECT�s and EVENT�s), explained as follows. The

STAGE entity may contain two kinds of EVENT sub entities: USERS (appearance of user

or users) and USERS-ACT (users� group activity description), and two kinds of OBJECT

sub entities: EQUIPMENT and SENSOR objects. The USER entity may contain instances

of an EVENT sub entity ACTIVITY and two kinds of OBJECT sub entities:

PREFERENCE and SCHEDULE.

42

Figure 4. Context model: stage, users, objects, and events

Figure 5. The two basic semantic objects in a context information model

USER

UserID ID

UserName
FirstName
LastName

0.N

PREFERENCE

ACTIVITY

SCHEDULE

0.N

1.N

0.N

CampusAddress

RoomNumber
BuildingName
PhoneNumber

EmailAddress

Sex

JobTitle

BirthDate

Affiliation

0.N

0.N

0.1

STAGE

StageIDID

StageName
Functionality

UtilizationRules
1.N

EQUIPMENT

USERS

SENSOR

0.N

0.N

0.N

USERS-ACT
0.N

Object-1

STAGE

User-1

User-2

User-?

Object-2

Object-?

Object-N

User-N

Event-1

Event-?

Event-2

Event-N

43

The notation of �m.n� in Figure 5 means that the described item has at least m and up

to n (�N� means an unlimited number) instances. The STAGE entity has a unique attribute

(the primary key) StageID as its identifier, a name attribute of StageName, and at

least one, maybe an unlimited number of, group-attributes of Functionality and

UitilizationRules. The STAGE may have many (with its maximum cardinality, N,

unlimited), or may not have any (with its minimum cardinality being equal to 0) USERS,

EQUIPMENT, SENSOR and UESERS-ACT entities.

The USER entity in Figure 5 has UserID as its identifying attribute (the primary

key), a UserName group attribute, a Sex property attribute, and at least one but maybe

an unlimited number of JobTitle and Affiliation group attributes, etc. It may

contain an unlimited number of PREFERENCE, ACTIVITY and SCHEDULE entities, but

it might also contain none.

Generally speaking, the STAGE root entities and their sub entities are abstract

representation of items chosen from the context classification Table 1, whereas the USER

root entities and their sub entities are abstract representation of items chosen from context

classification Table 2 and Table 3. The resulting model is an explicit representation of

complex context information, and the representation is generalizable because it can adapt

to a broad range of context-aware application scenarios, where new context can be added

easily. Context-aware research thus far has demonstrated that such a very simplified and

incomplete context information model can still be very useful to many applications ([69],

[70], [74], [75], [77]).

2.1.2.3 Context database implementation

To use this context model, implementing it in a central database format is preferred

because the information is then clustered together, easily identifiable, and separated from

interpreters ([19] page 81-83). Transferring the model into context database format is

relatively easy by following the well-established conventions [34].

44

The database has two root tables, corresponding to the STAGE and USER entities.

Roughly speaking, each entity will have a table representation, and the attributes with

limited cardinality number will be shown directly in their corresponding entity tables,

whereas the unlimited repeatable multiple-value attributes will be represented in separate

tables using their corresponding entity foreign key as one of their primary keys.

Figure 6 shows a database that has partially implemented the model described in

Figure 5, where the STAGE entity root table has two secondary-indexed tables � the

EQUIPMENT table and the USERS table, and the USER entity root table has one

secondary-indexed table � the FOCUS-OF-ATTENTION table. The FOCUS-OF-

ATTENTION is an instance of ACTIVITY event entity in Figure 5. Here a conventional

graphic representation of database components is used, where tables are shown with their

column heads and their relationships are illustrated in lines with crossing dash, oval,

and/or crow-feet symbols indicating cardinality of 1, 0, and N respectively, detailed

explanation can be found in [34].

Figure 6. Transfer context information model into relational database

StageID � �
STAGE

EQUIPMENT

USERS

USER

StageID time UserID

StageID EquipmentID
� �

timeUserID

FOCUS-OF-ATTENTION

UserID#1 UserID#2
� �

StageName

UserID � � FirstName LastName

45

As part of building context information architecture process, context modeling and

representation may need reciprocal trials too. In designing the context model, careful

consideration should be excised regarding how to incorporate the time information. In

Figure 6, the EQUIPMENT table records the available equipments in the STAGE object,

which may not change very often over the time of interest, so it has a joint primary key of

StageID and EquipmentID. However, the USERS table describes which USER is, or

USER�s are, on the STAGE, which may be quite dynamic, so it has its joint primary key

of StageID and time.

In concluding subsection 2.1.2, this context modeling and representing scheme

practically treats the context items as if they are in a single layer. Treating the presumably

hierarchical information structure (at different abstract level) as a single layer can

mitigate impact due to possible classification scheme change, which is very likely to

happen [49] in the research process6. The disadvantage of this practice is that it would be

difficult for human users to find their interested information pieces directly if the

information is not properly rearranged on HCI interfaces.

2.1.3 Managing uncertainty information

The context database fields can be filled either by direct human input or

automatically by sensor output. In either cases, uncertainty is an intrinsic property that

has to be properly managed by the context information architecture [28].

In traditional parameter measurement, every sensor has its own measurement

accuracy and precision limitation specifications, and every measurement can have an

error estimation (often denoted as σ). Uncertainty management in traditional parameter

measurement is well understood. In simple cases, the usual rules of error propagation and

statistical weighting of redundant and complement measurements constitute the simplest

6 In reality, it not seems possible to come out with a complete list of classified contexts without

many reiterations, because of the nature of information contents and because of lacking
information granularity standards.

46

sensor fusion. In more complicated cases, more sophisticated sensor fusion methods are

still available to combine multiple measurements to generate higher-quality estimation.

One important error source is the drift that exists in all sensors. Originating from slow

change of the sensor�s characteristics, often related the sensor�s aging or adapting to its

environment, it adds a slowly changing offset7. Sensor calibration is the only way to

overcome drift. A way to implement continuous calibration will be discuss in Section 3.2.

However, the context information of interest is not confined to traditional parameter

measurement. In fact, most of the data handled by today�s context-aware computing

systems are non-parametric. Discrete environmental facts and human-interaction events,

in addition to measurement per se, are of major concern in the context-aware computing.

To manage uncertainties involved in the discrete facts and events, for each such context

information item, all possible values that it can take, as well as their ambiguous

combinations, are listed first. Then by assigning a probability value to each set in the list,

an efficient uncertainty representation can be achieved. This process is further illustrated

in the following example.

Imagine a scenario in which exactly one person is detected in an instrumented room.

It has already been concluded that this person can only be User-A, User-B, or User-C. For

this specific user identification situation, the complete list of possible values that can

occur is enumerated in Table 4.

Table 4. Context uncertainty management user-identification example

 {A} {B} {C} {A, B} {B, C} {C, A} {A, B, C} {Ø}

Probability PA PB PC PAB PBC PCA PABC Pø

7 For most sensors and instruments provided by reputable manufacturers, their specifications

would usually include initial accuracy and precision, and guarantee the drift rate to be within
certain range for specified period, e.g., one year.

47

In Table 4, {A} means that User-A is present; {B, C} means that either User-A or

User-B (but it is not clear which one) is present; and so forth. The symbols PA, PBC, etc.

stand for the corresponding probabilities. Notice that the set {A, B, C} means that either

User-A, User-B, or User-C is the case. This is actually an acknowledgement of ignorance

regarding the user identification situation given the constraint. The symbol {Ø} refers to

an exception that the constraint is violated, for example, this is neither User-A, nor User-

B, nor User-C, or even there is actually nobody present.

With this scheme of information uncertainty management, all possible situations and

human reasoning cases can be easily captured. This representation allows incorporation

of artificial intelligence techniques using frame reasoning symbol systems, thus it

provides a generalizable solution suitable for future research.

In practice, the major source of uncertainty originates from transferring qualitative

context information to the quantitative representation. This is especially true for

situations that involve human activities. For example, if an ordinary user is asked to

describe his/her preferences regarding some objects or events, most likely the responses

would be some qualitative descriptions such as �very much positive�, �positive�,

�somewhat positive�, �neutral�, etc., which would then have to be transformed into a

numerical quantity resembling a probability description.

With the context information architecture being defined and with each of its possible

values being specified, the whole system�s information flow is largely decided. It will

become clear in section 3.2 that this uncertainty management scheme naturally leads to a

generalizable sensor fusion method using the Dempster-Shafer Theory of Evidence

reasoning mechanism.

2.2. Context Sensing

Context sensing is to realize populating context database with context pieces derived

from sensors� lower-level outputs. This section deals with the information mapping issues

48

in the process, especially emphasizing how to use sensor fusion techniques to properly

handle the competing sources.

2.2.1 Mapping sensory data into context information space

Sensors measure physical parameters of their environment, whereas context-aware

computing systems usually need to include context information at various levels, from

current environment to human users� intention and activities [72]. There is a gap between

what sensors can now provide and what is needed [68], and the task of context sensing is

to bridge the gap ([14], [26]).

There can many ways to bridge the gap, i.e., to realize the mapping from sensors�

lower-level output into the context information architecture described in previous

sections. This dissertation follows the so-called �widget� approach to fulfill the required

mapping functionality. Analogous to software drivers that interface peripheral devices

with computers, widgets 8 are software agents that transfer sensors� lower-level

information into predefined higher-level context. Table 5 lists currently available sensor

and data processing (performed by widgets) technologies that can sense the commonly

used context information [87].

The simplest format of information mapping is one-to-one (one source to one

destination) with a monotonic mapping function. For example, the room temperature

measured by a thermometer sensor can be mapped into one of the three states as of �cold�,

�warm�, and �hot�.

However, most context sensing requires a network of sensors to work in concert.

These sensors may collaborate in different modes (to be described in next subsection),

and their mapping mechanism can be described as a many-to-many relationship. With

vector T
msss],,,[21 ! representing the sensor array�s output data, and vector

8 �Widgets� are interchangeably called �context widget� or �sensor widget� in this document.

Widget for context collecting implementation in the Georgia Tech�s Context Toolkit system is
discussed in subsection 1.3.3.

49

T
nxxx],,,[21 ! representing the desired context description, the mapping function)(⋅sf

relates sensors� output to the context information as shown in EQ. 1.

Table 5. Context sensing achievable with commonly used sensors

sensors widget context information

microphone sound processing
sound pattern recognition
speaker recognition,
speaking understanding

cameras
infra-red sensors image processing

object recognition
3-D object measuring
face recognition

GPS, DGPS
serverIP, RFID
gyro, accelerometers
dead-reckoning ,
network resource

map registration

location
altitude
speed
orientation

thermometer
barometer
humidity sensor
photo-diode sensors
accelerometers
gas sensor

direct registration physical & chemical
environment

biometric sensors:
 heart-rate
 blood-pressure
 GRS,
 temperature
 respiration

registration &
psychophysiological
mapping

personal physical state:
 heart rate
 respiration rate
 blood pressure
 blink rate
 Galvanic Resistance
 body temperature
 sweat

50

EQ. 1



















←



















⋅

m

sf

n s

s
s

x

x
x

""
2

1

)(2

1

, or)(2

1

2

1



















=



















mn s

s
s

sf

x

x
x

""

When more than one sensor contributes to a context information item, the mapping

operation is actually a sensor fusion function. The simplest sensor fusion operation is a

linear combination of inputs to a single output; in this case, the operator can be expressed

in a format of matrix multiplication as the following:

EQ. 2




































⋅⋅⋅

⋅⋅⋅
⋅⋅⋅

=



















mnmnn

m

m

n s

s
s

sfsfsf

sfsfsf
sfsfsf

x

x
x

"
!

"#""
!
!

"
2

1

21

22221

11211

2

1

)()()(

)()()(
)()()(

Most context sensing applications, however, require mapping and sensor fusion

functions that are more complex [110] than merely a linear combination. The next

subsection lists, compares, and contrasts the types of sensor fusion algorithms in common

use.

2.2.2 Sensor fusion architecture for context sensing

Context sensing technology can advance in two directions: an individual sensor�s

functionality and performance improvement or, intelligently connecting multiple sensors

to provide higher-level information. The later is increasingly needed with today�s ever-

growing computer networking development ([39], [40], [65], [70]).

Toward intelligently combining sensor outputs, all issues eventually boil down to the

fundamental question: given the context information architecture, how should the sensor

fusion system manage the mapping mechanism so that various sensors can properly

contribute to the results in the predefined information space. The adverb �properly� here

means to resolve conflicts so that the information accuracy, confidence, or reliability is

51

improved ([37], [41]). There is no simple solution to fulfill this goal, because different

sensors have different resolutions and accuracies as well as different formats and update-

rates. In addition, the sensed data may have overlaps or conflicts.

Sensor fusion can be classified from different perspectives, such as information level,

implementation architecture, algorithms being used etc. ([36], [59], [60]). Durrant-Whyte

et al ([24], [156], [158]) suggested classifying sensor fusion into �competitive�,

�complementary�, and �cooperative� types according to the nature of information input-

output relationships. They are explained in the following paragraphs.

Competitive type sensor fusion combines sensor data that represent the same

measurement to reduce uncertainty and resolve conflicts. This is the basic sensor fusion

type. It is often regarded as the �traditional� or �classical� sensor fusion technique. Some

examples of this type are: taking multiple measurements and then applying the weighting

average algorithm to accurately evaluate the size of a machine part, manufacturing a

certain number of standard parts and measuring the products to evaluate the status of a

machine tool, etc.

Complementary type sensor fusion combines incomplete sensor data that do not

dependant on each other directly to create a more complete model. For example,

combining sensor data according to a predefined physical model could enable the sensor

outputs collectively to estimate the state of a higher-level measured physical process. A

more specific example is combining measurements of pressure and airflow to estimate

the propulsive force of a jet nozzle.

Cooperative type sensor fusion combines sensor observations that depend upon

each other to deduce higher-level measurement. In stereovision, for example, image

components (pixels, featured spots) depend on each other in pairs to estimate object

distances.

Roughly speaking, competitive sensor fusion enhances measurement reliability or

confidence, whereas complementary and cooperative sensor fusion lead to higher-level

measurements. The three sensor fusion types are not exclusive though, as many sensor

52

fusion processes can belong to more than one type. Moreover, of the three sensor fusion

types, the complementary and the cooperative types are generally domain specific �

means that their methods are often valid only under specific conditions where specific

knowledge based artificial intelligent inference techniques can apply.

From the information process model point of view, however, sensor fusion can be

roughly grouped into three categories [158]: (a) direct data fusion, (b) feature level fusion,

and (c) decision level (identity declaration) fusion, as shown in Figure 7 ([53] Chapter 1).

Figure 7. Sensor fusion process model: (a) direct data fusion, (b) feature level
fusion, and (c) declaration level fusion [53]

If the sensors are measuring the same physical parameter, the low-level sensory data

can be directly combined. Otherwise, the information can be fused only at feature or

decision level.

sensors

joint identity
declaration

S1 Sn S2

association

Data Level Fusion

feature extraction

identity declaration

(a)

sensors

joint identity
declaration

S1 SnS2

feature extraction

association

Feature Level Fusion
identity declaration

(b)

sensors

joint identity
declaration

S1 Sn S2

association

id
decl

feature extraction

Declaration Level
Fusion

identity declaration

(c)

id
decl

id
decl

53

Representative features from sensors provide signature elements for object

recognition. In feature fusion, features are extracted from multiple sensor observations

and combined.

In decision level fusion, each sensor makes a preliminary determination of targeted

objects� identity and other attributes, and the fusion algorithm combines these to generate

more accurate results or higher confidence ([82], [83]).

In image processing to recognize objects scenario, for example, sensor-level direct

data fusion works at the image pixel level, whereas feature level fusion deals with

extracted features such as colored areas, boundaries and edges etc., and decision level

fusion handles declaration of objects from other object recognition algorithms.

From sensor-, feature-, to decision-level sensor fusion, the communication bandwidth

and computation power requirements become less demanding at the price that all

available information is potentially less fully used 9 , so the system configuration

flexibility increases. The decision level fusion is most suitable for systems that have

physically distributed components and require these components to work more

independently.

On the other hand, as discussed earlier, of the three sensor fusion types,

complementary and cooperative sensor fusion types are usually highly domain and task

specific. They are implemented typically as feature-level data processing in a complex

physical model, to use the information meanwhile without consuming too much

communication bandwidth. In fact, sensor fusion is usually implemented in only a few

system architecture patterns [155]. Table 6 shows the commonly implemented sensor

fusion architectural patterns and identifies the application characteristics that make them

desirable ([60], [156]).

9 Extracting features from raw sensory data and synthesizing features to make decisions gain

higher-level information, but the condensed higher-level information has lost other potential
means of utilizing the lower-level information. Conceptually, the earlier the lower-level
information is discarded, the higher risk is the potentially useful information is lost.

54

Roughly speaking, the competitive type of sensor fusion algorithms are more suitable

for the sensor data-level and decision-level fusion problems. The lower-level information

is kept longer and potentially better used in the sensor data-level fusion case, but the

decision-level fusion model provides more system configuration flexibility in

implementation. So to form a generalizable context sensing solution, a competitive-type,

decision-level model of sensor fusion architecture (shown with a different cell border in

Table 6) is selected as the system architectural support scheme.

Table 6. Property highlight of commonly implemented sensor fusion
architectural patterns

sensor fusion implementation model

sensor level feature level decision level

competitive enhance reliability flexible system
configuration

se
ns

or
 fu

si
on

 ty
pe

complementary
& cooperative

allow complex
model, to fully use
information, while
control bandwidth

2.2.3 Sensor fusion methods for context-aware computing

Many well-developed algorithms can be applied to the competitive type of sensor

fusion. The commonly used sensor fusion methods are: classical inference, Bayesian

inference, Dempster-Shafer theory of evidence, voting, and fuzzy logic. This section

examines these commonly used sensor fusion methods in order to choose one as a

module for building a generalizable sensor fusion system.

55

2.2.3.1 Classical inference and Bayesian inference method

The classical inference method and Bayesian inference network method are often

referred as the �classical� or �canonical� sensor fusion methods because not only are they

the most widely used, but also they are the bases of, or the starting points for, many new

methods.

Classical inference methods seek to judge the validity of a proposed hypothesis based

on empirical probabilities. Given an assumed hypothesis Hi (a contextual fact is true or an

event has happened), the joint probability P that an observation Ek would be reported by

the sensors is:

EQ. 3) trueis | observed be would(kk HEP

Many decision rules can be used to form the judgment in the classical inference

method ([63] Section 6.2). For example, the likelihood comparison rule suggests

accepting the hypothesis Hi if the probability relationship satisfies EQ. 4, otherwise, the

system should believe that the contextual fact or event is not true or has not happened.

EQ. 4)()|()()|(iikiik HPHEPHPHEP ¬⋅¬>⋅

Another example of the decision rules is to use statistical significant test techniques.

In the case where there are several alternative hypotheses, then the joint probability for

each hypothesis needs to be computed and the results compared.

The classical inference method quantitatively compares the probability that an

observation can be attributed to a given assumed hypothesis. But it has the following

major disadvantages ([23] page 53): (1) difficulty in obtaining the density functions that

describe the observables used to classify the object, (2) complexities that arise when

multivariate data are encountered, (3) its capability to assess only two hypotheses at a

time, and (4) its inability to take direct advantage of a priori likelihood probabilities.

56

Bayesian inference overcomes some of these limitations by updating the likelihood of

a hypothesis given a previous likelihood estimate and additional new observations. It is

applicable when two or more hypotheses are to be assessed.

Given the observed phenomena or evidence E, Bayesian inference calculates the

likelihood P(Hi|E) that the contextual fact or event Hi should be true or should have

occurred in the form of ([23] Section 4.2):

EQ. 5
∑

=

j
jj

ii
i HPHEP

HPHEPEHP
)()|(

)()|()|(

where, P(Hi) is the a priori probability that the contextual fact or event Hi has occurred;

P(E|Hi) is the likelihood that the phenomenon or evidence E can be observed given the

contextual fact or event Hi has occurred.

Compared with the classical inference method, the Bayesian inference network

method provides the following advantages: (1) given new observations, it incrementally

estimates the probability of the hypothesis being true, (2) the inference process can

incorporate the a priori knowledge about the likelihood of a hypothesis being true, and (3)

when empirical data are not available, it permits the use of subjective probability

estimates for the a priori of hypotheses10.

Despite these advantages, Bayesian inference method also has some disadvantages

that prevent it from being used in many situations. The key limits ([23] page 53) are: (1)

difficulty in defining a priori probabilities, (2) complexities when there are multiple

potential hypotheses and multiple conditionally dependent events, (3) mutual exclusivity

required for competing hypotheses, and (4) inability to account for general uncertainty.

The meaning of the last two points will be clarified when the Dempster-Shafer Evidence

Theory is discussed in next subsection.

10 This situation happens very often in practice, where the a priori probabilities of hypotheses

cannot be easily obtained and thus are guessed. However, the output of such a process is only as
good as the input a priori probability data ([23], page 85).

57

Because of the limitations, the Bayesian inference method is considered unsuitable

for the main sensor fusion method for context-aware computing applications. There are

two practical challenges that need to be addressed in this domain. First, the system users�

context information is typically not repeatable in nature11, which means that the prior

probability information P(Hi) is hardly available. Second, when multiple sensors are used

to sense some specific contextual information, the symbol E in EQ. 5 represents the joint

observation over all the sensors; however, since the available sensor set�s configuration is

typically highly dynamic, the joint probability distribution function P(E|Hi) is usually

unavailable.

2.2.3.2 Dempster-Shafer Theory of Evidence method

The Dempster-Shafer method generalizes Bayesian theory to allow for distributing

support not only to single hypothesis but also to the union of hypotheses. This way, it

easily includes uncertainty in the likelihood function and acknowledgement ― and even

quantification ― of ignorance [31]. The Dempster-Shafer and Bayesian methods produce

identical results when all the hypotheses are singletons (not nested) and mutually

exclusive [143].

In a Dempster-Shafer reasoning system, the possible basic hypotheses ― all the

hypothesis elements that are not further dividable, mutually exclusive, and exhaustive ―

are collectively called �the frame of discernment� (T). The system inference space is the

power set (Θ) of T, which includes all the possible combinations of the elements of T.

For example, in an instrumented room, a human user is detected, and from the reality

constraints, this detected user can normally only be one of the three registered users:

User-A, User-B, or User-C. The task is then to discern this user�s identity. In this case, the

�frame of discernment� is T = {User-A, User-B, User-C} and the valid hypothesis set

space consists of the eight possibilities listed as EQ. 6:

11 For example, a group of people would noticeably behave differently the second time they play a

game � even they are playing the same game.

58

EQ. 6 }}{},,,{},,{},,{},,{,,,{ φCBACACBBACBA=Θ .

Symbols in EQ. 6 indicate the eight situations of: (1) User-A, (2) User-B, (3) User-C, (4)

either User-A or User-B, (5) either User-B or User-C, (6) either User-A or User-C, (7) any

one of the User-A, User-B, and User-C, and (8) neither User-A, nor User-B, nor User-C.

Notice that the situation (7) is actually an indication of ignorance and situation (8) is an

indication of exception.

With the frame of discernment T defined, the system�s possible hypotheses Θ

defined, �belief� can be assigned over Θ . Analogous to probability, the total belief

equals to value 1, and each sensor Si reports its observation by assigning beliefs. This

assignment function is called the �probability mass function� of Si, denoted as mi. The

belief assignment is based on the observed �evidence� (E) that supports the belief.

For any given hypothesis H, the system�s belief in H is the sum of all the evidence Ek

objects that support H and the sub-hypotheses nested in H:

EQ. 7 () ()
k

i i k
E H

Belief H m E
⊆

= ∑

On the other hand, the evidence objects that support H�s exclusive hypotheses (i.e.,

the hypotheses that do not include any sub-hypotheses nested in H) are then actually the

evidences that are against H. Therefore, the �plausibility� of hypothesis H should include

all the observed evidence objects that do not argue against H:

EQ. 8 () 1 () 1 ()
k k

i k i i k
E H E H

Plausibility H E Belief H m E
φ φ≠ =

= = − = −∑ ∑
∩ ∩

Thus in the Dempster-Shafer reasoning system, according to a sensor Si�s observation,

the belief regarding a hypothesis is measured by a �confidence interval� bounded by its

basic belief and plausibility values (as shown in Figure 8):

EQ. 9 [Beliefi(H), Plausibilityi(H)].

59

Figure 8. Confidence interval is between �belief� and �plausibility�

Of course, there can be more than one sensor in a system. When there are multiple

sensors in a system and the sensors� observations are assumed independent of each other,

the Dempster-Shafer Evidence combination rule provides a means to combine these

observations. For each hypothesis in Θ ― e.g., a proposition, such as �the detected

person is User-A� ― the rule combines sensor Si�s observation mi and sensor Sj�s

observation mj as12:

EQ. 10
() ()

() ()
1 () ()

k k

l l

i k j k
A A A

i j
i l j l

A A

m A m A
Belief A m m A

m A m A
φ

′

′

′
∩ =

′
∩ =

= ⊕ =
−

∑
∑

In equation EQ. 10, the combined proposition A stands for the intersection of the

sensor Si observed hypothesis Ak and sensor Sj observed hypothesis Ak�, whose associated

probability mass functions are represented as mi(Ak) and mj(Ak�) respectively. For example,

{User-A}∩ {User-B} = }{φ , {User-A}∩ {User-A, User-B} = {User-A}, and {User-A,

User-B} ∩ {User-B, User-C} = {User-B}.

In equation EQ. 10, the numerator calculates the probability mass function value of

the products of two sensors� observed evidence objects that generate proposition A, and

12 Adopted from [18], symbol ⊕ has a high precedence: () { }()i j i jm m A m m A⊕ = ⊕ .

sum of all
evidences for Hi

sum of all evidences
against Hi

confidence
interval

belief

plausibility

hypothesis Hi

60

sums them up. To properly normalize the result, this sum of the products is divided by the

denominator, which accounts for all the impossible proposition {Ø} combinations that

have been assigned with non-zero probability mass functions.

Notice that this evidence combination rule is both associative and commutative [128].

This means that the probability mass functions mi(Ak) in EQ. 10 can be the results of

previously combined evidence, so the process of combining evidence from multiple

sources can be chained, and the order in which the sources are combined does not affect

the final results.

Bayesian methods and Dempster-Shafer methods are the most commonly used

formalisms in MSDF (Multi-Sensor Data Fusion) in the military applications domain.

The main reason that these two formalisms in particular have received so much attention

is that both are associative and commutative, so the results are independent of the order in

which the data are received and incorporated [54].

While both the Bayesian inference method and the Dempster-Shafer method can

update a priori probability estimation with new observations to obtain a posteriori

estimations, the Dempster-Shafer method relaxes the Bayesian method�s restriction on

mutually exclusive hypotheses, so that it is able to assign evidence to �propositions�, i.e.

unions of hypotheses.

The underlying concept is that Dempster-Shafer uses a general level of uncertainty

([63] page 167, [134], [135], [136]). This topic will be addressed in more detail in

Chapter 5, briefly now, the main point is that it does not require an exhaustive set of

hypotheses, each of which is defined in terms of definite probabilities. Thus, as an

extension of the Bayesian inference method, the Dempster-Shafer method largely

overcomes the Bayesian�s limitations listed in the previous subsection. Because of its

capability to solve general problems, in this dissertation, the Dempster-Shafer method is

selected as the sensor fusion method for building context-aware computing systems.

61

2.2.3.3 Voting fusion method

Voting sensor fusion imitates voting as a means for human decision-making. It

combines detection and classification declarations from multiple sensors by treating each

sensor�s declaration as a vote, and the voting process may use majority, plurality, or

decision-tree rules. The most commonly used voting architecture is a Boolean

combination of outputs from multiple sensors, where additional discrimination can be

introduced via weighting each sensor�s specific declaration ([23] Chapter 7, [63] Section

6.6).

The principle of the underlying mechanism of voting fusion is estimation of the joint

detection probability based on the participating sensors� detection confidence levels,

which are in turn based on predetermined detection probabilities for an object or an event.

Given that all sensors� observations are independent and non-nested, the probability that a

hypothesis is true can be estimated as illustrated by the following example.

For the proposition the context fact Hk is true or event Hk occurs, the inputs of voting

fusion are the sensor si and sj�s detection probabilities Pi(Hk) and Pj(Hk), and their false

alarm probabilities Pfai(Hk) and Pfaj(Hk). The outputs of the voting algorithms are the

detection probability P(Hk) and the false alarm probability Pfa(Hk), as shown in EQ. 11

and EQ. 12.

EQ. 11 () () () ()k i k j k i j kP H P H P H P H= + − ∩

EQ. 12 () () () ()fa k fai k faj k fai j kP H P H P H P H= + − ∩

The voting method greatly simplifies the sensor fusion process, and it can provide a

prediction of object detection probability as well as false alarm probability. However,

voting fusion is more suitable with �yes/no� problems like the classical inference method.

This granularity of reasoning, generally speaking, is not good enough for multiple status

context discrimination, which is often required in context-aware computing applications.

For a multiple status problem to be solved using the voting method, it has to be converted

62

into multiple �yes/no� problems first. Further, the more serious disadvantage inherent in

the voting fusion method is that it treats each �yes/no� problem separately rather than

taking them as a whole package, as the Dempster-Shafer method does (thus, the available

information can be better utilized in the Dempster-Shafer sensor fusion framework).

2.2.3.4 Fuzzy logic method

The fuzzy logic method accommodates imprecise states or variables. It provides tools

to deal with context information that is not easily separated into discrete segments and is

difficult to model with conventional mathematical or rule-based schemes. One example

of such information kind is the room temperature: though it is commonly referred to with

some descriptive words like �cold�, �warm�, or �hot�, it does not have hard boundaries

between these states.

There are three primary elements in a fuzzy logic system, namely, fuzzy sets,

membership functions, and production rules.

Fuzzy sets consist of the imprecisely labeled groups of the input and output variables

that characterize the fuzzy system, like the �cold�, �warm� and �hot� status in the above

example of room temperature.

Each fuzzy set has an associated membership function to provide a representation of

its scope and boundaries. A variable of a fuzzy set takes on a membership value between

the limits of 0 and 1, with 0 indicating the variable is not in that state and 1 indicating it is

completely in that state. An intermediate membership value means a �fuzzy� state,

somewhat between the �crisp� limits. A variable may belong to more than one fuzzy set.

For example, a room temperature of 90°F may be regarded simultaneously as 0.25

�warm� and 0.65 �hot�.

Production rules specify logic inference in the form of IF-THEN statements, which

are also often referred to as fuzzy associative memory. The basic algorithm is that the

�AND� operation returns the minimum value of its two arguments, and the �OR�

operation returns the maximum value of its two arguments. The output fuzzy set is

63

defuzzified to convert the fuzzy values, represented by the logical products and

consequent membership functions, into a fixed and discrete output that can be used by

target applications.

Regarding human-users� contextual information, there is a broad range of �fuzzy�

situations, where the boundaries between sets of values are not sharply defined, events

occur only partially, or the specific mathematical equations that govern a process are not

known. With its capability of dealing with this kind of information, and with its cheap

computation to solve very complicated problems13, the fuzzy logic method is expected to

develop extensively in some context-aware computing applications.

The fuzzy logic sensor fusion method provides an effective tool to handle

requirements of human daily-life, where imprecision is an inherent property in nature.

However, the fuzzy logic sensor fusion method cannot be the main sensor fusion method

in a generalizable architectural solution in building a context-aware computing system for

two reasons. First, it is not applicable to situations where the objects inherently have

clear-cut boundaries (e.g., it does not make sense to say, this is 0.6 person-A and 0.4

person-B). Second, the fuzzy set, membership function assignment, and production rules

are usually extremely domain- and problem-specific, making it difficult to implement the

method as a general approach.

2.2.3.5 Neural network method

Neural networks open a new door for fusing outputs from multiple sensors. A neural

network can be thought of as a trainable non-linear black box suitable for solving

problems that are generally ill defined and that otherwise require large amounts of

computation power to solve.

A neural network consists of an array of input nodes to accept sensors� output data,

one or a few output nodes to show sensor fusion results, and sandwiched in between the

13 Fuzzy logic is especially successful in solving control problems of very complicated non-linear

systems.

64

input and output nodes is a network of interconnecting data paths. The weights along

these data paths decide the input-output mapping behavior, and they can be adjusted to

achieve desired behavior. This weight-adjusting process is called training, which is

realized by using a large number of input-output pairs as examples.

The neural network training process can be simplified as follows. From the input

nodes to output nodes, the data-path network provides many ways to combine inputs:

those that lead to the desired output nodes are strengthened, whereas those that lead to

undesired output nodes are weakened. Thus, after using the large number of input-output

pair as training examples to adjust weights, the input data are more easily transferred to

desired output nodes through the strengthened paths.

The neural networks can work in a high-dimensional problem space and generate

high-order nonlinear mapping. Many successful applications have been reported.

However, it has some well-known drawbacks too. The three major problems are (1) it is

difficult to select a network architecture that reflects the underlying physical nature of the

particular applications; (2) training a network is typically tedious and slow, and (3)

training can easily end up with local minima, as there is no indication whether the global

minimum has been found [55].

The neural network method is not suitable for the main sensor fusion method mainly

because of the drawbacks. First, the mapping mechanism is not well understood even if

the network can provide the desired behavior � only in the simplest toy-like problems

does examination of the weights in the trained network give any clue as to the underlying

analytical connection between the inputs and outputs. Thus, such a solution cannot be

easily generalized. Second, the neural network method is, generally speaking, not suitable

to work in a dynamic sensor configuration environment, because each sensor needs a

unique input node and each possible sensor-set configuration needs to be specifically

trained. Third, the neural network sensor fusion method has the �local minimum

problem� during its training process, which cannot be easily overcome.

65

2.3. Chapter Summary

Since context can be an extremely broad term including anything from low-level

parameters (e.g., time, temperature, etc.) to highly abstract human concepts (e.g.,

intention, social relationship, etc.), state-of-the-art technology can only sense a small

fraction of what we call context. To approach this daunting task, this dissertation

proposes a top-down methodology via a divide-and-conquer strategy. First, decompose

complex and abstract context information into an information architecture comprised of

lower-level discrete facts and events. Second, use the Dempster-Shafer Theory of

Evidence as the sensor data fusion means to resolve conflicts in the process of mapping

sensor outputs into the context information architecture.

Building the context information architecture, i.e., decomposing complex context

information into discrete facts and events, has no unique solution, and there is no

standard or guideline for a conventional approach. Using the results of the described

information taxonomy development as a reference, the strategy adopted is to carefully

model any given context-aware application scenario, and then to arrange its content into

one flat layer so that new information can be added with minimum impact.

Once the context information architecture is completely defined, the possible

mapping from sensors� output to the context information entries is also mostly defined, so

sensor fusion becomes a less difficult problem. The main remaining challenge in sensor

fusion for context-aware computing is that, because the sensor sets� content,

characteristics, and configuration are dynamic, and because human-computer interactions

are not precisely repeatable, the sensors� joint observation probability distribution is

unknown, so the classical sensor fusion methods (e.g., the Bayesian inference network

method) cannot be used.

The Dempster-Shafer Theory of Evidence method is the proposed way to meet these

challenges. For every context item in the context information architecture, all possible

hypotheses, including ambiguous cases and ignorance, are enumerated. The sensors

report their observations by assigning mass probability values to all possible hypotheses.

66

The reports are collected by sensor fusion mediators ― each sensor fusion mediator in

charge of each context item. The Dempster-Shafer Evidence Combination Rule allows

quantitative chaining of separate inferences, cumulatively, regardless of the order in

which the information is received, and robustly against changes in the sensor set.

In implementing sensor fusion, the earlier the lower-level information is condensed

and the details discarded, the less demand will there be on system communication

bandwidth. To define the context information architecture is thus to choose a balance

point between how the totality of available information can be best used versus how

flexible and robust the sensor fusion system can be.

The context sensing methodology set out in this chapter is a generalizable solution: it

is non-domain-specific, non-application-specific, and easily scalable.

67

Chapter 3.
Implementing Context Sensing

To realize context sensing, there are two major concerns that need to be addressed

carefully. One is how to make the system architecture efficient in collecting and

distributing context information. The other is how to use sensor fusion technology to deal

with uncertainty in the sensed context information, that is, how to handle information

overlap and to resolve conflicts. This chapter first discusses issues regarding how to

implement a layered and modularized system architecture using the Context Toolkit

system, then, it addresses the questions regarding how the Dempster-Shafer Theory of

Evidence concept can be applied in practice to the sensor fusion tasks.

3.1. System Architectural Support

At current stage of context-aware computing research, because the number of sensors

being used is not very large, sensor fusion is still manageable in an ad hoc manner. That

is, for a given set of sensors, some system infrastructure components, or the applications

that directly use these sensors, are able to perform sensor fusion functions, as well as to

take care of the sensors� administrative management issues.

With the number of sensors increasing, and with the contextual information becoming

more complicated, it soon will be cost-prohibitive to maintain and extend such a system.

System architecture support is required to fulfill the increasingly more complex context

sensing tasks [4].

68

3.1.1 System architecture style for context-aware computing

Over years of practice and research, experiences are accumulated and summarized in

building complex software systems. They are described as system architecture styles: a

system architecture style is believed to be effective for some typical application situations

[151]. Because context-aware computing is a relatively new research area, the

characteristics of its applications have not been fully understood yet, thus systematically

developing system architecture styles specifically for context-aware computing

applications has not yet been done [46].

Winograd [115] summarized that there are three major styles (or, �models�, in his

term) for context-aware computing that have been developed thus far. They are the

�blackboard�, the �infrastructure�, and the �widget� style. The key advantages and

drawbacks of these three architecture styles are listed as follows.

3.1.1.1 The blackboard-style system architecture

The blackboard style of system architecture is characterized by its component

communication style, analogous to the scenario that a group of human experts collaborate

to solve difficult problems using a blackboard as their communication means. The system

consists of three components: a �blackboard�, many �knowledge sources�, and a �control

shell�. The blackboard is a shared memory where context information is written, read,

and erased. The �knowledge sources� are independent software agents that provide

specific expertise to process the context information; each knowledge source behaves as

if it were a human specialist watching the blackboard, looking for an opportunity to apply

its expertise to synthesize information pieces or to extract higher-level context. The

�control� is the component that monitors the changes in the blackboard and decides what

actions (e.g., notifying knowledge sources of change) to take. ([152], [153])

The blackboard architecture style systems are built around databases that coordinate

information across the components, their implementation includes a rich group memory,

where integrating artifacts (rationale, stakeholders, etc.) into a common knowledge space

69

is relatively easy. The systems� uniform communication path is advantageously simple. In

addition, because each knowledge source can have partial information, and new sources

can be added easily, the blackboard-style architecture is robust to configuration change.

The blackboard architecture style is very successful in opportunistic problem solving

(especially in artificial intelligence research of 1970s and 1980s), but it is relatively less

adopted for context-aware computing systems. The reason is that context-aware

computing systems typically are highly distributed, the high communication bandwidth

requirement and the difficulty to implement shared memory over distributed components

are the key drawbacks that prevent the blackboard architecture style from being widely

used in context-aware applications.

Winograd et al are the proponents of this style, and in the implemented system in

their Interactive Workspace research project, all communications go through a centralized

server, where routing information to different components is accomplished by matching

message content to a subscriber�s pattern. Braun et al�s [108] iBistro project uses a

�distributed concurrent blackboard� architecture, where there are many local blackboards

in the system and small data objects are completely replicated whereas larger data objects

are accessed directly in small chunks. This can mitigate the communication difficulty in

some situations � depends on how much cross interactions are needed among the local

blackboards, however, a new problem may arise as data objects� version control would be

very difficult.

3.1.1.2 The infrastructure-style system architecture

�An infrastructure is a well-established, pervasive, reliable, and publicly accessible

set of technologies that act as a foundation for other systems� [113]. The �infrastructure�

style architecture approach for context-aware computing tries to simplify the tasks of

creating and maintaining context-aware systems by shifting the functions of context-

aware computing realization onto network-accessible middleware infrastructures. By

providing uniform abstractions and reliable services for common operations, such a

70

service-oriented infrastructure should make it easier to develop robust context-aware

applications even on a diverse and constantly changing set of devices and sensors [113].

Most of the context-aware systems developed thus far use a form of service-based

(e.g., client-server) mechanism. The reason that �infrastructure architecture style� was

not explicitly stated as one of their system design goals (as declared by Hong and Landay

in [113]) is that context-aware computing is a new research area, where �uniform

abstractions� have not yet been established and �common operations� have not been

clearly identified by the context-aware computing developers� community.

The key advantage of the infrastructure-style system architecture is the independence

of the components. Through pre-configuration or resource discovery, a client can find the

services it needs and then set up a connection. The drawback is that, in a distributed

environment, finding services� location (host and port) and communicating with the

independent services are inherently higher-cost compared with component-tightly-

coupled systems [115].

3.1.1.3 The widget-style system architecture

�Widgets� can be thought of as an extension of device drivers. For example, a scroll-

bar widget on a graphical user interface is a device driver at a higher abstraction level �

the program using it can treat it as an abstract device that visualizes and controls a 1-

dimensional position. The inside-components� interaction is based on messages to the

widgets and callbacks from the widgets.

Traditional widgets belong to some controller; and the widgets, the controller, and

other underlying components are tightly coupled. For example, a GUI (Graphic User

Interface) software package with widgets is compiled together and is an interface to one

operating system. This tight coupling is highly efficient in message dispatching and

callback looping. Because of the tight coupling of the system components, there is less

flexibility for system components� evolution.

71

The Georgia Tech�s Context Toolkit system [22] is regarded as the exemplary

architecture of widget style systems for context-aware computing. As thus, the system is

not flexible enough to evolution [113] and not robust enough to tolerate component

failures [115]. However, this is not necessary the final status, this dissertation uses the

Context Toolkit system as a middleware building blocks to build a service-based system

that is of infrastructure architecture style with some blackboard-style advantages in

context information management.

3.1.2 Improving the Context Toolkit system

Software toolkits are collections of reusable software components suitable to support

a class of applications [106]. For example, to build a GUI (graphic user interface),

toolkits may provide buttons and checkboxes that can handle event and message

dispatching tasks. Using this approach, the �Context Toolkit� system developed by the

Georgia Institute of Technology offers a small set of generic base classes for context-

aware computing.

Previously developed context-aware computing systems were typically built in such a

way that their system architectures heavily depended on the sensors they used. In other

words, the sensors and sensed context information are highly coupled in those systems.

As described in Subsection 1.3.3, the �Context Toolkit� system supports separating

context information from the sensors that sense the context information through using

sensor widgets, modularizing and standardizing software interfaces. Compared with

previous ad hoc approaches, this system design concept makes it easier to replace

existing sensors and/or to add new sensors.

However, as discussed in the previous subsection, the Context Toolkit system can

further evolve. The point is that the Context Toolkit system needs not necessarily be

regarded as a system architecture style of its own � it can be used as middleware to

build a new system architecture style that combines the advantageous features of the

infrastructure and the blackboard system architecture styles.

72

The Context Toolkit system architecture improvements start with sensor fusion

support. Since supporting sensor fusion was not one of the primary goals in its original

design, the Context Toolkit system lacks the means to address the uncertainty and

ambiguity problems, thus it cannot easily handle information overlapping and conflicts

from multiple information sources. To address this problem, described in detail in

Chapter 2, a top-down methodology is proposed.

The first step is to define the context information architecture, where uncertainty and

ambiguity are treated as intrinsic properties of the context information. In this new

information management scheme, beliefs are assigned to all possible values regarding the

given context information pieces. Then, in the second step, sensor fusion mediators use

the Dempster-Shafer evidence combination rule.

To realize this uncertainty management scheme, the Context Toolkit system

architecture is modified as illustrated in Figure 9. Given that, according to a simplified

context model (the information architecture), the context information has been

decomposed into discrete facts and events, the sensor widgets of the Context Toolkit

system are modified to generate only specific contextual observations, the hypotheses,

according to the context information model. All the possible hypotheses are estimated by

the sensors in terms of assigned beliefs (probability mass functions). For each of the

predefined context information items, there is a sensor fusion mediator to combine the

hypotheses� beliefs from multiple sources. Overlapping and cross-verifying information

will increase the overall estimation confidence, whereas conflicting signals will decrease

the estimation confidence.

For every piece of the context information starting from the low-level sensor output,

there is always an associated time stamp to indicate when this information piece was

sensed or deduced. Therefore, even the sensor hypothesis estimates may arrive at any

time in any order, based on the nature of the sensing task and the time stamps, the sensor

fusion mediators can decide whether it makes sense to fuse the information pieces of

different time stamps, and when and how to update the information.

73

The sensor fusion mediator behaves as a special functionally enhanced Context

Aggregator in the original Context Toolkit system. It also keeps and updates a list of all

sensors that can generate its specific hypotheses. The sensor list is acquired from the

system Resource Discoverer at initialization process. Subsequently, for the periodically

activated sensors, their status is known by their occurring reports, and for the event-

triggered sensors, their status can be known via a polling operation.

Dempster-Shafer rule

Dynamic
Context

Database

user - mobile
computer

site context
database server

site context
server

sensor
Widget

SF mediator

Aggregator

SF mediator

Aggregator

context server

Resource
Registry

context server

Resource
Registry

Other
AI algorithms

Interpreter

application application

Other
AI algorithms

Interpreter

 AI algorithms

Discoverer

sensor
Widget

sensor
Widget

sensor
Widget

Figure 9. System architecture to support sensor fusion in context-aware
computing

The sensor widgets and their corresponding sensor fusion mediator form a client-

server configuration, meanwhile the relationship between the sensor fusion mediators and

their corresponding context information server is also client-server. Thus, the modified

system is a service-based infrastructure-style architecture processing information at two

abstraction levels. Consequently, referring back to the discussion in last subsection, it

should have the advantageous characteristics of the infrastructure system architecture

style.

74

The context information servers illustrated in Figure 9 are agents of significant

entities in the context information model, which collect all information regarding those

corresponding entities from the relevant sensor fusion mediators. The context information

servers provide a central storage buffer for their entities. In addition, all context

information is centrally stored in a dynamic context database as shown in Figure 9, as the

context interpreters thus no longer directly work with context widgets. The context

information servers are the central information repository regarding specific objects; as

such the dynamic context database is the central information repository for all available

context. These information repositories resembles a blackboard-style system architecture

where sensor fusion mediators write their output to the repositories and context

interpreters read from and write to the repositories to transfer context information

description formats or to extract higher-level context information via synthesizing

multiple lower-level context information pieces. As discussed in the previous subsection,

this system configuration would have the same advantages as the blackboard architecture

style.

3.1.3 Benefits from the system architecture improvement

Because the original Context Toolkit system design did not address measurement

uncertainty, adopting the uncertainty management scheme (using the Dempster-Shafer

statistics reasoning framework) enables the system to migrate from the yes/no binary

realm into a �statistical reasoning� realm.

Figure 10 shows the enhanced system architecture from an information flow

perspective. It can be seen that information processing occurs at three layers.

The lowest layer consists of the sensor widgets that behave as the sensors� agents �

collecting sensors� raw data to generate hypothesis estimations as predefined by the

system information architecture.

75

The second layer is the sensor fusion mediators that consolidate the hypothesis

estimations from relevant sensor widgets, i.e., re-evaluate associated confidences,

combine compatible evidences and resolve conflicts.

The highest layer is the context information servers and the dynamic context database.

The context information servers collect relevant context information regarding specific

objects and the dynamic context database provides a central storage for all available

context. with the context database, interpreters transfer context description formats and

derive higher-level contexts, and the system provides context information services.

Though not shown in Figure 10, the Dempster-Shafer machinery can also be called to

aggregate information in the context database directly.

context

 Dempster-Shafer Belief Combination

Sensor fusion mediator
lower-level

sensor fusion
algorithm
selection

Dynamic
Configuration
Time interval: T

Sensor list
Updating flag

� �

AI rules

widget

sensor

widget

sensor

widget

sensor

Observations & Hypotheses

Figure 10. Information layered structure and sensor fusion support

System performance benefits, versus the original Context Toolkit system, from the

middle sensor fusion layer, and from some reinterpretation of component functionality is

as follows:

76

o The system can directly support the competitive type of sensor fusion in

information mapping: for most applications, the previously difficult sensor

fusion task is reduced to just recalculating confidence.

o The system gains the advantageous features of the blackboard architecture style:

adopting centralized context aggregation (context information server, backed up

with dynamic context databases) makes it easier for artificial intelligent agents

to access the context data to derive more abstract, higher-level context

information.

o Context information usage is further separated from context data acquisition.

The separation makes applications less sensitive to system hardware change,

e.g., it becomes easier to replace existing sensors or to incorporate new sensors.

o The dynamic context database service makes it easier to form complex context

situational abstraction because all the context data are better organized in a

central repository.

Using the Context Toolkit components as the building blocks, the new system is an

infrastructure-style architecture, and since the Dempster-Shafer algorithm

implementation is an independent module for providing information fusion services in

the architecture, this modularized architectural support of context-aware computing is a

generalizable one.

3.2. Sensor Fusion with Dempster-Shafer Theory

For given application scenarios, with their context information architectures being

defined as discussed in Section 2.1, using the system architecture implementation scheme

discussed in Section 3.1, the system can handle arbitrary sensor having different

resolutions, accuracies, data rates, and data formats. This section shows how to apply

Dempster-Shafer Evidence Theory to effect the sensor fusion, especially to handle

77

conflicts, given that the mapping between the sensors� output to the context information

architecture is already established.

3.2.1 Evidence combination in Dempster-Shafer frame

In the Dempster-Shafer framework, the information sources are called �evidence�,

and a standard process to combine the items of evidence (described in subsection 2.2.3.2)

was established in Shafer�s original work [18]. However, not all Dempster-Shafer

proponents agree with the original evidence combination rule. The controversial point is

how to treat the conflicts among evidence from multiple sources.

3.2.1.1 Challenge to the Dempster-Shafer evidence combination rule

As discussed in Subsection 2.2.3.2, the Dempster-Shafer theory has two main parts:

(1) the association of quantitative �belief� and �plausibility� with hypothesis based on

evidence that partially supports it and additional evidence that partially refutes it; and (2)

an algebra for propagating �belief� and �plausibility� when new evidence is folded into

prior evidence. In the original Dempster-Shafer Evidence Combination Rule EQ. 10, for

any one of the propositions A, the products of the beliefs, whose associated hypothesis

intersection would coincidently be A, are summed together, and the result is then

normalized by the denominator as rewritten in EQ. 13:

EQ. 13 1 () () 1
l l

i l j l
A A

m A m A K
φ′

′
=

− = −∑
∩

where the K stands for the sum of all the probability mass functions that have been

assigned to conflicts, or in other words, K accounts for the beliefs that lead to the

conflicts.

Using this normalization scheme, the Dempster-Shafer evidence combination rule

attributes the conflict-associated probability mass to the null set. Thus, in effect it ignores

the conflict completely [128]. However, some researchers argue that this combination

rule is catastrophically counter-intuitive when the conflict is significant. The most

78

commonly used example by the opponents is an extremely significant conflict in disease

diagnosis case as described following ([128]).

Suppose that a patient is diagnosed by two physicians for neurological symptoms.

The first doctor believes that the patient has either meningitis with a probability of 0.99

(m1(meningitis) = 0.99) or a brain tumor with a probability of 0.01 (m1(tumor) = 0.01).

The second doctor believes that the patient actually suffers from a concussion with a

probability of 0.99 (m2(concussion) = 0.99) but admits the possibility of a brain tumor

with a probability of 0.01 (m2(tumor) = 0.01). So the conflict probability mass is:

EQ. 14

9999.0
99.001.099.099.001.099.0

)()(
)()()()(

21

2121

=
×+×+×=

+
+=

concussionmtumorm
concussionmmeningitismtumormmeningitismK

Now apply the Dempster-Shafer evidence combination rule, either meningitis or

concussion will have zero probability mass, but brain tumor will have 0.0001 probability

mass, and after normalizing it with 1-K, the final diagnosis will conclude that the brain

tumor has the probability mass of 1.0. This is considered as a surprising, or counter-

intuitive, interpretation for combining multiple-source information14.

Significant conflicts may happen most likely in situations where the application�s

frame of discernment is not well defined. As the frame of discernment is essentially

educated guesses supplied by human experts, the human has a tendency to hedge his bet

by assigning a small probability to an unlikely alternative conclusion, which expands the

overall frame-of-discernment.

To address this problem, a number of compromised, or modified, evidence

combination rules have been proposed, for example the one proposed by Yager and the

Inagaki described in the following subsection [131].

14 However, to be fair, if the patient has no background knowledge regarding neurological disorder

but solely relies on the advice of these two equally trusted but contradictory doctors, what can
the patient conclude � the compromised solutions discussed later are also questionable.

79

3.2.1.2 Yager�s and Inagaki�s modification to evidence combination rule

Instead of assigning the conflicting evidence to the null set, thus in effect it ignoring

the conflicts, Ronald Yager suggests assigning the conflicts to the whole frame of

discernment, i.e., the ignorance associated set that contains all possible outcomes of the

situation.

To rationalize this new combination rule, Yager introduced a new term referred to as

�ground probability mass assignment�:

EQ. 15
'

'() () ()
k k

i k j k
A A A

q A m A m A
=

= ∑
∩

which is essentially the Dempster-Shafer�s basic probability mass assignment without the

normalization by (1-K). This allows non-zero value to be assigned to the null set

() () () 0
l l

i l j l
A A

q K m A m A
φ

φ
′

′
=

= = ≥∑
∩

.

To convert the ground probability mass to basic probability mass, Yager adds the

conflict-associated null set ground probability mass to the ignorance-associated frame of

discernment basic probability mass:

EQ. 16)()()()(φφ qqqKmY +Θ=+=Θ

While Yager�s evidence combination rule admits ignorance whenever items of

evidence conflict, it is also criticized as not intuitive as each hypothesis� probability mass

tends to become very small with new conflicting evidences being combined. In the above

classic neurological symptom diagnosis example, Yager�s evidence combination rule will

conclude that the probability of brain tumor is 0.0001, which the critics argue is too small.

Toshiyuki Inagaki tried to take advantage of Yager�s ground probability mass idea,

but instead of assigning conflict entirely to ignorance set, he defines a continuous

parameterized class of operations that subsumes both Dempster-Shafer�s and Yager�s

80

evidence combination rule [128]. Inagaki�s unified evidence combination process can be

expressed in the following equations:

EQ. 17 Θ≠≠⋅+= AAAAqkqAmu ,, allfor)()](1[)(φφ

EQ. 18)(])(1[)()](1[)(φφφ qkkqqkqmu ⋅−++Θ⋅+=Θ

EQ. 19
)()(1

10
Θ−−

≤≤
qq

k
φ

The interpretation is that, while Inagaki�s method firstly uses Yager�s ground

probability mass to combine evidences as in EQ. 15, the result is converted to basic

probability mass in a different way using EQ. 17 and EQ. 18. The parameter k, whose

range is specified in EQ. 19, is used for normalization. At the high extreme, when

)()(1
1

Θ−−
=

qq
k

φ
, Inagaki�s evidence combination rule is the same as the Dempster-

Shafer rule; whereas at the low extreme k = 0, it is the same as the Yager rule.

3.2.1.3 Practical solution to resolve evidence conflicts

Inagaki�s evidence combination method, parameterized by k, may provide a widely

acceptable solution to combine significantly conflicting items of evidence from various

sources. However, the process of choosing an optimal value for the parameter k itself

becomes an open research topic that needs experiments, simulation, or good intuition

with a deep understanding of the specific applications. However, because the make of the

sensor set is volatile, it is difficult to develop a good intuition about the quality of the

sensor-based evidences.

On the other hand, given that the information architecture is already defined (Section

2.1), the frame of discernment is already decided, so it is unlikely that the sensor based

evidence will contain extreme conflicts. Furthermore, since the applications are for

human-computer interactions, even if significant conflicts occur, human intervention is

easily available.

81

The next subsection describes a procedure for attaching a weight to each sensor�s

judgment. This effectively mitigates conflicts among items of evidence.

3.2.2 Weighting means non-democratic voting

The fundamental Dempster-Shafer combination rule essentially requires that all the

items of evidence, or the sensors� reported observations in a sensor fusion system, be

independent, consistent, and rational [18]. In other words, in sensor data fusion

applications, simply applying the Dempster-Shafer evidence combination rule implies

that any two sensors Si and Sj are trusted equally. While the issues of independence and

rationality are critical factors in applying the Dempster-Shafer theory and are still

important research subjects [131], in practice, misplaced trust can produce problematic

outcomes. Here, a practical solution is proposed, which tries to take advantage of

knowledge already gained regarding the sensors� expected performance [31].

In most situations, a sensor�s performance can be estimated to some extent based on

already known factors. Knowledge about the sensor�s general performance (based on its

technical specifications) and its current working status, statistical data about its behavior

evolution as sensors age, and historical performance records (based on a regular stream of

occasional ground-truth observations) can all contribute to estimate the sensor�s expected

performance. Such performance expectation information should be used to decide the

trust of each sensor [35].

This differential trust scheme is realized simply via justifying each sensor�s basic

probability mass assignments before they are submitted to the Dempster-Shafer reasoning

system. Given a sensor Si�s probability mass function mi, its corresponding trust factor wi,

the weight adjustment process is expressed in EQ. 20 as:

EQ. 20
'() () for all : , and

'() () 1
i i i

i i i i

m A w m A A A A
m w m w

= ⊂ Θ ≠ Θ
Θ = Θ + −

82

where, the weighting (i.e., trust) factor wi is in the range between 0.0 and 1.0, the)(Θim

stands for the probability value assigned to the acknowledgement of ignorance, and the

term mi�(A) indicates the adjusted probability mass function to be submitted to the

Dempster-Shafer reasoning system.

As the weighting factor is always equal to or less than 1.0, this differential trust

scheme effectively lowers the basic probability mass assigned to the non-zero hypotheses

by each sensor and correspondingly raises the value assigned to the ignorance set. This

will mitigate conflicts among groups of evidence items. Furthermore, the scheme of

differential trust of sensors makes it convenient for humans to intervene in cases where

mechanical application of the method causes counter-intuitive outcomes.

3.2.3 Dynamic weighting means constant calibrating

When the ground truth is available, e.g., shortly after current measurements or from

an additional information channel, it can be used to make the weight factor wi become a

function of time t to account for the sensor�s expected performance change [150].

A simple but effective practical implementation is to define the weight function wi(t)

(with backward-looking time step t∆) as:

EQ. 21
1

() (1) () n
i i

n
w t c t n tρ ρ

∞

=

= − − ⋅ ∆ ⋅∑

where the ci(t) is the function that describes the correctness of the senor Si�s estimation at

time t:

EQ. 22
1 correct estimation

0 incorrect estimation
()ic t


= 


and the ρ , in the range 0.0 to 1.0, is the �remnance factor� that corresponds to how

rapidly past performance will be discounted.

83

This dynamic weighting approach resembles the Kalman filter method in terms of

dynamic averaging effects, where recent performance plays a more important role and

past performance is gradually forgotten. The dynamic weight wi(t) is largely decided by

the remnance factor ρ : the smaller the ρ is, the faster the past performance is forgotten.

The)1(ρ− term in EQ. 21 normalizes the wi(t) value to the range of 0.0 to 1.0: in the

case that the sensor Si is completely reliable, the right-hand sum will approximate to

ρ−1
1

 and the weight will be equal to 1.0.

To summarize Section 3.2, the original Dempster-Shafer evidence combination rule

requires that all combined evidence groups be independent and consistent. But in practice,

these conditions cannot be guaranteed. The outcome would be especially problematic

when two groups of evidence are in significant conflict. Alternative evidence

combination rules have been proposed by other researchers, but they theoretical

justification is questionable and there are no generally agreed upon practical solutions.

This dissertation argues that, in practice, this is not a big hindrance to applying the

Dempster-Shafer method to sensor fusion for context-aware computing because: (1) the

sensors observations typically do not contain serious internal conflicts, and (2) the

proposed dynamic weighting scheme (of differential trust among sensor observations)

actually mitigates the existing conflicts effectively.

85

Chapter 4.
Concept-Proving Experiments and

Results

Following the top-down methodology described in Chapter 2, this chapter describes

concept-demonstrating experiments and their results. The experimental task is to discern

the instantaneous focus-of-attention of the meeting participants given the video and audio

sensors� judgment (probability mass functions, i.e., belief assignments). The main

purpose of the exercise is to demonstrate the utility of the system architecture

implementation and the effectiveness of the proposed Dempster-Shafer sensor fusion

scheme.

4.1. Application scenario and the sensory data

The application scenario can be described as follows: there is a small round table in a

small meeting room, where a few people sitting around the table participate in a

discussion. For each meeting-participant, the context information of interest is how likely

this meeting-participant�s focus-of-attention is on each of the other meeting-participants.

With the meeting facility instrumented, several meetings were recorded and analyzed

by Rainer Stiefelhagen ([30], [33]). The experimental settings seen by an omni-

directional camera at the center of the table is shown in Figure 11. During meeting

discussion, the omni-directional camera captures the activities of the four participants.

With the omni-directional camera�s panoramic video image sequences, a skin-color-based

86

face detector [32] is used to detect the face locations and then each participant�s head

pose is estimated from the perspective user view via neural network algorithms.

Figure 11. Meeting-participant�s focus-of-attention analysis experimental
settings seen from the central omni-camera

For each meeting-participant, a Gaussian model is assumed to describe the head pan

angle distribution. The head pose estimated from the video image sequences are thus used

to estimate this meeting-participant�s focus-of-attention at each moment.

Besides the panoramic video sequences being recorded during the meeting, there is

one microphone set up in front of each meeting-participant to record who was speaking at

that moment. Based on the relative sound strength, the microphone sensors working

together can sense who is speaking at each moment during the meeting. Based on the

assumption that the non-speakers focus their attention on the speaker, the information

regarding who is talking now and who was speaking in a short-time history then can be

used as a hint to deduce whose focus-of-attention is on whom at the current moment.

87

So a meeting-participant�s focus-of-attention is estimated independently by two

different sensing modalities, one using the omni-directional camera�s image sequences,

the other using the microphone sensors� relative sound strength. Their estimation reports

were recorded in the format of a series of time-stamped three belief-assignments

indicating probabilities that this meeting-participant�s focus-of-attention is on his/her left-

side, straight-ahead, and right-side person. For the recorded meetings, the video tape

footages were hand classified to label the nominal ground truth15.

The sensor fusion challenge is how to combine the information from the two sources

to estimate each meeting-participant�s focus-of-attention more accurately.

4.2. Building the context information architecture

This dissertation advocates using a top-down methodology to build context-aware

computing systems, and to provide system architectural support for sensor fusion. Given

the application requirements, the suggested first step is to build a context information

architecture.

Following the methodology described in Section 2.1, for the context sensing system

with the small conference room�s user activities, or more specifically the meeting-

participants� focus-of-attention, as the major concern, it is natural that the conference

room should be set as the �stage� object.

To illustrate how to build and use the context information architecture using this

focus-of-attention application as an example, the following are some of the tables in the

context database:

STAGE(StageID, StageName);

STAGE_USAGE(StageID, Functionality, UtilizationRule);

EQUIPMENT(StageID, EquipmentID, Status, � �);

15 The ground truth is �nominal� because even human observers will not agree on each

participant�s focus-of-attention 100% of the time.

88

STAGE_USERS(StageID, Time, UserID);

STAGE_USERS_ACTIVITY(StageID, Time, GroupActivityID);

USER(UserID, FirstName, LastName, Sex, BirthDate);

USER_TITLE(UserID, JobTitle, Affiliation);

USER_ACTIVITY(UserID, Time, UserActivityID);

USER_ACTIVITY_MEETING_FOCUS_OF_ATTENTION(UserID, Time,

UserID#1, UserID#2, UserID#3);

where, each item in parenthesis stands for a column attribute in its parent table, those in

italic font style are foreign keys, and those in italic and underlined font style are primary

keys. The domain definition and constraints are not shown here, details can be found in

Appendix B.1.

In the case that there are four people participating in a meeting discussion around the

small conference table as shown in Figure 11, for each meeting-participant, his/her focus-

of-attention hypothesis can be �on the left-side person�, �on the person straight across the

table�, and �on the right-side person�. Correspondingly, regarding each meeting-

participant�s focus-of-attention context information, the observation report from the

omni-directional video camera sensor and from the microphone-set sensor can be in a

format of three probability assignments [pL, pS, pR].

This is a good example that illustrates how the context information architecture

defines the hypotheses or propositions of the context information (�frame of

discernment� in Dempster-Shafer theory) and its format, with which the sensors report

their observations (or, called �evidence� in the Dempster-Shafer theory). The next step is

to build the system architecture that can support combining these evidences.

4.3. Implementing context-sensing architecture

According to the defined context information architecture, the omni-directional

camera video sensor behaves as four image sensors; each one is in charge of sensing a

89

meeting-participant�s focus-of-attention. Similarly, the microphones working together

behave as four sensors; each one is in charge of sensing a meeting-participant�s focus-of-

attention also.

As previously described (Section 3.1), the Georgia Tech�s Context Toolkit system is

the basic building blocks to construct new context-aware computing systems. The

configuration block diagram of a complete system with complicated context information

architecture and context-sensing technologies was illustrated in Figure 9. The specific

implementation of this general architecture, as shown in Figure 12, is significantly

simpler because the scenario of our experiments is correspondingly simple.

Figure 12. Concept-demonstration system architecture implementation using
the focus-of-attention scenario as central application

The partially overlapped blocks in Figure 12 indicate that there are multiple instances

of such components in a practical implementation system if the application scenario

camera
mic mic mic mic

Widget Widget Widget Widget
Widget Widget Widget Widget

SF Mediator SF Mediator SF Mediator SF Mediator

Focus-Of-AttentionFocus-Of-AttentionFocus-Of-AttentionFocus-Of-Attention

Context
(STAGE)

context
database

USERUSERUSEREQUIPMENT

USER USER USERUSER

90

requires more than one meeting-participants� focus-of-attention to be sensed, although the

concept-demonstrating implementation only realizes one such context-sensing

component set.

In this demonstration system, there are two context widgets for the meeting-

participant of current concern. One widget is in charge of video image-sensing modality:

its input may be raw video image raster data or preprocessed visual features, and its

output is an XML encoded ASCII stream consisting of a series of time-stamped focus-of-

attention hypotheses and beliefs. The other one is in charge of audio-sensing modality: its

input is audio waveforms from the microphones, and its output is an XML encoded

ASCII stream consisting of a series of time-stamped focus-of-attention hypotheses and

beliefs too.

Separating concerns of context sensing and context usage was one of the primary

goals in the development of Context Toolkit system. Thus, how the context widgets

interact with sensors to collect raw sensory data is independent of the rest of the system.

Consequently, for the purpose of system implementation demonstration, in principle it

does not make any difference to the rest of the system whether real physical sensors or

artificially simulated sensors are used � as long as the widgets-to-context interface is

well defined and properly implemented. The demonstration system actually uses

simulated sensors that read prerecorded data (as described in Section 4.1) from a text file

as their information source.

As previously described, the audio and video widgets report their estimation of the

meeting-participant�s focus-of-attention in the format of three belief (probability mass

function) assignments. The reports for each participant are aggregated and fused by a

focus-of-attention sensor fusion mediator. The demonstration system only needed to

implement one instance of a focus-of-attention sensor fusion mediator, as the data

streams for the four meeting-participants are processed sequentially by these three agents.

The three software agents in the demonstration experiments are: the audio sensor

widget, the video sensor widget, and the focus-of-attention sensor fusion mediator. They

91

are hosted in three separated computers. These three computers are connected in a LAN.

For the experiment to be repeatable to test various challenges to robustness, the two

sensor widgets use the same data file and the simulated audio and visual sensing

processes are triggered simultaneously at a preset time.

To simulate possible packet loss in data communication over a network, for each

sensor widget, observation reports are not sent out only when a randomly generated

number fails to exceed a specified threshold value. Furthermore, with the initial

triggering being synchronized so that the �correct timing� is known for both widgets,

each sent signal packet�s transmission time is randomly delayed from the �correct time�

within some limit, simulating network communication latency.

With the described experimental setups, many experiments with various conditions of

packet loss and latency have demonstrated the feasibility of the system implementation

methodology; Figure 13 shows some screen-shots of the GUI during an experiment.

Figure 13. System architecture concept-proving demonstration experiment
screen shot, using prerecorded meeting-participant's focus-of-attention data,

92

In Figure 13, the left and right frames are the interfaces of the audio and video sensor

widget respectively, and the middle frame is the sensor fusion mediator interface. The

ground truth is shown in the sensor fusion mediator interface via the face icons. As an

example, the status shown in Figure 13 is that the currently monitored meeting-

participant�s focus-of-attention is at his/her right-side person.

The estimates and related confidences of the sensor widgets and their fused result are

shown as different colored bars-tickers under the face icons. It can be seen that at this

specified time, both audio and video sensors were working properly and their focus-of-

attention reports had arrived at the sensor fusion mediator. Both the audio and video

sensor widget concluded that this meeting-participant�s focus-of-attention was on the

person to his/her right-side, and the Dempster-Shafer method powered sensor fusion

mediator confirmed this conclusion. Thus, the fused result was the same as both

individual estimates but with higher confidence.

The confidence measurement c in these experiments is defined as the biggest

probability number maxp over the next-biggest probability number max 1p − in the

probability mass function mk (from sensor Sk, or from fused result Fk).

EQ. 23 max

max 1

pc
p −

=

The demonstration system provides an optional context information presentation

format, denoted as {H; c}, meaning the proposition or hypothesis H that has the highest

probability number in basic probability mass and the confidence ratio c.

93

4.4. Sensor fusion effectiveness comparison

Rainer Stiefelhagen reported his original sensing meeting-participant�s focus-of-

attention research in [30], where he used an ad hoc weighted sum of probability method

to fuse the video and audio sensor focus-of-attention outputs:

EQ. 24),,,|Foc()Pan|Foc()1()Foc(1
S

nttt
SSS AAAPPP −−+−= !αα

In EQ. 24, regarding a meeting-participant�s focus-of-attention FocS, P(FocS | PanS) is

the video sensor probability estimation given the observed head pan angle PanS, and

P(FocS | At, At-1, �, At-n) is the audio sensor estimated probability estimation given the

observed who-has-been-talking facts.

The relative audio/video weight parameter]0.1,0.0[∈α in EQ. 24 was arbitrarily

chosen as 0.5 by Stiefelhagen. He reported that the linearly combined estimation method

consistently yielded more accurate results than what could be achieved from either single

source.

Using this linearly weighted combination of audio and video probability estimates

method as a baseline, several alternative sensor fusion methods were tested in this

dissertation for comparison. The methods include the plain Dempster-Shafer method, the

Weighted Dempster-Shafer method (subsection 3.2.2), and the dynamically weighted

Dempster-Shafer (subsection 3.2.3) method. For the four sets of prerecorded focus-of-

attention analysis experimental data, each of the meeting-participant�s audio and video

focus-of-attention estimation is fuse, and the results are shown in Table 7.

Table 7 shows the percentages that the non-fused and fused estimations have

correctly predicted the meeting-participant�s focus-of-attention. In the weighted

Dempster-Shafer method, the total correctness rate for each meeting-participant in each

experiment is used as its corresponding weight. The dynamically weighted Dempster-

Shafer method uses the same weighting scheme initially but dynamically adjusts the

weights using the remnance factor 9.0=ρ as described in EQ. 21 and EQ. 22.

94

Table 7. Sensor fusion method comparison with prerecorded focus-of-
attention experimental data

 person valid
frames audio video linear sum DS weighted

DS

dyna.
weighted

DS

#0 1229 55.6% 70.5% 70.1% 70.0% 71.4% 74.9%

#1 1075 61.5% 66.2% 69.8% 70.0% 69.4% 73.0%

#2 1098 66.1% 78.3% 80.2% 80.8% 80.2% 80.9%

Ex
pe

rim
en

t S
et

2

#3 991 68.8% 60.3% 65.6% 66.6% 70.0% 72.1%

#0 768 73.8% 74.4% 76.8% 77.0% 77.0% 80.1%

#1 956 67.6% 68.5% 72.0% 72.3% 72.1% 77.0%

#2 1006 73.2% 83.0% 84.1% 84.2% 83.9% 85.1%

Ex
pe

rim
en

t S
et

5

#3 929 53.3% 67.9% 75.7% 76.9% 73.2% 79.1%

#0 799 59.1% 70.6% 71.2% 71.5% 71.0% 74.5%

#1 751 63.3% 84.6% 85.5% 85.8% 85.2% 86.2%

#2 827 75.4% 82.2% 83.3% 84.3% 83.4% 83.8%

Ex
pe

rim
en

t S
et

6

#3 851 60.8% 80.6% 81.9% 82.3% 81.7% 82.8%

#0 653 73.2% 84.2% 85.0% 85.0% 84.2% 86.2%

#1 653 57.3% 53.5% 54.2% 54.2% 54.5% 63.1%

#2 681 72.7% 65.6% 69.5% 69.3% 70.3% 76.1%

Ex
pe

rim
en

t
A

uf
na

m
e

2

#616 435 85.3% 75.6% 78.2% 78.4% 79.8% 83.9%

total 13702 64.6% 72.8% 75.1% 75.4% 75.4% 78.4%

For these experimental data sets, the linear combination of probabilities method has

an overall fused estimation correctness rate of 75.1%. The classic Dempster-Shafer

16 This �#6� appears as shown in the historical data set. The surmise is that his meeting might have

more than four participants but only four of them appeared in the recorded period.

95

method produces a slightly higher estimation accuracy of 75.4%. The weighed Dempster-

Shafer method shows no significant improvement in these experiments. The dynamically

weighted Dempster-Shafer method shows an apparently significantly higher estimation

accuracy rate of 78.4%. There is significant case-to-case (experimental run and meeting

participant) variation, but there seems to be generally consistent improvement from linear

probability combination method, to classical Dempster-Shafer method, weighted

Dempster-Shafer method, and to dynamically weighted Dempster-Shafer method.

By carefully examining the focus-of-attention estimation data from the two sensing

modalities, it is clear that the video sensor is usually (12 out of 16 cases) more accurate

than the audio sensor in estimating the meeting-participant�s focus-of-attention. Therefore,

a better question than �how much can sensor fusion improve estimation accuracy over the

best sensor alone� to ask is �what fraction of the best sensor�s mistakes can sensor fusion

correct�, because the latter reflects �improvement� versus �possible improvement room�

explicitly.

Let n0 stand for the total number of valid cases in an experiment, nv stand for the

number of cases in which the video sensor correctly estimated focus-of-attention, and nf

stand for the number of cases in which the fused result correctly estimated the focus-of-

attention. Then, out of the mistakes that the best sensor made n0 � nv, the fraction pimpv

that the sensor fusion method corrected is:

EQ. 25
0

f v
impv

v

n n
p

n n
−

=
−

Figure 14 provides a graphic representation of effectiveness, according to the

measure of EQ. 25, of the four sensor fusion methods.

96

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
focus-of-attention: meeting experiments - user subject

pe
rc

en
ta

ge
 re

ga
in

ed
 fr

om
 th

e
vi

su
al

 s
en

so
rs

' l
os

s
linear probability combination standard Dempster-Shafer
Weighted Dempspter-Shafer Dynamically weighted Dempster-Shafer

Figure 14. Sensor fusion effects in terms of correcting visual sensor
misclassification

4.5. Conclusions from the experiments

4.5.1 Experiments testing methodology and system architecture

A concept-demonstration employing the described top-down methodology for

building context-aware systems was implemented. Referring back to Section 3.1, there

are three software architecture styles in use or under development in this research and

application area: blackboard, service infrastructure, and widget style. Each style has

relative advantages and disadvantages. This dissertation suggested an approach that uses

the widget-style Context Toolkit system as the building blocks ― called �middleware� in

the software industry ― to configure a system that is of service infrastructure architecture

97

style, but also delivers some blackboard-style advantages. The system implemented

inherited all communication mechanisms from the Context Toolkit. It adds a �fusing�

module that consists of a sensor fusion mediator sub-module and a sensor fusion

algorithm sub-module. This implementation provides functional advantages over the

original Context Toolkit system. Details and possible future extensions are described in

Appendix A.2.

In the experiments conducted, the context widgets and sensor fusion mediator were

separately hosted in a Java platform built on top of two operating systems, SGI IRIX 6.5

and Microsoft Windows 2000 Professional. With the sensors generating data every 3

seconds, and a simulated random network latency taking up of to 2 seconds, the focus-of-

attention context-aware application system that was developed handled the data

processing robustly.

Successfully fulfilling the desired context sensing and information management

functionalities demonstrated that this approach is practical and useful. The system meets

the challenges that sensor set is dynamic and joint probability distribution is not available.

It is robust to sensor change or failure, and it is easily scalable to accommodate new

sensors and context items.

4.5.2 Experiments testing sensor fusion algorithm effectiveness

In the experiments conducted, the previously published linear weighted probability

combination, and the new standard Dempster-Shafer, the weighted Dempster-Shafer, and

the dynamically weighted Dempster-Shafer sensor fusion algorithms were compared for

fusing user�s high-level focus-of-attention reports delivered by audio-based and video-

based sensors.

With regard to sensor fusion effectiveness, from the data in Table 7, it is concluded

that: any of the four sensor fusion algorithms achieves a noticeable improvement in

correctness rate over any single sensor modality. The linear weighted probability

combination method, the standard Dempster-Shafer method, the weighted Dempster-

98

Shafer method, and the dynamically weighted Dempster-Shafer method systematically

show progressive performance improvement, but the absolute improvement from worst to

best is too small to be of practical significance.

However, one thing especially worth mentioning is that, while the relative

performance of the other three methods varies from one to another of the sixteen

experimental data sets, the dynamically weighted Dempster-Shafer method outperforms

the other three methods in all but one case. The dynamically weighted Dempster-Shafer

method achieves this performance advantage by adaptively incorporating knowledge of

sensors� recent success or failure. Thus, if ground truth is available, albeit after some

delay, the dynamically weighted Dempster-Shafer algorithm is clearly the sensor fusion

method of choice.

The overall prediction correctness rate is systematically but not significantly

improved in the four progressively more sophisticated sensor fusion methods investigated,

however, further comparing the fused results with their originals can reveal additional

information that is interesting and useful. For example, if at some instant both audio and

video context widgets estimate that a meeting-participant�s focus-of-attention is on the

person to his/her left, then the Dempster-Shafer fusion method seemly just confirms the

proposition. But in-depth analysis reveals that the fused judgment has a much higher

confidence estimate than either individual judgments, as shown in Figure 12. Similarly if

the audio context widget estimates with weak confidence that the meeting-participant�s

focus-of-attention is on the person to his/her left, whereas the video context widget

concludes with a strong confidence that the focus-of-attention is on the person to his/her

right, then the Dempster-Shafer method will agree with the higher-confidence video

context widget�s opinion, but the fused conclusion will be with a correspondingly lower

confidence.

99

Chapter 5.
Adaptation of Dempster-Shafer

Sensor Fusion Method

The Bayesian inference network has been regarded as the classical, or even the

canonical, method to deal with statistical inferences in sensor fusion applications. This

chapter first describes different interpretations of Bayesian and Dempster-Shafer

formalisms to give a better understanding about their similarities and their distinct

interpretations. This helps to answer the question of �under what situation, is each

method more appropriate for sensor fusion?� Then, using artificially generated simulation

data, the performances of different methods are compared, thus, beside the theoretical

discussion, the numerical results can provide a more intuitive explanation regarding how

these methods work under different conditions.

5.1. Methodology and theoretical explanation

5.1.1 Objective and subjective Bayesian statistics

The term �probability� can have different interpretations 17 , 18 [154]. The most

commonly used, or the so-called �classical�, interpretation is that, it is the ratio of the

17 Besides the subjective and objective interpretations described in this subsection, there is also

another one called �logical probability� which has been generally abandoned.
18 Furthermore, statistics can be built based upon a few axioms, either the �subjective� or the

�objective� can go with different axioms ([141]Chapter 2).

100

number of times that a particular outcome is observed to the total number of possible

outcomes in a repeatable experiment. The �long run�, or �empirical� probability, of an

outcome is the limit of the proportion of times the event will occur as the number of trials

in the repeatable (or conceptually repeatable) experiment increases towards infinitum

[141]. This interpretation is often referred to as �frequency / frequentist� or �objective�

probability.

The frequentist interpretation of probability was dominant in the 1950s ([143] p.2),

perhaps because it matches the ethics that being non-emotional, impartial, and objective

should be the basic scientific merit. The frequentist probability has become the standard

of correctness with many scientists as their reference for experimental design and data

analysis, where the techniques of hypothesis test and significance estimation etc.

comprise the bulk of the so-called methods of statistical inference ([140] Chapter 5).

In contrast to the frequentist interpretation, probability is also regarded as an

individual�s personal degree of belief about some proposition or about any quantity

unknown to the person making the probability statement. This personal probability

interpretation is also referred to �subjectivist/subjective� or �epistemic� probability.

The subjectivist interpretation is now believed to be more inclusive and consistent. It

does not require the process to be repeatable practically or conceptually, and this concept

applies to a large number of compelling applications, e.g., as trying to answer a question

like �what is the probability that Mary will attend this afternoon�s seminar?� In fact,

according to the proponents of subjectivist interpretation, frequentist probability is only a

special case of subjectivist probability.

The Bayesian approach is free to interpret a probability as a frequency probability if

one thinks it is appropriate in a given situation, but in other situations, the probability can

be interpreted as a purely personal belief19 . As described in Subsection 2.2.3.1, the

Bayesian inference rule EQ. 5 provides a formal way to combine prior probability

19 As a matter of fact, there exists a third interpretation, the so-called �objective Bayesian�, which

sees probability as a rational degree of belief, not as the degree of belief of an actual person
([143] Chapter 2).

101

distribution with new observations to produce a posterior probability regarding a

statistical process. While the new observations are generally regarded as �objective� or

�objectively determined� facts, the prior probability distribution is subject to different

interpretation [138].

So corresponding to the subjective and objective interpretation of probability, the

Bayesian inference rule can also have subjective and objective interpretation although the

original interpretation (until the early part of the twentieth century) was subjective. As it

has become increasingly clear that the frequentist approach to scientific inference is

fraught with technical problems and inconsistencies ([140] Chapter 5), scientists schooled

in the Bayesian methodology have been departing from the frequentist approach and

returning to the subjectivist approach since the 1970s ([143] Chapter 1, Chapter 2).

This work takes the subjective interpretation of the Bayesian theorem, and the

Dempster-Shafer reasoning system is generally regarded as a subjective approach,

comparison of the two subjective methodologies would answer the question of under

what situations which method is more appropriate to be used.

5.1.2 Different explanations of the Dempster-Shafer theory

The Dempster-Shafer belief functions provide a new way of using mathematical

probability models to quantify subjective judgments in that probabilities for related

questions are assessed and then their implications are considered ([18], [143] Chapter 7).

The potential of this approach was soon recognized and many interpretations of it were

proposed ([129], [130], [144]), most interpretations try to use a more generalized

framework to integrate various sensor fusion techniques together, where the Dempster-

Shafer method is regarded only as a special case. The relatively influential and well-

developed interpretations are the random set theory ([56], [57], [58], [64], [139]), the

generalized Bayesian ([143] Chapter 7), the upper and lower probability ([132], [133],

[146]), and the transferable belief model ([144], [145]).

102

Of all the Dempster-Shafer interpretations, the random set theory is perhaps the most

popular. While the underlying mathematics of random set theory is rather complex, its

core concept can be summarized by the so-called �finite-set statistics�, which has its

element data consisting of finite sets of ordinary observations rather than individual point

or vector observations ([64] page 7). The probability density function in finite-set

statistics describes the comprehensive statistical behavior of an entire sensor suite, thus

sensor data fusion algorithms may be interpreted as statistical estimators of a finite-set

parameter.

Within the context of random set theory, the Dempster-Shafer theory of evidence can

be formally expressed (the probability measure is no longer additive because one subset

may include another subset), and the Dempster-Shafer evidence combination rule would

correspond to finding the probability characteristics of the intersection of non-empty

independent random sets. Referring back to EQ. 10 in Subsection 2.2.3.2, the numerator

denotes the intersection of non-empty independent random sets, being counted together,

whose summation represents the cumulative degree to which the two bodies of evidence

do not contradict each other.

When all masses occur on singleton subsets, then the belief function is an additive

measure and the evidence combination formula is equivalent to the Bayesian inference

formula with conditional independence. From this perspective, the Dempster-Shafer

theory is also regarded as a generalization of the Bayesian formalism. To more formally

state it, Shafer points out that the Bayesian formalism has two elements, the idea of a

probability and the rule of conditioning, and both these elements have their place in the

belief-function formalism ([63] Section 7.1). A Bayesian probability measure is a special

kind of belief function in the Dempster-Shafer system, and conditioning a belief function

on a subset of its frame is equivalent to combining it with a special belief function that

represents the knowledge that the subset is true.

At its very beginning stage, the Dempster-Shafer theory was developed as a theory of

lower and upper probabilities by Dempster in his effort to reconcile Bayesian statistics

103

with Fisher�s fiducial argument20 ([130] Preface). Roughly speaking, lower and upper

probability is used to denote the low and high boundary respectively in a statistical model

such that the situations where the probability of events itself is uncertain can be handled.

The Dempster-Shafer theory can be regarded as a special case of lower and upper

probability system in that the belief and plausibility are the lower and upper probability

respectively21.

There are variants of Dempster-Shafer theory interpretations too. For example, the

transferable belief model is very different from other interpretations in that it is a two-

level model [144], which is closer to Shafer�s original interpretation in his book [18]. The

�credal� level is intended to model subjective personal beliefs and it is completely

dissociated from any probability functions, whereas the �pignistic� level derives

probability distributions from the credal state to support making reasonable and

consistent decisions. These do not now seem to provide any additional utility for solving

sensor fusion problems addressed in this dissertation.

Many interpretations of Dempster-Shafer theory may conceptually add complexity,

but they actually do not necessarily add any technical difficulty. In reality, from the

practical utilization perspective, they only beneficially add flexibility. The random set

theory interpretation is slightly favored in this research work, although other

interpretations are not rejected provided the interpretations help to realize consistently

and rationally behaved sensor fusion algorithm implementation.

20 �Roughly, Fisher�s methods and outlook were non-Bayesian (in particular, �frequentist�) � .

Fisher�s infamous �fiducial argument� � was Fisher�s attempt to provide a �frequentist�
alternative to Bayesian account of inverse probability.� Book review by Branden Fitelson
(http://www.fitelson.org/howie.pdf). More information can be found in the University of
Adelaide Library�s Collected Papers of R.A. Fisher, Relating to Statistical Mathematical Theory
and Applications, http://www.library.adelaide.edu.au/digitised/fihser/stat_math.html.

21 Shafer�s book ([18] Preface) �offers a reinterpretation of Dempster�s work, a reinterpretation
that identifies his lower probabilities as epistemic probabilities or degrees of belief, takes the rule
for combining such degrees of belief as fundamental, and abandons the idea that they arise as
lower bounds over classes of Bayesian probabilities.�

104

5.1.3 Where is Dempster-Shafer method more suitable?

From the discussions thus far, it is clear that both the Bayesian inference method and

the Dempster-Shafer method are based on mathematical probability, but both sides are

able to accept subjective judgments as probabilities. The Dutch book argument has been

used in history for conservatively checking the consistency of human probability

judgments and for proving the rationality and justification of the Bayesian method22

([137], [142]), and it has been proved that the Dutch book argument cannot be used to

criticize the Dempster-Shafer method [145]. Therefore, �We believe both formalisms

(Bayesian and Dempster-Shafer) are useful. Their usefulness in a particular problem

depends on the nature of the problem and the skill of the user� ([143] page 482).

Table 8 lists the situations where the Bayesian method or the Dempster-Shafer

method is more suitable to be used as the sensor fusion algorithm. More detailed

explanations follow.

In the Bayesian framework as well as in classical statistics, all events or hypotheses

are assumed mutually exclusive, meaning that only one hypothesis can be true at any

given time. To the contrary, the Dempster-Shafer framework is suitable to apply to

situations where information pieces of different granularity need to be considered at the

same time. For example, if a face recognition system has to deal with information, like

{�male�, �female�, �Tom� (�Tom� ⊂ �male�), �John� (�John� ⊂ �male�), �Mary�

(�Mary� ⊂ �female�), etc.}, simultaneously, then using the Dempster-Shafer formalism

may be a better choice. As a more specific example, in an image-based people-tracking

system, after two already identified people approach closely and separated gain, the

tracking system may have lost the exact identity of each moving person but still has

22 The basic idea is briefly explained here. Suppose a bookie sets odds on all subsets of a set and

accepts bets in any amount on any combination of the subsets. Unless the odds are computed
from a prior probability and updated according to the Bayesian inference rule, a Dutch book can
be made such that anyone can refer to it to make a series of bets against the bookie to win the
game no matter what may come out.

105

vague information as �this is either person-A or person-B�. In such situations, the

Dempster-Shafer method is more suitable to be used.

Table 8. Situations where Bayesian or Dempster-Shafer method is more
suitable for sensor fusion

Bayesian method preferred Dempster-Shafer method preferred

All hypotheses are mutually exclusive Information pieces of different

granularity are included, some hypotheses

may include others

Prior probabilities of all hypotheses are

known, and new observations

unambiguously related to probability

Prior probability distribution is unknown,

and/or new observations partially

correlate to probability distribution,

ignorance needs to be counted

Joint probability distribution is known, or

observations are conditionally

independent

Joint probability is not known,

observations are independent

Direct correlation with probability helps

maximizing expected utility

Difficult to correlate evidence with

probability distribution, thus weak in

decision-making support

Corresponding to the fact that all hypotheses in a Bayesian framework are mutually

exclusive, assigning a probability number p to one hypothesis implies that (1 � p) is

106

assigned to this hypothesis�s complement. Therefore, the Bayesian inference system is

suitable to be used in situations where all hypotheses� prior probabilities are known, and

new observations would directly contribute to probability distribution updating. To the

contrary, in the Dempster-Shafer formalism, the concepts of negation and ignorance are

clearly separated, meaning that when probability p is assigned to a hypothesis it does not

imply anything regarding how the remaining (1 � p) is assigned. Therefore, the

Dempster-Shafer method is especially suitable to be used in situations where hypotheses�

prior probability distribution is not available, observations cannot directly relate to

complete probability assignment, and partial ignorance regarding the hypothesis

probability distribution has to be counted. As an example, if an application needs to

describe information such as �it is very likely that (e.g. with a confidence of 0.8) this

person is not Tom but no further information regarding this person�s identity is available

at this time�, then the Dempster-Shafer method may be more suitable to be used.

As described in subsection 2.2.3.1, when observations from multiple sensors are used

to evaluate the probability of a hypothesis using EQ. 5, the symbol E represents the joint

observation over all sensors. This means that the Bayesian method should be used in

situations where both the hypotheses� prior probability distribution and the sensors� joint

distribution are available. This practically implies the situations that the being observed

process is stable and the sensors� set configuration is stable. In such cases, the Bayesian

method can maximally use all available information. However, for situations where the

available sensor set�s configuration is highly dynamic, so the joint probability distribution

of the sensor observations is unavailable, then probably the Dempster-Shafer method is

more suitable to be used for sensor fusion.

The reason that the Bayesian inference method has been widely used in numerous

scientific and social applications� data analysis is that it directly connects mathematical

probability concepts with human subjective judgments. Thus, it can be very easily

incorporated into utility functions to support making judicious decisions. For the

Dempster-Shafer framework to be used to solve reasoning problems and to help make a

decision, a deep understanding of the application situations and special skills are often

107

required to correctly correlate the observed evidence and the hypothesis probability

distribution of interest. This is perhaps the biggest hurdle to overcome for the Dempster-

Shafer theory to be widely used practically.

Besides the properties illustrated in Table 8, in contrast with the classical Bayesian

inference framework, for its practical usage, the Dempster-Shafer method has a very

good property that should be noted � its computational implementation is very simple

and robust compared to many other sensor fusion methods. In a data fusion process, the

initial probability mass function (from the first arriving reports) data are kept in memory

first. Referring to EQ. 10, for the arriving probability mass function mi from sensor Si, all

the evidence combination rule does is to calculate the numerical products for each

possible proposition (intersection of the newly arriving and the original probability mass

function in memory) and then to normalize the results. Since the probability mass

function data in memory are always valid and can be updated with newly arriving sensory

data at any time, obviously, this sensor fusion process is very robust to sensor

configuration change. If the given sensor set is predefined, this additive property ensures

that the final sensor fusion result will not be affected by the sensory data�s arrival order.

5.2. Experiments with artificially generated data

Analyzing the prerecorded experimental data (Section 4.4) provides a good feeling

for how the sensor fusion methods work. Given the theoretical comparison in the last

section, testing the sensor fusion algorithms against data with known probability

distribution would help making the conclusions more clear and convincing.

5.2.1 Design of simulated experiments

For the comparison of sensor fusion algorithms to be objective and convincing, the

experiments should test a typical sensor fusion procedure that can represent a large range

of data synthesizing situations. Without losing generality, a scenario of focus-of-attention

108

estimation with three head-pan-angle detection sensors is simulated in the imagined

experimental settings.

Figure 15. Simulation of a focus-of-attention estimation scenario

Suppose at time t, the meeting-participant�s head pans an angle)(tθ complying with

one of the Gaussian distribution functions],45[0σ°−N ,],0[00σ°N ,],45[0σ°N :

EQ. 26 Lθ ~],45[0σ°−N

EQ. 27 Sθ ~],0[00σ°N

EQ. 28 Rθ ~],45[0σ°N

0

0.02

0.04

0.06

0.08

-45° -30° -15° 00° 15° 30° 45°

0

.02

.04

.06

.08

-90° -75° -60° -45° -30° -15° 00° 15° 30° 45° 60° 75° 90°

0

0.02

0.04

0.06

0.08

-90° -75° -60° -45° -30° -15° 00° 15° 30° 45° 60° 75° 90°

head pan angle distribution

sensor noise

observed head pan angle distribution
straight

right left

FOC left FOC rightFOC straight

109

if his/her focus-of-attention is on the left-side, the straight-forward, or the right-side

meeting-participant respectively.

Because of sensor Si�s measurement noise at time t: ni(t) ~ Ni(t), which has a Gaussian

distribution N[dfti(t), σi] (dfti(t) is the drifting effects in measurement) independent of the

angle being measured

EQ. 29)(tni ~]),([ii tdftN σ ,

the sensor Si observed pan angle will be

EQ. 30)()()(tntt ii +=θθ .

Because the observed head pan angle is the �true� head pan angle plus measurement

noise, sensor Si observation complies with the combined probability distribution function

as:

EQ. 31)(tLiθ ~]),(45[2
0

2 σσ ++°−
i

tdftN i

EQ. 32)(tSiθ ~]),([2
00

2 σσ +
i

tdftN i

and

EQ. 33)(tRiθ ~]),(45[2
0

2 σσ ++°
i

tdftN i

when the meeting-participant�s focus-of-attention is on the left-side, the straight-forward,

or the right-side person respectively.

110

5.2.2 Simulation data and data processing

In this simulated focus-of-attention sensing scenario, assuming a meeting-

participant�s focus-of-attention has a probability23 of 0.3, 0.4, and 0.3 on the left-side, the

one straight-across the table, and the right-side person respectively, the �ground truth�

can be generated randomly, and the result is recorded as a series of �left�, �straight�, or

�right� data. To simulate the focus-of-attention changing over time, each occurrence of

the ground truth information is then repeated 10 times per second for a random-length (in

the range of 5 to 15 seconds) duration, this way, the ground truth time series is generated.

Given the ground truth defined in the time series, complying with the probability

distribution function EQ. 26, EQ. 27, and EQ. 28 with °= 50σ and °= 1000σ , the

meeting-participant�s head pan angle θ is generated for the time instance.

For every generated instantaneous head pan angle)(tθ , sensor Si will have its

observed angle according to EQ. 30. For two typical sensor fusion situations, where (I)

the sensors are of the same precision and (II) the sensors are of conspicuously different

precision, with different relative drifting dfti(t) properties, each sensor Si observed pan

angle will be generated as xi(t).

The sensor Si observed head pan angle xi(t) complies with one of the probability

distribution functions EQ. 31, EQ. 32, or EQ. 33 corresponding to the situation that the

meeting-participant�s focus-of-attention is on the left, straight, or right person

respectively. But because the drifting effect in measurement dfti(t) cannot be easily

estimated, the sensor Si would reasonably estimate the focus-of-attention as if there were

no drift. Therefore, given the head pan angle is observed as xi(t) (depicted by x for

brevity), the sensor Si�s rational focus-of-attention estimation can be calculated based on

the relative strength of its assumed probability density function {fiL(x), fiS(x), fiR(x)} as

illustrated at the bottom part of Figure 15:

23 This is the prior probability {pL0(t), pS0(t), pR0(t)} of the focus-of-attention event; to get a fair

comparison, suppose this information is not known to any sensor fusion method.

111

EQ. 34

)()()(
)()(

)()()(
)()(

)()()(
)()(

xfxfxf
xfxp

xfxfxf
xfxp

xfxfxf
xfxp

iRiSiL

iiR
iR

iRiSiL

iiS
iS

iRiSiL

iL
iL

++
=

++
=

++
=

where the three numbers {piL, piS, piR} correspond to the sensor Si assigned probabilities

that the focus-of-attention is on the left, straight, or the right person.

Since the three sensors� observations are conditionally independent, their joint

probability distribution equals to the product of all three probability distribution functions.

Using {p0L, p0S, p0R} to denote the ground truth probability distribution, then Bayesian

inference method can be used to calculate the posterior probability given the three

sensors have observed x1(t), x2(t), and x3(t) respectively. Suppose the prior probability

distribution is not known, then according to conventions in Bayesian inference practicing,

an even distribution will be assumed:

EQ. 35
3
1

0000 ==== pppp RSL

Under these above described conditions, omitting the derivative process, the

Bayesian inference method would generate sensor fusion results as:

EQ. 36

)()()(1),,|(

)()()(1),,|(

)()()(1),,|(

3322112
0

321

3322112
0

321

3322112
0

321

xpxpxp
p

xxxRp

xpxpxp
p

xxxSp

xpxpxp
p

xxxLp

RRR

SSS

LLL

=

=

=

By examining the Bayesian inference formula EQ. 36 carefully, one will notice that it

is directly proportional to the Dempster-Shafer evidence combination rule, and after

taking account of the normalization process, they will produce exactly the same results.

112

This comparison result can be expected because this is a special situation that the

observations of all sensors are conditionally independent and their reported estimations

are singletons, i.e., the meeting-participant�s focus-of-attention can be on only one of the

three persons.

Because the Bayesian inference method and the Dempster-Shafer evidence

combination rule are going to produce exactly the same results, only the Dempster-Shafer

method calculations are numerically carried out in the following comparisons.

5.2.3 Experiments and their result analysis

Two typical sensor fusion situations regarding a sensor�s precision variation are

simulated in the following numerical experiment sets: (I) the sensors are of the same

precision and (II) the sensors are conspicuously of different precision.

5.2.3.1 Case I: sensors are approximately of the same precision

(°=== 20321 σσσ)

The experimental duration is chosen for about 60 minutes (the sensory observation

time series has a total of about 36,000 data sets, as each of the three sensors will generate

10 reports per second), since measurement drift is the most difficult part to be properly

handled in real practices, the following typical sensor measurement drift effects are

experimented:

I. the sensor�s drift cycles are relatively long compared with the experiment duration:

dft1(t) = 5°·sin(0.001·t), (drift cycle: ~105 minutes);

dft2(t) = 5°·sin(0.0007·t), (drift cycle: ~150 minutes); and

dft3(t) = 5°·sin(0.0003·t), (drift cycle: ~345 minutes);

II. The drift cycles are relatively short:

dft1(t) = 5°·sin(0.01·t), (drift cycle ~10.5 minutes);

113

dft2(t) = 5°·sin(0.007·t), (drift cycle ~15 minutes); and

dft3(t) = 5°·sin(0.003·t), (drift cycle ~35 minutes);

III. The sensors� drift amplitudes are relative large compared with their built-in

measurement noise:

dft1(t) = 10°·sin(0.01·t);

dft2(t) = 5°·sin(0.007·t); and

dft3(t) = 15°·sin(0.003·t).

With the above-specified sensor drift situations, two random sets of experimental data

are generated for each situation, and four sensor fusion methods are applied to process

the data. The results are shown in Table 9.

Table 9. Comparison of sensor fusion algorithm effectiveness using simulated
sensory data (sensor noise °=== 20321 σσσ)

Drift I Drift II Drift III sensor
fusion

#1 #2 #1 #2 #1 #2

sensor S1 only 76.8% 77.2% 75.8% 75.4% 77.5% 72.8%

sensor S2 only 71.9% 71.9% 70.4% 70.3% 72.1% 68.6%

pa
ra

m
et

er
s

sensor S3 only 72.2% 71.6% 70.1% 70.5% 70.0% 68.0%

linear sum 78.9% 79.1% 77.6% 77.8% 79.0% 75.4%

DS 80.3% 80.6% 78.9% 79.4% 80.3% 76.9%

weighted DS 80.4% 80.8% 79.0% 79.4% 80.7% 76.8% re
su

lts

dyna. Weighted DS 80.5% 80.6% 79.4% 79.6% 82.1% 78.2%

114

The numbers in percentage format in Table 9 are the fractions of the events in which

the meeting-participant�s focus of attention is correctly estimated, the columns denote the

simulated sensors� drift property and experiment data sets, and the rows denote individual

sensors� (Sensor S1, S2, and S3) performance and the effectiveness of sensor fusion

methods. The �linear sum� means the probability linear combination with 5.0=α ; the

�DS� means standard Dempster-Shafer method; the �weighted DS� means weighted

Dempster-Shafer method with the weights derived from sensors� overall estimation

correctness ratio; and the �dynamically weighted DS� means Dempster-Shafer method

with adaptively dynamic weighting schemes with remnance factor set to 0.9.

The experimental results in Table 9 largely confirm the conclusions derived from

those experiments with prerecorded data as described in the Chapter 5. Firstly, for the

four sensor fusion algorithms, with the parameters being set to typical values (linear

combination relative weight 5.0=α and the remnance factor 9.0=ρ in dynamically

weighted Dempster-Shafer method), there is not much difference regarding the

effectiveness of estimation correctness rate. Secondly, roughly speaking, the linear

combination method, the standard Dempster-Shafer method (which has the same result

from Bayesian method), the weighted Dempster-Shafer method, and the dynamically

weighted Dempster-Shafer method progressively have marginally better performances.

Because the sensor S1 statistically outperforms the other two sensors in focus-of-

attention estimation accuracy and reliability, it would be intuition-building to examine at

what percentage each of the four sensor fusion methods could statistically compensate for

its errors.

Let n0 stand for the total number of valid cases in an experiment, n1 stand for the

number of cases that the best sensor S1 has correctly estimated focus-of-attention, and nf

stand for the number of cases that the fused result has correctly estimated the focus-of-

attention. Then, out of the mistakes that the best sensor made, statistically, the percentage

pimpv that the sensor fusion method can correct is:

115

EQ. 37 1

0 1

f
impv

n n
p

n n
−

=
−

The measure of improvement pimpv afforded by the sensor fusion method statistically

out of the mistakes made by the best sensor S1 is illustrated in Figure 16.

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6
experiments

se
ns

or
 fu

si
on

's
 lo

ss
/g

ai
n

fo
r

S
1

m
is

se
d

da
ta

linear probability combination
standard Dempster-Shafer
weighted Dempster-Shafer
dynamically weighted Dempster-Shafer

Figure 16. Sensor fusion effects in simulation with sensors being of the same
precision but having different drift effects

5.2.3.2 Case II: sensors are conspicuously of different precision

(°= 51σ , °= 102σ , and °= 203σ)

Table 10 shows the experimental results with the sensors having the same drift

properties as the previous subsection (Subsection 5.2.3.1) described but having

conspicuously different precision characteristics.

116

If one sensor is consistently doing better (of higher precision, more accurate, more

reliable) than any other sensors in the system, and there is no way for their lower-level

sensory data to be merged, then the traditional sensor fusion method (the Bayesian

method) can not improve on the result from the best sensor in a statistical sense. This

situation is illustrated in Table 10, where with a large number of repeated experiments,

because sensor S1 statistically produces more accurate predictions, and no other

information clue is available to infer when it may fail, using traditional sensor fusion

method to combine sensors� outcomes cannot generate results that are better than those

from the best sensor.

Table 10. Comparison of sensor fusion algorithm effectiveness using
simulated sensory data (sensor noise: °= 51σ , °= 102σ , and °= 203σ)

Drift I Drift II Drift III sensor
fusion

#1 #2 #1 #2 #1 #2

sensor S1 only 85.7% 87.0% 86.7% 85.0% 83.7% 82.5%

sensor S2 only 81.4% 82.3% 82.4% 81.1% 80.1% 77.0%

pa
ra

m
et

er
s

sensor S3 only 71.9% 72.7% 72.1% 70.7% 70.5% 69.2%

linear sum 84.8% 86.3% 85.9% 84.3% 84.3% 81.6%

DS 84.6% 86.1% 85.7% 84.1% 84.4% 80.9%

weighted DS 84.9% 86.4% 86.0% 84.5% 84.6% 81.6% re
su

lts

dyna. Weighted DS 86.0% 87.3% 87.4% 85.9% 87.7% 84.8%

Intuitively, a wise human gambler would rationally bet in a way that heavily relies on

the best sensor�s observation reports, meanwhile seeking clues regarding which sensors

should be trusted when, to make judgments about confidence. The beneficial property of

117

the Dempster-Shafer method is that its behavior resembles a rational human agent�s

reasoning process, so when the ground truth is available shortly afterwards, using the

dynamically weighted Dempster-Shafer sensor fusion method produces the best sensor

fusion results, as shown in Table 10.

As in the sensor set parameter situation Case I in previous sub section, the sensor S1

statistically outperforms the other two sensors in more accurately and reliably estimating

the meeting-participant�s focus-of-attention. The intuitive statistical improvement pimpv is

ratio of (correct result fraction obtained using sensor fusion � correct result fraction

obtained from the best sensor alone) to (1 � correct result fraction obtained from the best

sensor alone). The improvement pimpv can be also calculated using formula EQ. 37, its

graphic representation is shown in Figure 17.

-10%

-5%

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6

experiments

se
ns

or
 fu

si
on

's
 lo

ss
/g

ai
n

fo
r S

1
m

is
se

d
da

ta

linear probability combination
standard Dempster-Shafer
weighted Dempster-Shafer
dynamically weighted Dempster-Shafer

Figure 17. Sensor fusion effects in simulation with sensors being of significant
different precision with different drift effects

118

The negative values in Figure 17 for the linear probability combination method, the

classical Dempster-Shafer method, and the weighted Dempster-Shafer method indicate

that they yield in all but one case worse accuracy than the best sensor alone, whereas the

dynamically weighted Dempster-Shafer method always yields an improvement.

In this case (as well as in case I as described in previous subsection), the Bayesian

inference method would produce exactly the same results as the classic Dempster-Shafer

sensor fusion method, so its effectiveness is not separately shown from the standard

Dempster-Shafer method.

The graphical presentation makes it clearer that, when the joint distribution is not

available, and especially when one sensor is much more accurate and reliable than any

other, adding a few poor-quality sensors and using linear probability combination,

standard Dempster-Shafer, and weighted Dempster-Shafer sensor fusion methods cannot

statistically improve overall system performances. The performance can however be

improved by using the dynamically weighted Dempster-Shafer method, because this

method incorporates useful new information ― obtained from comparing with the

available ground truth ― regarding the temporal evolution of the sensors characteristics.

119

Chapter 6.
Conclusion and Future Work

6.1. Methodology and Implementation Summary

6.1.1 Context sensing

Traditional sensor fusion in measurement and control systems deals with how to

evaluate targeted specific parameters more accurately and reliably. The most cost-

effective way to improve such parameter estimation accuracy or reliability is via adding

measurement redundancy. There are two ways to make redundant measurements: taking

multiple measurements with one sensor or using multiple sensors to measure the same

parameters24. Therefore, sensor fusion can be realized either along the time dimension to

fuse multiple measurements from the same sensor or to fuse measurements from multiple

sensors. In practice, sensor fusion is often implemented simultaneously in both

dimensions. Typical practices are to filter out noise along the time dimension, and then

only the �cleaned� data over multiple sensors are processed [15]. The most commonly

used sensor fusion technology is the statistically weighted averaging with the smaller

standard deviation measurements receiving proportionally heavier weights.

Sensor fusion for context-aware computing challenges the sensor fusion domain with

two difficulties. First, in applications the sensor set�s configuration and the sensors�

24 Some researchers would call fusion of multiple measurement made by the same sensor �sensor

characterization�, restricting the term �sensor fusion� to the combining of multiple
measurements of the same variable by different sensors.

120

working environment are typically changing constantly, so the sensors� joint observation

distribution is typically unavailable. Second, because �context� includes high-level

conclusions versus straightforward measurements, the sensor fusion process is no longer

just traditional statistically weighted averaging to improve the estimate of some

parameters. Instead, many artificial intelligence-based inference algorithms are used to

combine the conclusions of different sensors. Furthermore, the conclusions to be fused

are often at different levels of abstraction [147].

This dissertation advocates a top-down methodology to meet these challenges in two

steps.

First is to specify, for given application requirements, the necessary context

information and possible ways to implement the sensing. To actually implement this may

require a spiral process involving many forward and backward analyses. The result is an

information architecture scheme that specifies all context information pieces� formats and

the possible values each information piece can take.

Second, all sensors� outputs are wrapped up by their corresponding software agents,

called �Context Widgets�, so that only the information pieces defined by the information

architecture are reported. These information pieces are collected by other software agent

called the �Sensor Fusion Mediators�, where the information pieces regarding the same

objects or events are combined or consolidated.

The term �sensor fusion� is generally referred to in a broader sense as the process that

intelligently fulfills the mapping from multiple raw sensory data sets into some structured

information, usually of higher level of abstraction. Sensor fusion techniques can be

roughly classified into �cooperative�, �competitive�, and �complementary�. This

dissertation promotes a sensing methodology that automatically enables the competitive

type of sensor fusion as illustrated in Figure 18.

Usually multiple measurements are fused so that a context Widget reports its

observation to a corresponding Sensor Fusion Mediator at a lower update rate and at a

higher level of semantic abstraction. At the higher level, observation reports regarding the

121

same object or event gathered from all the context Widgets are fused by the Sensor

Fusion Mediators using an evidence combination algorithm, for example, the Dempster-

Shafer Theory of Evidence algorithm.

Temporal dimension

fuse multiple measurements
from the same sensor

--- at lower-level

fuse multiple
sensors� output
(with Dempster-
Shafer theory)

--- at higher-level

co
m

pe
tit

iv
e

se
ns

or
 fu

si
on

ph
ys

ic
al

 d
im

en
si

on

co
op

er
at

iv
e

se
ns

or
 fu

si
on

co
m

pl
em

en
ta

ry
 se

ns
or

 fu
si

on

Figure 18. Sensor fusion techniques applicable to context-sensing

6.1.2 Context sensing implementation

The key to provide a generalizable solution of sensor fusion support in context-aware

computing systems is to realize the idea of layered architecture in the sense of

information abstraction. Using modularized system components is the only practical way

to realize the system architecture, given the complexity of real applications.

This dissertation advocates a context information architecture concept that defines

�context� as an ensemble of discrete information pieces regarding human computer-users,

their events, related objects or facilities. The context information architecture mainly

comprises two kinds of semantic entities: the �stage� entity describes environmental

122

properties (facility functionality, available equipment, current states, etc.) and the �user�

entity describes specific users and user-related properties (personal information,

preferences, activities, etc.). When the information architecture is further defined in detail

using the two entity models as references, a context database can then be built around the

targeted users� frequently used facilities (the �stages�) using tools of any standard SQL

database management system.

In the thus-defined context information architecture � implemented in context

database format � a user-group�s activity or event is indexed by �stage-ID�, �time� and

�group-activity-ID� as its joint key, and a specific user�s activity or event is indexed by

�user-ID�, �time�, and �activity-ID� as its joint key if one needs to query the relational

database system.

This context sensing methodology does not specify how the context database should

be implemented; rather it only emphasizes that the context information collection and

distribution should be insulated from the concerns regarding how the information is

sensed. The database is connected to the context-aware computing system via JDBC

interfaces in the dissertation concept-demonstration system, which is built on top of Java

platforms to ensure compatibility for future development.

The concept demonstration system is built using the Georgia Tech Context Toolkit

building blocks. The Context Toolkit system usage is modified in this dissertation to

facilitate sensor fusion and further promote the separation of context information usage

from the concerns of context sensing technical implementation. The key modification is

the introduction of Sensor Fusion Mediator components, which are special kinds of

�Context Aggregators� in the original Context Toolkit systems, but with newly-added

functionalities for sensor management and realization of sensor fusion algorithms.

What sensor fusion algorithms could be used in the sensor fusion mediator largely

depends on the input information characteristics, and the pursued modular design scheme

has made it easy to incorporate new sensor fusion methods. For the demonstration system,

123

the Dempster-Shafer Theory of Evidence algorithm is chosen and implemented as the

main sensor fusion engine.

Choosing Dempster-Shafer theory as the primary sensor fusion algorithm is based on

a careful analysis of the special challenges faced in context sensing tasks in typical

context-aware computing systems. The choice is the result of comparison of all identified

commonly used sensor fusion methods. The standard Dempster-Shafer method is further

improved in this dissertation via the novel idea of using dynamically adjusted weights to

adaptively incorporate knowledge of the sensor�s recent performance.

Theoretical analysis and experiments with prerecorded data and artificially generated

data have proved the feasibility of the proposed top-down methodology and the

effectiveness of the extended Dempster-Shafer sensor fusion method.

6.2. Dissertation contributions

This dissertation addresses context-sensing challenges in context-aware computing.

Specifically, a generalizable sensor fusion solution is suggested, and a new sensor fusion

algorithm is implemented within its framework. The framework advocates a top-down

methodology, and promises to greatly reduce the sensor fusion implementation

difficulties. The algorithm is an extension of the Dempster-Shafer Theory of Evidence

method. Introducing the Dempster-Shafer theory into, and then further extending it for,

context-aware computing are the key contributions of this dissertation.

The Dempster-Shafer theory is very successfully used in multiple source data fusion

(MSDF) military applications because of its ability to compute with human subjectivity

as well as mathematical probability estimates from the sensors, and to easily combine the

two groups of information to obtain results consistent with human intuition. It is believed

that this property is especially relevant to the context-aware computing domain, where

blending �objective� observations, e.g., from sensors, with �subjective� human estimates,

e.g., opinions reflecting human feelings, is also desirable. Based on this observation, the

Dempster-Shafer reasoning framework is promising to succeed in the sensor fusion for

124

context-aware computing domain. Table 11 shows the highlights of an applicability

comparison of the extended Dempster-Shafer method versus the classical Bayesian

method for sensor fusion in context-aware computing.

Table 11. Comparison of sensor fusion options for context-aware computing

Sensor fusion method
Requirement

Classic (Bayesian) Extended
Dempster-Shafer

Applicability to
context-aware HCI

applications

Modeling
uncertainty

Hypotheses are mutually
exclusive; subjectivity-
probability relationship

can be easily established;
method variations are
well understood and

widely used

Hypotheses can be
nested; human-like

ambiguity and partial
ignorance can be easily
included and processed;

but it is difficult to
convert evidence to
belief mass function

Dempster-Shafer
framework is

closer to human
intuition, so it can

easily combine
objective

observations with
human opinions

Managing
sensors suite

and drift

It is suitable for static
sensor set configuration

It can easily realize
differential trust scheme;
it is adaptive to dynamic

sensor configuration

Context-sensing
required to work in
dynamic situations

Benefiting
from sensor

fusion

Joint probability
distribution can be used

to achieve better
estimation for non-

independent observations

Only independent
observations can be
accommodated by

current formulation25

Joint probability
distribution

information is
usually not
available

Using the Dempster-Shafer Theory of Evidence as the primary uncertainty

management framework for context-aware computing, the bottom line is that, when all

the hypotheses (objective evidence, or subjective propositions) are independent and

25 It is unknown whether this apparent inability of the superset (the Dempster-Shafer framework)

to include the subset (the classical Bayesian framework) demonstrates only the incomplete state
of the present formulation or, as some � including sometimes Shafer himself � claim, it
demonstrates the classic Bayesian framework does not always emerge as simply a subset of the
Dempster-Shafer framework.

125

mutually exclusive, the Dempster-Shafer method is identical to the Bayesian method,

thus it performs as well as the Bayesian-based classical sensor fusion methods. In

addition, this suggested solution is expected to gain the following advantages for context-

aware computing:

o The reasoning framework works on �evidence�, regardless of whether its

source is �objective� or �subjective�. The hypothesis estimation is expressed as

a range between �belief� and �plausibility�, thus it is easy to combine human

opinions with sensors� observations

o Context-aware computing applications can easily incorporate ambiguous

information (e.g., either �A� or �B�) and freely admit partial ignorance; thus the

human-intuitive-like reasoning process appears to be more suitable than crisper

logical schemes for context-aware computing

o It can reason based on all pieces of evidence as an ensemble; this includes

nested hypotheses, which cannot be easily handled by the classical Bayesian

method

If the ground truth becomes available with some delay, which is often the case in

context-aware computing applications, the dynamically weighted Dempster-Shafer

method developed in this dissertation can use this information to improve sensor fusion

accuracy. Experiments with prerecorded and simulated sensory data streams showed that,

among the methods examined, the dynamically weighted Dempster-Shafer method � as

its adaptive nature matches the dynamic behavior of humans � is the most suitable

sensor fusion method for a general context sensing process. The dynamically weighted

Dempster-Shafer sensor fusion method provides the following benefits:

o This method easily realizes a differential trust on sensors scheme, which is very

hard to realize by other sensor fusion methods, and it easily allows humans to

intervene in the reasoning process

126

o To some people, the conclusions of the Dempster-Shafer Evidence Combination

Rule are counter intuitive when serious conflicts exist; this extended Dempster-

Shafer method effectively mitigates the conflicts among the sources of evidence

by lowering their assertiveness, thus making the Dempster-Shafer method more

easily acceptable to various applications and users

o Using the information regarding the sensors� recent performance makes it

adaptive to sensor drift, which is otherwise very hard to handle

The proposed top-down methodology to build context-aware systems is facilitated

with the proposed system architecture. The goal of the context-aware computing system

architecture is to simplify context usage and its sensing process, such that applications are

insulated from the context extraction, and in parallel, the context-sensing

implementations are transparent to context extraction and interpretation. Toward this goal,

the concept-demonstration system has improved architectural support for context-sensing

in the original widget-style Context Toolkit system in the following ways:

o The sensed context information is automatically classified and consolidated. In

other words, the system has a more clearly layered structure, the sensed context

is further separated from the sensing implementations, so that the user

applications can concentrate on better using context instead of on where and

how the context is obtained.

o It adds a sensor fusion module, and by using the Dempster-Shafer theory as its

primary sensor fusion method; since the Dempster-Shafer method does not

require the joint distribution of sensors� observation, it meets the challenge that

the joint distribution is usually unavailable in context-aware computing

applications

o Because the joint distribution is not required and the evidence combination is

cumulative and commutative in the Dempster-Shafer sensor fusion process, the

system is very robust to sensor set configuration change

127

o The system is an infrastructure-style architecture that is easily scalable, as the

system is modularized, adding new sensor fusion algorithms to fuse context, or

applying new artificial intelligence algorithms to extract context, will not affect

the existing ones.

6.3. Future research suggestions

This research project thus far concerns only an individual sensor fusion process,

which is only a very small part of the context-aware computing system. Since �context�

has a very broad definition, some extra information that can enhance the sensor fusion

processes may already exist; how to find and use such extra information is a very

interesting topic for further research.

Generally speaking, when two context information pieces are correlated, the

conclusion of one information piece can be used to verify the correctness of the other

information piece. For example, in a user-identification applications, many sensors�

observation can contribute to strengthening or weakening a hypothesis like �this is user

A�. The �sensor� set may include: fingerprint reader, image pattern from a camera,

infrared feature from an infrared camera, the user�s speaking sound, the user�s height

estimation from a motion detector or a stereo camera pair etc. Once the fused context

information piece, e.g., �this is user A�, has reached a certain confidence level, it ought to

be included in the related sensor fusion inference processes such as �this document has

been viewed by all the users on site�.

Another issue that needs to be further carefully considered, regarding information

pieces to populate in a system, is how to avoid a piece of information being abused

because an information piece may reach a node via different paths. The commonly

suggested practice (in military sensor fusion application domain) is to attach its source

(from the original sensor) information to the being processed information pieces. But

128

how this scheme works in a context-aware computing system is a new topic that needs

more research.

Different sensors will have different performances and will behave differently

according to environmental changes. When the related information regarding sensors�

working environment is included in a context information pool, it should be maximally

used to tune up the related sensor fusion processes: when the conditions are changing in

favor of one particular sensor set, information from this sensor set should be trusted more.

For example, when the environment gets dark around a car, a laser scanner sensor should

get more trust than a video camera in detecting nearby objects. Another way to use

context information to tune up a sensor fusion process is through intelligently specifying

constraints to affect sensor fusion algorithms� behavior, or to appropriately choose one of

the many sensor fusion algorithm candidates [25]. For example, from vehicle location

and velocity context information how fast objects can possibly move between two

successive frames in object tracking is implied. Therefore, in a crowded downtown

environment where the vehicle moves slowly, the tracking system can run more advanced

object recognition algorithms to get more detailed information about the environment. In

contrast, in a highway environment where the vehicle runs at high speed, then the

tracking system will have to make do with some simpler algorithms to satisfy the

requirement that everything must be done very fast.

This dissertation�s advocated top-down context sensing methodology is the first

approximation towards building a context information model based on the assumption

that the context information can be described as an ensemble of trivial information pieces

of discrete factors and events. While this approximation is a very effective way to

simplify the context information model, there are many aspects left for future exploration.

Perhaps the most important one is to model human feelings, where the status boundaries

are very hard to define, hence advanced sensor fusion methods (e.g., the fuzzy logical

method) need to be researched.

129

Appendix26

Appendix A
System Software Development

A.1. Tools and Environments Setup

In the Java virtual operating system environment, the basic Context Toolkit system

was set up, and then based on it, the context sensing support system ― a sensor fusion

mediator module and a Dempster-Shafer algorithm implementation module were

developed and tested. The test was on two sorts of computer platforms: a Windows 2000

(SP3) PC with Java 1.4.0 JRE/JDK (later upgraded to 1.4.1_02) Standard Edition

installed, and two SGI Indigo2 Unix workstations (Irix 6.5.11m operating system) with

Java 1.3.01 and 1.3.1 JRE/JDK Standard Edition installed respectively.

The PC hardware includes an AMD 450MHz CPU (later after the machine was

replaced with a Pentium 450MHz) with 448M RAM, and the two SGI Indigo2 Unix

workstations have 195MHz R10k CPU�s with 512M and 256M RAM respectively.

Running the developed system applications on these platforms shows no sign of difficulty

in terms computation power. However, the Java program debugging, especially in IDE

(Integrated Development Environment), is much more demanding on computation power,

so the process is tedious. Most of the programming code was developed on a Dell laptop

PC with Pentium 1.9GHz CPU and 1G RAM, and then the code was tested (with some

minor adjustments) on the slower PC and two Unix workstations. From the experience of

using the Context-Aware Toolkit system and further developing it, the recommended

minimum hardware requirement is something-like a Pentium 1.5GHz 512M RAM PC.

26 This part mainly serves as the Motorola UPR final technical report. It may be revised
independent of this dissertation to meet Motorola�s needs for archival documentation.

130

The Java programming tools used in the Unix workstations were JDE 2.1.9 (Java

Development Environment for Emacs). Two IDE software development tools were tried

in Windows platform: the Borland JBuilder 7 (Commercial Licensed Edition) and the Sun

One Studio 4 Community Edition (previously called Sun Forte for Java 4.0 Community

Edition). It is discovered that although the Sun One Studio is much slower, it does a much

better job in tracing source line execution, thus it is much better for program debugging.

So, most of the work was done in Sun One Studio 4 CE IDE.

To facilitate the software development process, a Samba file server system was also

set up on one of the SGI machines (DEMPSTER.SENSOR.RI.CMU.EDU, IP address

128.2.196.30) so that the two kinds of machines could easily transfer files through

mapping a (Unix) server�s file directory to a hard disc drive in Windows system.

To implement a dynamic context database, a MySQL DBMS database server was

setup in the PC windows (ODOR.SENSOR.RI.CMU.EDU, IP address 128.2.213.132).

A web server (Apache 1.3.23) was also installed on the SGI Unix workstation

DEMPSTER for experimenting an additional context information exchange interface.

The URL address was http://128.2.196.30:8080/. It hosted only static context information

as web pages for development convenience, but the plan (beyond the thesis work) was to

integrate it with the system to provide a means of monitoring what was going on inside

the system and serving applications with required context information.

A.2. Software architecture background

To develop complex systems to incorporate ever-changing devices and to fulfill tasks

that need to evolve from time to time, using a layered and modularized architecture is the

only way to achieve the flexibility and scalability requirement. Based on experiences

accumulated through extensive research and engineering practices, many system

architecture styles have been developed. They are believed by their developers to have

achieved optimal, or close to optimal, performances for various specific application

situations.

131

Because context-aware computing is a relatively new research area, the

characteristics of its applications have not been fully understood yet [46], so it would be

beneficial to examine what has already been learned in related areas, and to use the

experience.

A.2.1. Middleware approach to build context-aware computing systems

In computer software engineering, the most commonly used methodology of

developing layered and modularized complex systems is to use the �middleware� (also

called �component-based�) approach ([96], [97], [116]). Middleware sits as a layer above

the computer operating system and networking software and below the applications to

provide communication and other services that facilitate system integration.

Middleware simplifies the system development by hiding and isolating the

complexity of the communication between them [102]. A middleware service is defined

by the APIs (the application programming interfaces) and the protocols (the data format)

it supports. The middleware work has developed significantly over the years, perhaps the

most influential existing specifications or infrastructures are: the Object Management

Group�s (http://www.omg.org/, the largest software industry consortium) CORBA

(Common Object Request Broker Architecture), Sun Microsystems� J2EE (Java 2

Enterprise Edition), and the Microsoft�s DCOM (Distributed Common Object Model)

and .NET ([117], [118], [127]).

Most of the context-aware computing systems developed thus far use this middleware

approach in form of building blocks or templates to facilitate building information

services or agents ([79], [101], [103], [125]), although some systems do not emphasize

this methodology explicitly.

A.2.2. System architecture for network-based computing

Since all middleware infrastructures strive to support a large spectrum of applications,

they often provide many ways to interact and communicate within a system, thus there

can be many system configurations to fulfill a required functionality [102]. System

132

engineering research aims to create an optimally functional integrated system out of

independently engineered piece-parts.

System engineering has gained increasing attention, where software architecture is

widely researched ([104], [105], [112]). For the last ten years, system architecture

research and application have advanced rapidly [119] in conjunction with software

reusable pattern research [120] and formal system conceptual modeling research ([118],

[121], [122]).

Software architecture specifies the overall structure, which includes: gross

organization and global control structure; protocols for communication, synchronization,

and data access; assignment of functionality to design elements; physical distribution;

composition of design elements; scaling and performance; and selection among design

alternatives [99]. This level of design goes beyond the algorithms and data structures in

that its explicit focus is on connectors and configurations [119].

Software architecture research uses an architecture description language (ADL).

Current ADLs have different syntax and conceptual frameworks, but they all use three

building blocks for architectural description: (1) components � units of localized and

independent computation or data store with interface; (2) connectors � architectural

building blocks used to model interactions among components and rules that govern

those interactions; and (3) architectural configurations � connected graphs of components

and connectors that describe architectural structure.

Since system software architectures can have so many possible variations, the term

�architecture style� is used for recognizing a shared repertoire of methods, techniques,

patterns and idioms in structuring complex software systems. System architectural style

description makes complex systems more tangible as it provides significant semantic

contents about the kinds of properties of concern, the expected paths of evolution, the

overall computational paradigm, and the relationship between this system and other

systems [123].

133

However, there is no simple taxonomy of system architecture styles; the system

architecture domain is often closely related to concerns of application domains ([99],

[117]). Shaw et al. [98] group the relatively well-known styles into two families: dataflow

networks (with 3 variants) and the cooperative message-passing processes (with 8

variants). The dataflow networks family, also called �pipe and filter�, has components

asynchronously transforming input into output with minimal retained state. The

cooperative message-passing processes family has components, called processes,

communicating with each other via message passing.

Fielding [93] summarizes commonly used architecture styles for network-based

systems and specifies five groups: dataflow, replication, hierarchical, mobile code, and

peer-to-peer styles.

• The dataflow group has two typical styles in use: the pipe and filter, and the

uniform pipe and filter style.

• The replication group also has two typical styles in use: the replicated repository,

and the cache style.

• The hierarchical group has seven typical styles in use: the client-server, the

layered client-server, the client-stateless-server, the client-cache-stateless-server,

the layered client-cache-stateless-server, the remote session, and the remote data

access style.

• The mobile code group has five typical styles in use: the virtual machine, the

remote evaluation, the code on demand, the layered code-on-demand client-

cache-stateless-server, and the mobile agent style.

• Finally, the peer-to-peer group has four typical styles in use: the event-based

integration, the C2 [124], the distributed objects, and the brokered distributed

objects style.

Because the ultimate goal of context-aware computing is to make computer

controlled systems understand human users� environment and provide services

134

pervasively, context-aware computing systems have to be network-based, thus the

experience gained in this area is important.

A.2.3. Event-based/agent architecture versus context-aware computing

For the network-based systems, Carzaniga et al ([101], [103]) suggested using an

�event-based architecture style� to describe the structure and interaction patterns in large-

scale distributed systems where the components communicate by generating and

receiving event notifications. Carzaniga et al�s event-based architecture roughly coincides

with Fielding�s event-based integration style in the peer-to-peer styles group, but may

include variations of other styles, e.g., the client-server style, the mobile agent style, etc.

In event-based architecture descriptions, the connectors are event services in charge

of dispatching event notifications, whereas components can be either �recipients� or

�objects of interest�. The recipients declare their interest in receiving event notifications

by subscribing to the event services; the objects of interest notify the occurrence of an

event to the event services (alternatively the event services can poll objects of interest to

know whether some event has been produced). A component can behave both as a

recipient of an event and an object of interest. The event-based architecture style can be

realized with a number of previous mentioned middleware infrastructures [100].

The performance of a context-aware computing system largely depends on its system

architecture. Most of the context-aware systems developed thus far use the event-based

architecture or its variations in the peer-to-peer style group and in the hierarchical style

group, and almost all the system architectures use software agents [114].

Autonomous software agent programming is widely studied recent years ([38], [45]).

Franklin et al analyzed the agent programming techniques and gave it a formal definition

as: �an autonomous agent is a system situated within and a part of an environment that

senses that environment and acts on it, over time, in pursuit of its own agenda and so as

to effect what it senses in the future.� [95] The characteristics of software agents (such as

135

being reactive, autonomous, goal-oriented, temporally continuous, communicative,

�personality�, etc.) make it very suitable for context-aware computing.

A.3. Software package development

As described before, the context sensing system software development is based on

the Georgia Tech�s Context Toolkit system. The original Context Toolkit system software

package is shown in Figure 19, where the �arch� block stands for the main context

processing system architecture, which has many sub-packages to realize the required

basic functionalities, and the �apps� block stands for system applications. It can be seen

from Figure 19 that the original system design separates the context collecting and

context distributing functional blocks from the context-aware applications.

Figure 19. Original Context Toolkit System Software Package

As pointed out in Section 1.3.4, it can also be easily seen in Figure 19, that the

Context Toolkit system does not provide system architectural support for sensor fusion.

Notice that from software implementation perspective, the �widget� component is

Context Toolkit

apps arch docs jars

comm generator handler interpreter server

service subscriber storage util widget

136

regarded as a part of the Context Toolkit system architecture, which is perhaps not a good

design from context-sensing implementation point of view. Because the available sensors

are generally considered as a dynamic set for a typical context-aware system, placing the

sensors� highly coupled widgets inside the system architecture would possibly make

system software maintenance more difficult than necessary.

To improve sensor fusion system architectural support meanwhile keeping

compatibility with the original Context Toolkit, the developed context-sensing software

package structure is shown in Figure 20.

Figure 20. Context sensing software package structure based on the Context
Toolkit system

Context Sensing

apps arch docs jars

comm generator handler interpreter server

service subscriber storage util widget

sensing fusing

widget
SF(DS) mediator

137

From Figure 20 it can seen that two software packages, �sensing� and �fusing� boxes,

each loosely coupled with the original system architecture, are added to the system.

Placing the sensing package, which includes all sensor widgets, outside the context

system basic architecture makes the system software maintenance easier when adding or

changing sensors� sensing implementation. The �fusing� package contains two kinds of

components: the sensor fusion algorithm module to fuse competitive context information

pieces (Dempster-Shafer algorithm as the first module implementation) and the sensor

fusion mediator module to manage sensors� widgets and call the sensor fusion engine

module to fulfill sensor fusion tasks.

Not shown in the software structure Figure 20, this dissertation gives a new

interpretation of the Context Toolkit system components usage: using the Toolkit system

to build infrastructure-style system what delivers part of blackboard-style system

advantages. The details are describe in Section 3.1.

A.4. Dempster-Shafer algorithm implementation

The system design emphasizes modular structure so that the sensor fusion algorithm

implementation modules (for now only the Dempster-Shafer module is implemented) can

be used by all sensor fusion mediator instances, each one dealing with a specific

information item. More sensor fusion algorithms can be added in future without changing

the already existed ones.

Using the meeting-participants� focus-of-attention analysis as an example, Figure 21

illustrates the programming class object and data structure implementation. Referring to

Figure 21, the hypolist Hash-table keeps a list of all possible evidence that can be

observed, called �frame of discernment� in the Dempster-Shafer reasoning system. All

evidence objects, or hypothesis set information, are represented in the HypothesisSet

data structure, and every sensor widget keeps its �probability mass function� in an

evidenceList data structure.

138

Figure 21. Dempster-Shafer Theory of Evidence programming
implementation

The reasoning system maintains its combined best believes in the beliefPool data

structure, which is updated whenever new evidence is provided by the sensor widgets.

The Dempster-Shafer sensor fusion algorithm with weighting is implemented outside

the core Dempster-Shafer program structure shown in Figure 21. There are two sets of

Dempster-Shafer reasoning API�s, one is for the standard Dempster-Shafer sensor fusion

method and the other is for the weighted Dempster-Shafer sensor fusion method. The

usage of Dempster-Shafer API�s is described in details in Appendix C.

With the standard Dempster-Shafer method, each evidence set�s �basic probability

assignments� will be normalized and a proper ignorance value will be assigned if

necessary. With the weighted Dempster-Shafer method, each evidence set�s �basic

probability assignments� are further adjusted to accommodate the sensor reliability

judgment with the given weight and increase the corresponding ignorance accordingly.

139

The dynamically weighted Dempster-Shafer sensor fusion method is realized by

calling the Dempster-Shafer module with the weights constantly being updated with each

new evidence data set according to the correctness of the last performance.

141

Appendix B
Concept-Proving Demonstration Experiments

To illustrate the feasibility of the proposed top-down context sensing methodology, a

prototypal distributed system was built. Prerecorded and simulated sensory data were

used for the demonstration, because the research focus is on the sensor fusion aspect of

the context information processing � dealing with higher-level information and mainly

concerning with the whole system behavior in terms of information flow.

As described in dissertation Section 4.1, the prerecorded �meeting-participant�s

focus-of-attention analysis� experimental data were used in the concept-proving

demonstration. The original experiments and the preprocessing of the sensory data were

done by Rainer Stiefelhagen in his PhD dissertation research. Using Stiefelhagen�s

preprocessed experimental data is reasonable solution given the workload/resource

limitation and the complementary relationship between the two research projects � his

research focus was to deal with visual and audio signals to estimate focus of attention.

As described in Chapter 2, this dissertation proposed a context-sensing methodology

involving two major steps: first is to specify context information architecture, and second

is to implement the sensor fusion process with the help of system architectural support.

The details of the two-step realization is described in the following sections.

142

B.1. Specifying context information architecture

The general model of the context description begins with two kinds of basic semantic

entities: the STAGE27 entity to describe environmental information and the USER entity

to record the service-targeted human computer-user information. For the case of meeting-

participant�s focus-of-attention application, we can imagine the following scenario as an

example to build context database:

• The STAGE entity class has a subtype class SITE, which has an instance object

named SmallConferenceRoom

• There are 2 pieces of EQUIPMENT object in the STAGE instance: a

ConferenceTable and a Camcorder

• The SENSOR entity type has two entries: OmniCamera, and Microphones,

which together correspondingly have an audio Widget and visual Widget pair,

one for each USER in meeting at the site of STAGE.

• As STAGE�s subtype the SITE object instance SmallConferenceRoom has

extra properties of �Brightness� and �NoiseLevel�

• The USER entity class has five instance objects (users): User-A, User-B,

User-C, User-D, and User-E

• The USER�s PREFERENCE object records his/her preference properties as of:

�MeetingTime�, and �ContactMethod�

• The USER�s SCHEDULE entity is also maintained by the system

• The USER�s following ACTIVITY object types are recorded: GroupMeeting,

and FOA (focus-of-attention)

• For the event we were monitoring, there were 4 USER�s at the SITE

SmallConferenceRoom; and at the SITE entity, a GroupMeeting object

instance of USERSACT class (users� group activity) was observed

27 To make it easier to follow, whenever it needs to be clarified, the following items are shown in

special font (Lucida Console font): entity class names, object instances of entity class, table
names, and the key of tables.

143

• For each meeting-participant USER, the ACTIVITY entity class has a FOA

object instance, which can take value of the left-side USER, the straight-across-

table USER, or right-side USER

Using this application scenario example, the semantic object specifications are listed

in Table 12.

Table 12. Semantic object specifications for context information modeling

Object Name Property Name min# max# ID Domain Meaning

StageID 1 1 ID Stage ID

StageName 1 1 Stage name

Functionality
UsageRules

1
1

N
N

 Utility functionality
Usage regulations

EQUIPMENT 0 N Equipment in STAGE

SENSOR 0 N Sensors in STAGE

WIDGET 0 N Sensor Widgets in STAGE

USER 0 N Users at the STAGE

STAGE

USERSACT 0 N User group-activity STAGE

StageID 1 1 ID Subtype of STAGE

Brightness 0 1 Brightness of the site

SITE

NoiseLevel 0 1 Background noise

EquipID 1 1 ID Equipment ID

EquipName 1 N Equipment name

EQUIPMENT

Functionality
UsageRules

1
1

N
N

 Utility functionality
Usage regulations

144

Object Name Property Name min# max# ID Domain Meaning

SensorID 1 1 ID Sensor object

SensorName 1 1 Sensor�s name

ContextEntry 1 N Context info generated

SENSOR

WIDGET 1 N Sensor�s WIDGET

WidgetID 1 1 ID WIDGET to report context

WidgetName 1 1 Widget descriptive name

WIDGET

SENSOR 1 N Sensors to WIDGET

StageID 1 1 ID Group activity at STAGE

StartTime 1 1 ID Start time of group activity

ActivityName 1 1 ID Group activity name

USERSACT

USER
Probability

1
1

N
N

 Participating users
Confidence of user� ID

UserID 1 1 ID Registered user�s ID

UserName
 FirstName
 LastName

1
1
1

1
1
1

 User name
First Name
Last Name

Title
Affiliation

1
1

N
N

 Job title
Affiliation of the job

Sex 1 1 Male or female

BirthDate
 Year
 Date

0
1
0

1
1
1

 User�s birth date
Year for age-group purpose
Birth date for event etc.

Email 1 1 User�s Email address

USER

CampusAddr
 Room
 Building

0
0
1

N
1
1

 User�s campus address
Room number
Building name

145

Object Name Property Name min# max# ID Domain Meaning

 Phone 0 3 Phone number

PREFERENCE 0 N User�s preferences

ACTIVITY 0 N User�s activity description

SCHEDULE 0 N User�s schedule table

USER 1 1 ID User�s preferences

PrefName 1 1 ID Items can be chosen

PREFER

Preference 0 1 User�s preference description

USER 1 1 ID User�s activity

StartTime 1 1 ID User�s activity time

ACTIVITY

ActivityName 1 1 ID User�s activity description

USER 1 1 ID User�s schedule

StartTime 1 1 ID Event starting time

EndTime 0 1 Event ending time

EventName 1 1 ID Event Name

SCHEDULE

Importance 0 1 Importance of the event

For our meeting-participant�s focus-of-attention analysis application scenario, we

built a context database to describe the context information. The database tables with

column properties are described in the following list, and the context database table entry

and the constraint descriptions are listed in Table 13. Here, the italic format indicates

foreign key entries, and the underlined italic format denotes the key of the context

database tables.

STAGE(StageID, StageName);

146

StageFunc(StageID, Functionality, UsageRules);

SITE(StageID, Brightness, NoiseLevel);

EQUIPMENT(EquipID, EquipName, StageID);

EquipFunc(EquipID, Functionality, UsageRules);

SENSOR(SensorID, SensorName);

Sensing(SensorID, InfoPiece);

WIDGET(WidgetID, WidgetName);

SensorWidget(SensorID, WidgetID);

USERSACT(StageID, StartTime, ActivityName);

UserGroup(StageID, StartTime, ActivityName, UserID,

Probability);

USER(UserID, FirstName, LastName, Sex, Email);

UserTitle(UserID, Title, Affiliation);

BirthDate(UserID, Year, MonthDate)

CampusAddr(UserID, Room, Building, Phone1, Phone2,

Phone3);

PREFER(UesrID, PrefName, Preference);

SCHEDULE(UserID, StartTime, EndTime, EventName,

Importance);

ACTIVITY(UserID, StartTime, ActivityName);

Sitting(StageID, StartTime, ActivityName=�Meeting�,

UserID, Probability, UserID, Probability, UserID,

Probability);

FOA(UserID, InstantTime, Activity=�FocusOfAttention�,

UserID, Probability);

Sitting4(StageID, StartTime, ActivityName=�Meeting�,

UserID, Probability);

147

FOA4(UserID, InstantTime, ProbabilityLeft,

ProbabilityStraight, ProbabilityRight);

Generally speaking, the context database design procedure can follow the standard

�database design with semantic object model� guidelines [34], i.e., a new table is created

for each kind of item that has a dynamic instance-repeatability number. For example, the

USERSACT table lists all USER group activity names that are known to the system and a

new table, the UserGroup table, is created to further describe which USER is

participating those group activities � since the UserGroup belongs to the USERSACT

entity class, they use the same key.

However, since context information can be extremely complex to model, some

restrictions need be taken care of diligently. For example, the STAGE�s user group

activity USERSACT table has a �Meeting� entry, and for each user the USER�s

ACTIVITY table has a few entries such as �Sitting�, �Speaking�, �Meeting�,

and FOA (Focus-Of-Attention), etc.; notice that some constraints apply regarding how

these items can coexist.

Notice that since the Sitting table describes the settings regarding who is sitting

beside whom for a special case of user group activity USERSACT, where the

ActivityName property value equals �Meeting� and some USER�s ACTIVITY

table has �Meeting� and �Sitting� entries, and since the Sitting4 table describes

the settings regarding who is sitting straight across the conference table for a further

specified special case of the Meeting events whereas it has 4 participants, so from

USERSACT to Sitting, and from Sitting to Sitting4, an inheritance

relationship exists; this relationship is reflected in table design as the same key (joint key

here) is used in the three tables.

A USER�s focus-of-attention object FOA in general is described in the format of: the

subjective UserID plus the current-time as joint key, and the UserID of those

other USER�s that might have this USER�s focus-of-attention, plus a corresponding

probability number indicating the confidence of this judgment. However, suppose each

original sensor WIDGET only knows how to report a USER�s focus-of-attention in FOA4

148

format (the USER�s FOA is on the left, straight-across-table, or right-side USER), then a

further context query operation is needed to bind the relative position information to the

USER�s identification information.

Table 13. Context database table entries description and constraints

Table Name Property Name Physical
description Semantic constraints

StageID Integer STAGE

StageName Text 50

StageID Integer StageID must already exist
in STAGE table

Functionality Text 30

StageFunc

UsageRules Text 300

StageID Integer StageID must already exist
in STAGE table

Brightness Double

SITE

NoiseLevel Double (db)

EquipID Integer

EquipName Text 50

EQUIPMENT

StageID Integer StageID must already exist
in STAGE table

EquipID Integer EquipID must already exist
in EQUIPMENT table

Functionality Text 30

EquipFunc

UsageRules Text 300

149

Table Name Property Name Physical
description Semantic constraints

SensorID Integer SENSOR

SensorName Text 50

SensorID Integer SensorID must already exist
in SENSOR table

Sensing

InfoPiece Text 30

WidgetID Integer WIDGET

WidgetName Text 50

SensorID Integer SensorID must already exist
in SENSOR table

SensorWidget

WidgetID Integer WidgetID must already exist
in WIDGET table

StageID Integer StageID must already exist
in STAGE table

StartTime Time

USERSACT

ActivityName Text 50

StageID Integer The key must already exist in
USERSACT table

StartTime Time The key must already exist in
USERSACT table

ActivityName Text 50 The key must already exist in
USERSACT table

UserID Integer UserID must already exist in
USER table

UserGroup

Probability Double [0.0, 1.0]

USER UserID Integer

150

Table Name Property Name Physical
description Semantic constraints

FirstName Text 30

LastName Text 30

Sex Text 10

Email Email address

UserID Integer UserID must already exist in
USER table

Title Text 30

UserTitle

Affiliation Text 50

UserID Integer UserID must already exist in
USER table

Year Integer (1900, 2003)

BirthDate

MonthDate Date

UserID Integer UserID must already exist in
USER table

Room Text 10

Building Text 30

Phone1 Text 20

Phone2 Text 20

CampusAddr

Phone Text 20

UserID Integer UserID must already exist in
USER table

PrefName Text 30

PREFER

Preference Text 50

151

Table Name Property Name Physical
description Semantic constraints

UserID Integer UserID must already exist in
USER table

StartTime Time

EndTime Time

EventName Text 50

SCHEDULE

Importance Integer [0, 100] The relative importance of the
task

UserID Integer UserID must already exist in
USER table

StartTime Time

ACTIVITY

ActivityName Text 50

StageID Integer The key must already exist in
the USERSACT table
StageID must already exist
in UserGroup table

StartTime Time The key must already exist in
the USERSACT table

ActivityName Text 50 The key must already exist in
the USERSACT table
ActivityName must be
equal to �Meeting�

UserID Integer The USER we are currently
concerned with
UserID must already exist in
UserGroup table
UserID must already exist in
ACTIVITY table associated
with the ActivityName
equal �Meeting�

Sitting

UserID Integer The user at left-side
UserID must already exist in

152

Table Name Property Name Physical
description Semantic constraints

UserGroup table
UserID must already exist in
ACTIVITY table associated
with the ActivityName
equal �Meeting�

Probability Double (0.5, 1.0] To make the next focus-of-
attention estimation
meaningful, this UserID
judgment must have a relative
high confidence

UserID Integer The user at right-side
UserID must already exist in
UserGroup table
UserID must already exist in
ACTIVITY table associated
with the ActivityName
equal �Meeting�

Probability Double (0.5, 1.0] To make the next focus-of-
attention estimation
meaningful, this UserID
judgment must have a relative
high confidence

StageID Integer The key must already exist in
Sitting table

StartTime Time The key must already exist in
Sitting table

ActivityName Text 50 key must already exist in
Sitting table
ActivitName must be equal
to �Meeting�

UserID Integer The USER we are currently
concerned with
UserID must already exist in
Sitting table

Sitting4

UserID Integer The user at straight-across
UserID must already exist in

153

Table Name Property Name Physical
description Semantic constraints

UserGroup table
UserID must already exist in
ACTIVITY table associated
with the ActivityName
equal �Meeting

Probability Double (0.5, 1.0] To make the next focus-of-
attention estimation
meaningful, this UserID
judgment must have a relative
high confidence

UserID Integer The USER whose focus-of-
attention is of our concern
UserID key must already
exist in UserGroup table
UserID must already exist in
ACTIVITY table associated
with the ActivityName
equal �Meeting�

InstantTime Time The key must already exist in
ACTIVITY table

ActivityName Text 50 The key must already exist in
ACTIVITY table
ActivityName must be
equal to �Meeting��

UserID Integer The USER that might be at the
focus-of-attention
UserID key must already
exist in UserGroup table
UserID must already exist in
ACTIVITY table associated
with the ActivityName
equal �Meeting�

FOA

Probability Double (0.0, 1.0] Confidence of the judgment

FOA4 UserID Integer The USER whose focus-of-
attention is of our concern
The key must already exist in
FOA table

154

Table Name Property Name Physical
description Semantic constraints

UserID key must already
exist in UserGroup table
UserID must already exist in
ACTIVITY table associated
with the ActivityName
equal �Meeting�

InstantTime Time The key must already exist in
FOA table

ActivityName Text 50 The key must already exist in
FOA table
ActivityName must be
equal to �Meeting��

ProbabilityLeft Double (0.0, 1.0) Confidence of the judgment
that FOA is on the left-side
user

ProbabilityStraight Double (0.0, 1.0) Confidence of the judgment
that FOA is on the straight-
across-table user

ProbabilityRight Double (0.0, 1.0) Confidence of the judgment
that FOA is on the right-side
user

B.2. Implementing and demonstrating the focus-of-attention
fusion case-study application

For system development programming, the user must copy the contents of the

Context Sensing directory (including all its subdirectories and contents as shown in

Figure 20) to a desired destination directory on the host computer. For the concept-

demonstration experiments, the destination directory is set as �fusion�.

It is suggested that all context-sensing sensor widgets be placed in the �sensing�

subdirectory, and that each application has its own sub-subdirectory. In the concept-

155

demonstration experiments, the sub-subdirectory is named �appsFocusOfAttention�, and

there are two widgets WfoaAudio and WfoaVisual inside it, standing for the audio-

sensor widget and the visual-sensor widget respectively.

As it is also shown in Figure 20, the Dempster-Shafer reasoning engine (algorithm

implementation software package) is already placed inside the �fusing� subdirectory in a

sub-subdirectory named �DempsterShafer�, ready to be called by sensor fusion mediators.

More sensor fusion engines, or algorithm implementation packages, are to be developed

and placed in this �fusing� subdirectory parallel to the Dempster-Shafer engine. It is

suggested that all sensor fusion mediator programs be placed in the �fusing� subdirectory

also, each application has its own sub-subdirectory parallel to sensor fusion engines�

directory. In the concept-demonstration experiments, the focus-of-attention application

has its directory named �appsFocusOfAttention�, which has a sensor fusion mediator

foaFusing in it.

For system deployment, the same directory structure as of development system

should be preserved, but only the compiled java �.class� files need to be present. To

demonstrate how it works, a text file named �person0.text�, which has the prerecorded

focus-of-attention experimental data as the source to simulate real sensors, is placed in

the root directory, i.e., the �fusion� directory.

In the demonstration, there are two simulated sensors (audio and visual sensor

widgets) and one sensor fusion mediator (focus-of-attention mediator). They can run

from three different platforms.

Using the same prerecorded experimental data source file, to be run at a specific time

start point, the two simulated sensor widgets can be approximately synchronized to report

their observations to the sensor fusion mediator regarding a specific meeting-participant�s

instantaneous focus-of-attention status.

To simulate the uncertainty in data communication over a network, each simulated

sensor widget does not send out its observation reports if a randomly generated number is

smaller than a preset threshold; and in the case that the random number is larger than the

156

threshold so the reports are to be sent out, the transmission time is randomly delayed

from the synchronized point within certain period.

As described in Section 4.1, the audio and visual sensor widgets will each report a

user�s focus-of-attention context in the format of 3 probability numbers corresponding to

this meeting-participant�s focus-of-attention is on the left-side person, the person straight

across the table, or the right-side person.

Assuming Java platform and its class path etc. environments are already properly set

on the host computer, to invoke the simulated sensor widget program, in a console or

terminal windows change to the �fusion� directory first then type:

>java context.sensing.appsFocusOfAttention.WfoaAudio

meeting PORT# false

to simulate the audio sensor widget, or type:

>java context.sensing.appsFocusOfAttention.WfoaVisual

meeting PORT# flase

to simulate visual sensor widget.

Here, the �meeting� specifies that this widget is going to report to a sensor fusion

mediator that accepts focus-of-attention analysis data in a 4-person meeting discussion

situation; the parameter PORT# should be substituted by an integer number that specifies

which communication port number this sensor widget uses; and the parameter false

specifies that the raw sensory data will not be recorded to the context database.

The invoked sensor widget simulation program will pop up a small window as shown

in the lower part of Figure 13, where the default simulation source file name can be

changed, the maximum random delay time can be specified (the default number is 2

seconds), and a future time should be specified to start the simulation process. Then, click

the �start simulation� button; the widget simulation processing will start at the given time.

157

To invoke the sensor fusion mediator program, change to the �fusion� root directory

and type:

>java context.fusing.appsFocusOfAttention.foaFusing meeting

PORT#0 S#1Host S#1Port# S#2Host S#2Port#

Here, the parameter meeting indicates that this sensor fusion mediator is in charge

of a meeting-participant�s focus-of-attention analysis. The parameter PORT#0 should be

substituted by an integer number that specifies which communication port number this

sensor fusion mediator uses. The parameters S#1Host and S#2Host should be

substituted by character strings specifying computer hostnames that the two sensor

widgets are hosted on respectively, and the parameters S#1Port and S#2Port should

be substituted by integer numbers specifying which communication port number the two

sensor widgets use respectively.

Once invoked, the sensor fusion mediator waits for incoming reports from sensor

widgets. Regardless which report comes first, the focus-of-attention estimation reports of

the same time stamp will be fused together, which is done at the time that a report of next

time stamp has come in.

The fused result is shown graphically in the sensor fusion mediator program windows,

and for comparison, both audio and visual sensor widgets� focus-of-attention reports are

shown also. For users� to conveniently use the information, a confidence measurement is

defined as the biggest probability number over the next biggest probability number as

described in EQ.17. Thus, the context-sensing system provides a sensible explanation

regarding the effectiveness of the sensor fusion method: the confidence indication of

sensor fusion result will increase when the two sensor widgets� outputs agree with each

other, otherwise the confidence measurement will decrease.

159

Appendix C
Sensor fusion API description

C.1. Class BeliefInterval

This helper class maintains the belief and plausibility information of an element of
evidences or hypotheses in float numbers. It has a private format method formatFloat() to
round the float numbers to the precision to the first three digits after the decimal point.
The format function is mainly for the probability numbers to be printed out via the
toString() method.

public float belief

This parameter keeps the basic probability assignment value, i.e., the lower
boundary, of the current BeliefInterval object.

public float plausibility

This parameter keeps the plausibility value, i.e., the higher boundary, of the
current BeliefInterval object.

public BeliefInterval(float b, float p)

Constructor to build new instance of BeliefInterval class

Parameters:

b � basic probability (i.e., belief, lower-bound probability) number

p � plausibility (i.e., higher-bound probability) number

public String toString()

To print out the belief interval, the result is formatted with precision of 3 digits
after the decimal point, e.g. [0.213 0.965].

Overrides:

toString in class java.lang.Object

160

C.2. Class DSfusing

This is the core module class that implements the Dempster-Shafer reasoning process.
The reasoning system uses a HypothesisSet class instance to register its frame of
discernment information as a private object called IGNORANCE. The system always
maintains its current basic probability mass functions in a vector variable, and newly
incoming evidence set is kept in a buffer vector, thus it can control when the evidence
will be combined into the reasoning system.

private final HypothesisSet IGNORANCE_SET

This private parameter is for keeping a HypothesisSet object that encloses all
possible hypothesis occurrences, i.e., all the registered Hypothesis objects that
collectively comprises the frame of discernment.

private final HypothesisSet NULL_SET

This private parameter is for temporarily keeping �impossible� combinations of
HypothesisSet objects, i.e., this place is to keep conflict information generated in
combining the system belief mass function with the new evidences in the system
evidence pool.

private Hashtable hypoList

This private parameter is to register all hypotheses that the current reasoning
system will be able to recognize. The Hashtable is supposed to store all the
Hypothesis objects via the class� RegisterHypothesis function during system
initialization process.

private SortableVector beliefPool

This private inner-class SortableVector object is used for the system�s belief mass
function storage, i.e., it is the system belief pool. Such information is stored in
format of non-trivial HypothesisSet objects.

private SortableVector evidencePool

This private inner-class SortableVector object is used as the system�s evidence
pool. It buffers new evidence objects in format of HypothesisSet objects.

161

public DSfusing()

This is the default constructor of DSfusing class. All it does is to set the flag of
the inside HypothesisSets objects IGNORANCE_SET and NULL_SET, and to
prepare two empty SortableVector objects for beliefPool and evidencePool.

public void addEvidencePiece(HypothesisSet hypset)

This method only adds the given HypothesisSet object into the SortableVector
evidencePool object maintained by the reasoning system. It does not fulfill any
evidence or belief reasoning updating tasks.

public void addEvidence(Evidence e)

This method adds a new Evidence object to the Dempster-Shafer reasoning
system in fulfilling an update process. If the system�s current belief mass
function is empty, the incoming Evidence object�s HypothesisSet, along with a
newly created IGNORANCE_SET object, is simply added into it; otherwise, it
calculates and updates the system�s belief mass function.

Parameters:

e � The new Evidence object being added to the reasoning system.

private void calcIntersectionTableau(Evidence newE)

This method updates the belief mass function with the given Evidence object. It
first completes the new Evidence object with its corresponding ignorance
HypothesisSet, whose Hypothesis list encompasses the frame of discernment
with probability assignment equal to (1 - [newEvidence�s bpa]). The intersection
between current beliefs and the completed new evidences is then calculated and
the result is normalized. Finally, the belief system�s mass belief function is
updated with the normalized result.

Parameters:

newE � the Evidence object to be combined into the Dempster-Shafer reasoning
system�s belief mass function.

private SortableVector
 combinePasses(Vector p1, Vector p2)

This method combines two sets of HypothesisSet objects stored in format of two
Vectors.

162

Parameters:

p1 � Vector of HypothesisSet object set to be combined.

p2 � Vector of HypothesisSet object set to be combined.

Returns:

It returns the combined set of HypothesisSet objects in a format of
SortableVector object.

public float completeEvidencePool()

This method completes the evidence pool's HypothesisSet objects with an
ignorance HypothesisSet object. It first checks whether the sum of all
HypothesisSet objects' probability assignment (bpa) is in the range of [0.0f, 1.0f).
It will then assign a value of (1 - sum-of-bpa's) to a newly created
IGNORANCE_SET object if this is true. In the case that the sum is not in the
range of 0.0f and 1.0f, that is, an exception occurs, it will print out an error
message.

Returns:

It returns the sum of basic probability assignment vlaues of the HypothesisSet
objects in the system�s original belief pool

public void completeEvidencePool(double weight)

This method first uses the given weight factor value to adjust each HypothesisSet
object's basic probability assignment in the system�s evidence pool and then
complementarily complete the evidence collection by adding an ignorance
HypothesisSet object. Under normal conditions, the sum of basic probability
assignment value of the HypothesisSet objects in the system�s evidence pool
should be within the range of [0.0f, 1.0f), and adding the ignorance
HypothesisSet object should then normalize the sum of the basic probability
assignments of all the HypothesisSet objects to the value of 1.0. An exception
will be generated if the sum is out of the [0.0f, 1.0f] boundary.

Parameters:

weight � the weight factor for deciding the voting effectiveness of the evidence
collection in system�s evidence pool.

163

public void updateBeliefPool()

This method updates the system�s belief mass function with the evidences stored
in the system evidence pool. It first checks whether the system�s belief mass
function (i.e., the belief pool) is empty or not, if so, it will move all the
HypothesisSet objects in evidence pool into it and clear the evidence pool. It then
scans the system evidence pool, and for each HypothesisSet object in it, it finds
out the intersections with the objects in the system belief pool. The associated
intersection HypothesisSet objects are combined, and the system belief mass
function is thus updated with the results. Finally, the system�s evidence pool is
set to empty, indicating that there is no longer any unanalyzed evidence left.

public void resetBeliefPool()

This method clears the system�s belief pool so that the system�s belief mass
function is empty. Any HypothesisSet objects in the system�s belief pool are
simply discarded.

public BeliefInterval
 getBeliefInterval(HypothesisSet hset)

This method calculates belief interval of the given HypothesisSet object. The
lower bound of the interval, i.e., the �belief� value is the sum of the basic
probability assignment value of all the HypothesisSet objects, whose elements
are contained in the given HypothesisSet object, in the system belief pool. The
higher bound of the interval, i.e., the �plausibility� value is one minus the sum of
all the basic probability assignment value of the HypothesisSet objects, whose
elements are not a subset or superset of the given HypothesisSet object, in the
system�s belief pool.

Parameters:

hset � the given HypothesisSet object whose belief interval is of interest.

Returns:

It returns a BeliefInterval object whose basic probability assignment and
plausibility value are properly set.

164

public float[] getBeliefPoolBpaArray()

This method returns an array of the basic probability assignment values of the
HypothesisSet objects in the system�s current belief pool, i.e., it returns the
system�s current belief mass function values.

Returns:

float number array of the basic probability assignment values, i.e., the system�s
belief mass function.

public HypothesisSet getHighestBeliefSet()

This method first sorts the HypothesisSet objects in the system�s belief pool by
their basic probability assignment value and then returns the HypothesisSet
object that has the highest basic probability assignment value.

Returns:

It returns the HypothesisSet object whose basic probability assignment value is
highest in system�s current belief pool.

public Hypothesis getBestHypothesis()

This method goes through the system�s current belief mass function to find out
the HypothesisSet object that consists of only a single Hypothesis object and has
the highest probability assignment value.

Returns:

It returns the best Hypothesis in the system�s belief mass function.

public String getBestHypothesisName()

This method returns the name of the best Hypothesis. The best Hypothesis is the
HypothesisSet object that has only a single Hypothesis object inside it and has
the highest basic probability assignment value in the system�s current belief pool.

Returns:

It returns a character string of the best Hypothesis� name.

public Hypothesis getBestEvidence()

This method first sorts the HypothesisSet objects in the system�s evidence pool
by their basic probability assignment value and then returns the HypothesisSet

165

object that consists of single Hypothesis object and has the highest basic
probability assignment value.

Returns:

It returns the Hypothesis object whose basic probability assignment value is
highest in the system�s current evidence pool.

public String getBestEvidenceName()

This method returns the name of the best evidence object in the system�s current
evidence pool. The best evidence piece is the HypothesisSet object that has only
a single Hypothesis object inside it and has the highest basic probability
assignment value.

Returns:

It returns a character string of the name of the best evidence object.

public Hypothesis getHypothesis(String name)

This method checks to see if the Hypothesis object with the given name has been
already registered in this Dempster-Shafer reasoning system.

Parameters:

name � the name of the Hypothesis being check for existence

Returns:

It returns a Hypothesis object with given name, null if not already exists in the
system

public HypothesisSet getHypothesisSet(Hypothesis h)

This method wraps the given Hypothesis object in a HypothesisSet object.

Parameters:

h - the Hypothesis object to be in a newly created HypothesisSet object

Returns:

It returns a newly created HypothesisSet object whose only element is the given
Hypothesis object.

166

private HypothesisSet getIntersection(
 HypothesisSet hset1, HypothesisSet hset2)

This method finds the intersection of the two given HypothesisSet objects. It
scans the two HypothesisSet objects to find all the Hypothesis objects that both
sides contain. Such found common Hypothesis objects are added together to
create a new HypothesisSet object, whose basic probability assignment value is
set equal to the product of the two original HypothesisSet objects� probabilities.

Parameters:

Hset1 � the first HypothesisSet object for the intersection calculation.

Hset2 � the second HypothesisSet object for the intersection calculation.

Returns:

It returns a HypothesisSet object whose Hypothesis elements are contained in
both of the original HypothesisSet objects, and the basic probability assignment
value equals the product of the two original HypothesisSet objects� probabilities.

private Vector
 intersectWithBeliefPool(HypothesisSet testSet)

This method finds the intersection of the given HypothesisSet object with the
HypothesisSet objects maintained in the reasoning system�s belief pool. The
intersections of given HypothesisSet object with every HypothesisSet object
inside the system�s belief pool are added up and the belief pool is updated with
the results. The system�s normalizeSet flag is set to �true� for future
normalization operations if any null HypothesisSet object is generated from the
intersection calculation.

Parameters:

TestSet � the HypothesisSet object to intersect with the HypothesisSet objects
in the system�s belief pool.

Returns:

It returns a Vector object that contains the intersection HypothesisSet objects.

private SortableVector normalizeSets(Vector sets)

This method takes a Vector of HypothesisSet objects and returns the non-null part
of the HypothesisSet objects with normalized basic probability assignment value.
The normalization operation divides the basic probability assignment value of

167

each non-null HypothesisSet object with one minus the sum of all the basic
probability assignment values of the null HypothesisSet objects, and uses the
quotient as the HypothesisSet object�s new basic probability assignment value.

Parameters:

sets � the Vector of HypothesisSet objects to be normalized.

Returns:

It returns a SortableVector object that contains the non-null HypothesisSet
objects whose basic probability assignment value is normalized.

public String printBeliefIntervals()

This method helps to print out the belief interval of the system�s current belief
mass function. It prints out all the HypothesisSet objects in the system
maintained belief pool.

Returns:

It returns a printable character stream, each line contains a HypothesisSet name
followed by its belief interval values.

public String printBeliefPool()

This method helps to print out the HypothesisSet objects maintained in the
system belief pool. Each printed line contains the name and their corresponding
basic probability assignment value of a HypothesisSet object.

Returns:

It returns a printable character stream that contains a HypothesisSet object in
each line.

public void registerHypothesis(Hypothesis h)

This method helps to keep a record of all the possible hypotheses, the so-called
�frame of discernment�, in this instance of a Dempster-Shafer reasoning system.

public void reset()

This method resets the Dempster-Shafer reasoning system. The reset process
includes three steps: first, the system�s frame of discernment information is set to
empty; second, the system�s belief pool is set to empty; and third, the system�s
evidence pool is set to empty.

168

public void restart()

This method partially resets the Dempster-Shafer reasoning system. It resets the
system�s belief pool and evidence pool but does not empty the system�s frame of
discernment information.

public void sortBeliefPool()

This method helps rearrange the HypothesisSet objects in the system�s belief
pool. The objects are stored in a SortVector object and the rearrangement sorts
the HypothesisSet objects in a decreasing order by their basic probability
assignment value.

public String toString()

This method prints out all the registered hypotheses in the Demspter-Shafer
reasoning system. These are the Hypothesis objects that consist of the frame of
discernment of the system.

Overrides:

toString in class java.lang.Object

C.2.1. private interface I_Comparator

This interface defines two object comparison formats to be used in SortableVector inner
class.

C.2.2. Class SortableVector

Extends: java.util.Vector

This inner class extends the java Vector class with a specifically defined object
comparison operation so that it can easily sort its contained objects. It is intended for
handling the Dempster-Shafer reasoning system�s belief pool and evidence pool.

private I_Comparator compare

This private parameter contains an instance of the Comparator inner-class that
implements the I_comparator interface. The behavior of the Comparator object
defines how the current SortableVector objects sort their contents.

169

public SortableVector(I_Comparator comp)

This constructor constructs an inner-class SortableVector object with an object
that implements I_Comparator interface.

Parameters:

comp � the (Comparator inner-class) object that defines how the current
SortableVector object will sort its contained objects.

public void Sort()

This method sorts all objects contained in the SortableVector class instance.

private void quickSort(int left, int right)

This method sorts the stored objects in the current SortableVector so that the
between the given index left and index right they are in ascending order,
defined by the compare object.

Parameters:

left � the left-end index, objects with index to its right will be sorted.

right � the right-end index, objects with index to its left will be sorted.

private void swap(int loc1, int loc2)

This method swaps the two objects with the given index loc1 and index loc2
respectively in current SortableVector.

Parameters:

loc1 � the index of one of the two objects that will be swapped.

loc2 � the index of the other of the two objects that will be swapped.

C.2.3. Class Comparator implements I_Comparator

This inner class implements the I_Comparator interface to define comparison relationship
between HypothesisSet objects.

170

public boolean lessThan(Object lhs, Object rhs)

This method defines the �less than� relationship between two given
HypothesisSet objects according their basic probability assignment value.

Parameters:

lhs � the first HypothesisSet object to be compared.

rhs � the second HypothesisSet object to be compared.

Returns:

It returns a boolean �true� if the lhs HypothesisSet object�s basic probability
assignment value is less that of rhs, a boolean �false� if otherwise.

public lessThanOrEqual(Object lhs, Object rhs)

This method defines the �less than or equal� relationship between two given
HypothesisSet objects according their basic probability assignment value.

Parameters:

lhs � the first HypothesisSet (left-hand side) object to be compared.

rhs � the second HypothesisSet (right-hand side) object to be compared

Returns:

It returns a boolean �true� if the lhs HypothesisSet object�s basic probability
assignment value is less than or equal to that of rhs, a boolean �false� if
otherwise.

C.3. Class Evidence

This helper class comprises of a HypothesisSet class object and a character string name
so that it is easier to be referenced. For convenience, this class provides a constructor that
can pass a float value to the parameter of basic probability assignment of the inside
HypothesisSet class object.

private String name

This private String parameter provides a descriptive name or sentence as an
explanation of this Evidence object.

171

private HypothesisSet hset

This private HypothesisSet object is the core of the current evidence object.

public Evidence(String n)

This constructor constructs an Evidence object with only the reference name, or a
short explanation, being specified, its parameter is originally set as an
"EvidencePiece". The constructor does not specify the inside HypothesisSet
object yet.

Parameters:

n � the name or an explanation character string to describe the evidence object.

public Evidence(String n, HypothesisSet h, float bpa)

This constructor constructs a new Evidence object with all the needed
information including a name or short explanation string, a HypothesisSet object,
and a float number to be used as the basic probability assignment value for the
inside HypothesisSet object.

Parameters:

n � name or an explanation string to describe the Evidence object.

h � the HypothesisSet to be included inside the newly created Evidence object.

bpa � the basic probability assignment for the inside HypothesisSet object.

public Evidence(String n, HypothesisSet h)

This constructor constructs a new evidence object with a given name or
explanation string and a HypothesisSet object, but without providing the basic
probability assignment value of the HypothesisSet object, the default value of
0.0f is used.

Parameters:

n � the name or an explanatory string to describe the Evidence object.

h � to be used as the inside HypothesisSet object.

public void addHypothesis(Hypothesis h)

This method adds the given Hypothesis object into the calling object�s inside
HypothesisSet object.

172

Parameters:
h � the Hypothesis object to be added into the Evidence object's HypothesisSet
object.

public float getBelief()

This method gets the basic probability assignment value of the HypothesisSet
object inside the calling Evidence object.

Returns:
It returns the basic probability assignment value the current Evidence object.

public String getName()

This method returns the name or an explanation stored inside and regarding the
current calling Evidence object.

public HypothesisSet getSet()

This method returns the HypothesisSet object inside the calling Evidence object.

public void setBelief(float bpa)

This method uses the given float number to set the basic probability assignment
value of the HypothesisSet object inside the current calling Evidence object.

bpa � the float number to be used as the basic probability assignment value.

public String toString()

This method prints out the current calling Evidence object whose content
includes its name or explanation, the inside HypothesisSet object, and the basic
probability assignment value.

Overrides:

toString in class java.lang.Object

C.4. Class Hypothesis

This class is the basic data structure for Dempster-Shafer sensor fusion as it constructs
the element hypothesis set of frame of discernment. It contains a "name" for its
identification.

173

public Hypothesis(String name)

The constructor of the Hypothesis class with only a string parameter for its
instance name.

Parameters:

name � the name for the newly built Hypothesis class instance.

public Hypothesis(String name, String description)

The constructor of the Hypothesis class with a string parameter for its name and a
description regarding this Hypothesis object instance.

Parameters:

name � The name of the Hypothesis object to be constructed, it is used as
identifier of the object.

description � A description of Hypothesis object to be constructed. It should
explain this and related elements in the frame of discernment in Dempster-Shafer
reasoning system.

public String getName()

This function returns the name of the Hypothesis object instance.

public String getDescription()

This function returns the description of the Hypothesis object instance as a text
string to be printed out.

public String toString()

This function returns a text string that is formatted for html style print. The text
string contains first the name of the Hypothesis object instance, formatted in bold
fonts, then the description of the Hypothesis object instance starting in a new line.

Overrides:

toString in class java.lang.Object

174

C.5. Class HypothesisSet

This class constructs an evidence object that comprises of the basic hypothesis elements
in a Dempster-Shafer reasoning system. It may contain any number of the basic
hypothesis elements from zero to all the hypotheses in the frame of discernment. When it
does not actually contain any hypothesis, it represents the null set, whereas when it
contains all the elements of the basic hypotheses in the frame of discernment, it
represents the ignorance set in the Dempster-Shafer reasoning system.

public HypothesisSet()

The constructor without any parameter initializes the HypothesisSet object being
built to the null set (i.e., the conflict set) with its basic probability assignment
being set to zero.

public HypothesisSet(Hypothesis h)

This constructor builds an evidence object with the included Hypothesis object as
its only element of hypotheses. Notice that the newly built object has been
labeled as non-null set (isNull value is set to false), but the basic probability
assignment value is still zero as set by the being called empty-parameter
constructor inside this constructor.

Parameters:

h � the Hypothesis object to be used as the first hypothesis element of the newly
built HypothesisSet object.

public HypothesisSet(Hypothesis h, float bpaValue)

This constructor builds a HypothesisSet object with the given Hypothesis object
its basic hypothesis element and the given float number as its basic probability
assignment value.

Parameters:

h � the Hypothesis object to be used as the first hypothesis element of the
newly built HypothesisSet object.

bpaValue � this number to be used as the basic probability assignment value of
the newly built HypothesisSet object.

175

public HypothesisSet(HypothesisSet hs)

This constructor builds a new HypothesisSet object using the given
HypothesisSet object as template, i.e., the newly built object will comprise of the
same hypothesis elements, and will take the same properties or values, of the
given HypothesisSet object.

Parameters:

hs � the HypothesisSet object to be used as template for building the new
hypothesisSet object.

public void absorbBpaValue(HypothesisSet hpst)
 throws java.lang.IllegalArgumentException

This function first checks to see whether the current HypothesisSet object has the
same hypothesis elements as the given HypothesisSet object, if so, it then adds
the basic probability assignment value of the given HypothesisSet object onto
this current HypothesisSet object.

Parameters:

hpst � the HypothesisSet object whose basic probability assignment value
might be absorbed to this current HypothesisSet object.

Exceptions:

java.lang.IllegalArgumentException � the basic probability
assignment value cannot be absorbed if it is of a hypothesis set with different
content.

public void absorbHypotheses(HypothesisSet hpst)

This function absorbs the basic hypothesis elements of the given HypothesisSet
object but does not change the basic probability assignment value of either object.

Parameters:

hpst � the HypothesisSet object whose hypothesis elements are to be extracted
and absorbed into the calling object.

public void addHypothesis(Hypothesis h)

This function adds the given Hypothesis object onto its hypothesis element set
but does not change the basic probability assignment value.

176

Parameters:

h � the hypothesis object to be added onto the calling object�s hypothesis
element set.

public void addToBpa(float f)

This function adds the given float number to the calling object�s basic probability
assignment value.

Parameters:

f � the number to be added to the current calling object�s basic probability
assignment value.

public boolean contains(HypothesisSet hs)

This function checks to see whether this current calling HypothesisSet object is a
superset of the hypothesis elements that the given HypothesisSet object contains.
It returns a �true� value if this calling HypothesisSet object has all the hypothesis
elements that the given HypothesisSet object contains.

Parameters:

hs � the HypothesisSet object whose hypothesis elements are checked to see
whether they are included in the current calling HypothesisSet object

public boolean equals(Object o)

This method tests whether the given HypothesisSet object equals to the current
calling HypothesisSet object, in terms of whether the two contain the same
hypothesis elements. All other conditions, such as basic probability assignment
value, plausibility value, are not checked by this method.

Parameters:

o � the object to be checked for whether it is a HypothesisSet instance that has
the same hypothesis elements as the current calling object.

Overrides:

It overrides the �equals� function in class java.lang.Object.

177

public float getBpa()

The function returns the basic probability assignment value of the calling
HypothesisSet object in a float number format.

public Hypothesis getHypothesis(String name)

This function returns the Hypothesis object with the given name in the current
calling HypothesisSet object.

Parameters:

name � the name of the Hypothesis object to be found in the current calling
HypothesisSet object.

public java.util.Enumeration getHypotheses()

This method gets all the hypothesis elements in the current HypothesisSet object
in format of a Java Hashtable object.

public java.util.Enumeration getHypothesesNames()

This method gets the name of hypothesis element objects in the current calling
HypothesisSet object in the format of a Java Hashtable�s keys.

public int getSize()

This method reports the number of hypothesis elements in the current calling
HypothesisSet object.

public boolean isEmpty()

This method checks whether there is any hypothesis element object in the current
calling HypothesisSet object. It returns a �true� value if there is not any
hypothesis object already included.

public boolean isTheta()

This method reports whether the current calling HypothesisSet object thinks that
it encompasses all the registered hypothesis elements in the frame of discernment.
In other words, it returns a �true� value when it thinks so, thus indicating itself as
actually the ignorance set in the Dempster-Shafer reasoning system.

178

public boolean isNull()

This method reports whether the current calling HypothesisSet object regards
itself as an impossible evidence combination, i.e., a conflict in the Dempster-
Shafer reasoning system.

public void setBpa(float f)

This method sets the basic probability assignment value, using the given float
number to replace its original value.

Parameters:

f � the float number to be assigned as the new basic probability assignment
value of the current calling HypothesisSet object.

public void setTheta(Boolean tf)

This method sets the calling HypothesisSet object�s flag of ignorance (Theta)
acknowledgement according to the given Boolean value. The method does not
check whether the calling object actually contains all the elements of the frame of
discernment.

Parameters:

tf � the Boolean value to be set for the acknowledgement of ignorance set.

public void setNull(Boolean tf)

This method sets the calling HypothesisSet object�s flag regarding whether it
acknowledges itself as a null set (an invalid set, an empty set, or a conflict).

Parameters:

tf � the Boolean value to be set for the acknowledgement of null set.

public String toString()

This method prints out all the Hypothesis elements contained in the calling
HypothesisSet object.

Overrides:

It overrides the �toString� function in class java.lang.Object.

179

private String formatFloat(float f)

This method rounds the given number to the first three digits after decimal point,
it then returns the number in string format. The method is intended for printing
out basic probability mass function value.

Parameters:

f � the float number to be print out up to 3 digits after decimal point.

public float getPlausibility()

This method returns the plausibility value stored in the calling HypothesisSet
object.

public void setPlausibility(float f)
 throws java.lang.IllegalArgumentException

This function first checks to see whether the current HypothesisSet object has the
same hypothesis elements as the given HypothesisSet object, if so, it then adds
the basic probability assignment value of the given HypothesisSet object onto
this current HypothesisSet object.

Parameters:

hpst � the HypothesisSet object whose basic probability assignment value might
be absorbed to this current HypothesisSet object.

Exceptions:

java.lang.IllegalArgumentException � the basic probability assignment value
cannot be absorbed if it is of a hypothesis set with different content.

181

References
[1]. Anind K. Dey and Gregory D. Abowd, �Towards a Better Understanding of

Context and Context-Awareness�, Proceedings of the CHI 2000 Workshop on �The
What, Who, Where, When, and How of Context-Awareness�, The Hague,
Netherlands, April 1-6, 2000, ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf

[2]. Bill N. Schilit and Marvin M. Theimer, �Disseminating Active Map Information to
Mobile Hosts�, IEEE Network, 8(5) 1994, 22-32,
http://citeseer.nj.nec.com/schilit94disseminating.html

[3]. Bill N. Schilit, N.L Adams, and R. Want, �ContextAware Computing Applications�,
Proceedings of the Workshop on Mobile Computing Systems and Applications,
Santa Cruz, CA, December 1994. IEEE Computer Society.
http://citeseer.nj.nec.com/schilit94contextaware.html

[4]. William Noah Schilit, �A System Architecture for Context-Aware Mobile
Computing�, Ph.D. thesis, Columbia University, 1995, http://seattleweb.intel-
research.net/people/schilit/schilit-thesis.pdf

[5]. Mari Korkea-aho, �Context-Aware Applications Survey�,
http://www.hut.fi/~mkorkeaa/doc/context-aware.html

[6]. Roy Want, Andy Hopper, Veronica Falcao, and Jonathon Gibbons, �The Active
Badge Location System� (ftp.uk.research.att.com:/pub/docs/att/tr.92.1.pdf),
http://www.cam-orl.co.uk/ab.html

[7]. R. Want, B. Schilit, N. Adams, R. Gold, K. Petersen, D. Goldberg, J. Ellis, and M.
Weiser, �The ParcTab Ubiquitous Computing Experiment�, Xerox Parc technical
report, http://citeseer.nj.nec.com/want-parctab.html

[8]. Sue Long, Rob Kooper, Gregory D. Abowd, and Christopher G. Atkeson, �Rapid
Prototyping of Mobile Context-Aware Applications: The Cyberguide Case Study�,
Proc. 2nd ACM International Conference on Mobile Computing (MOBICOM), Rye,
New York, U.S. http://www.cc.gatech.edu/fce/cyberguide/pubs/mobicom96-
cyberguide.ps

[9]. J. Pascoe, �Adding Generic Contextual Capabilities to Wearable Computers�, 2nd
International Symposium on Wearable Computers, Pittsburgh, Pennsylvania USA,
October 19-20, 1998, page 92-99.
http://www.cs.ukc.ac.uk/pubs/1998/676/index.html

[10]. Nick Ryan, Jason Pascoe, and David R. Morse, �FieldNote : a Handheld
Information System for the Field�, First International Workshop on

182

TeloGeoProcessing (Telegeo'99), Lyon, 1999,
http://citeseer.nj.nec.com/nick99fieldnote.html

[11]. Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steven Shafer,
�EasyLiving: Technologies for Intelligent Environments�, Handheld and
Ubiquitous Computing, September 2000.
http://www.research.microsoft.com/easyliving/Documents/2000%2009%20Barry%
20HUC.pdf

[12]. Steve Shafer, �Ten Dimensions of Ubiquitous Computing�, Keynote presentation at
Conference on Managing Interactions in Smart Environments, December 1999.
http://www.research.microsoft.com/easyliving/Documents/�1999 12 Ten
Dimensions.doc�

[13]. Cory D. Kidd, Robert J. Orr, Gregory D. Abowd, Christopher G. Atkeson, Irfan A.
Essa, Blair MacIntyre, Elizabeth Mynatt, Thad E. Starner, and Wendy Newstetter,
�The Aware Home: A Living Laboratory for Ubiquitous Computing Research�,
Proceedings of the Second International Workshop on Cooperative Buildings -
CoBuild'99. Position paper, October 1999.
http://www.cc.gatech.edu/fce/house/cobuild99_final.doc

[14]. Robert N. Johnson, �Building Plug-and-Play Networked Smart Transducer�,
Sensors Magazine, October 1997, http://www.smartsensor.com/doc/sensors.pdf

[15]. Stan P. Woods, �The IEEE-P1451.2 Draft Standard for Smart Transducer Interface
Modules�, Hewlett-Packard Company presented at Sensor Expo Boston, May 1997,
http://www.sensorsmag.com/articles/1097/ieee1097/main.shtml

[16]. Anind K. Dey, Jennifer Mankoff, and Gregory D. Abowd, �Distributed Mediation
of Imperfectly Sensed Context in Aware Environments�, GVU Technical Report
GIT-GVU-00-14. September 2000. ftp://ftp.cc.gatech.edu/pub/gvu/tr/2000/00-
14.pdf

[17]. Anind K. Key, Daniel Salber, Gregory D. Abowd, and Masayasu Futakawa, �An
Architecture To Support Context-Aware Applications�, GVU Technical Report
GIT-GVU-99-23. June 1999, ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-23.pdf.

[18]. Glenn Shafer, �A Mathematical Theory of Evidence�, Princeton University Press,
1976

[19]. Mark Stefik, �Introduction to Knowledge Systems�, Morgan Kaufman Publishers,
Inc., 1995, ISBN 1-55860-166-X

[20]. Mongi A. Abidi and Rafael C. Gonzalez (editors), �Data Fusion in Robotics and
Machine Intelligence�, Academic Press, Inc. 1992, (ISBN 0-12-042120-8, CMU
E&S 629.892 D232)

183

[21]. Gregory D. Abowd and Elizabeth D. Mynatt, �Charting Past, Present, and Future
Research in Ubiquitous Computing�, ACM Transactions on Computer-Human
Interaction, Vol. 7, No. 1, March 2000, Page 29-58.
http://www.cc.gatech.edu/fce/pubs/tochi-millenium.pdf

[22]. Anind K. Dey, �Providing Architecture Support for Building Context-Aware
Applications�, PhD thesis, November 2000,
http://www.cc.gatech.edu/fce/ctk/pubs/dey-thesis.pdf

[23]. Lawrence A. Klein, �Sensor and Data Fusion Concepts and Applications� (second
edition), SPIE Optical Engineering Press, 1999, ISBN 0-8194-3231-8

[24]. Frans Groen, �Sensor Data Fusion� presentation, 11/3/99,
http://www.science.uva.nl/~arnoud/OOAS/Presentation9fus/

[25]. Jay Gowdy, �Emergent Architecture: A Case Study for Outdoor Mobile Robots�,
PhD thesis (CMU-RI-TR-00-27), November 1, 2000,
http://www.ri.cmu.edu/pub_files/pub2/gowdy_jay_2000_2/gowdy_jay_2000_2.pdf

[26]. Paul Castro, Patrick Chiu, Ted Kremenek, and Richard Muntz, �A Probabilistic
Room Location Service for Wireless Networked Environments�, Proceedings of
Ubicomp 2001, pp.18-34, Springer-Verlag LNCS 2201, Atlanta, GA, 2001
http://link.springer.de/link/service/series/0558/bibs/2201/22010018.htm

[27]. Gregory D. Abowd, Agathe Battestini, and Thomas O�Connell, �The Location
Service: A Framework for Handling Multiple Location Sensing Technologies�, CHI
2002, Minneapolis, MN, April 20-25, 2002
http://www.cc.gatech.edu/fce/ahri/publications/location_service.pdf

[28]. Paul Castro and Richard Muntz, �Managing Context Data for Smart Spaces�, IEEE
Personal Communications, Vol.7, No.5, October 2000
http://mmsl.cs.ucla.edu/publications/pdf/ieeePCOct2000.pdf

[29]. Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen, �There is more to
Context than Location�, Proceedings of the International Workshop on Interactive
Applications of Mobile Computing (IMC98), November 1998, Rostock, Germany,
http://www.teco.uni-karlsruhe.de/~albrecht/publication/imc98.ps

[30]. Rainer Stiefelhagen, Jie Yang, and Alex Waibel, �Estimating Focus of Attention
Based on Gaze and Sound�, Proceedings of Workshop on Perceptive User
Interfaces PUI 2001, Orlando, Florida, USA
http://www.is.cs.cmu.edu/papers/multimodal/PUI01/PUI2001_rainer.pdf

[31]. Huadong Wu, Mel Siegel, Rainer Stiefelhagen, and Jie Yang, "Sensor Fusion Using
Dempster-Shafer Theory," presented at IEEE International Measurement
Technology Conference (IMTC) 2002, Anchorage AK USA, 2002,
http://www-2.cs.cmu.edu/~whd/publications/1076-Siegel.pdf

184

[32]. Jie Yang and Alex Waibel, �A Real-Time Face Tracker�, Proceedings of WACV,
Page 142-147, 1996. http://www.is.cs.cmu.edu/papers/multimodal/96.wacv.jie.ps.gz

[33]. Rainer Stiefelhagen, �Tacking Focus of Attention in Meetings�, Proceedings of
IEEE International Conference on Multimodal Interfaces 2002, Pittsburgh PA USA
October 14-16, 2002.
http://www.is.cs.cmu.edu/papers/multimodal/ICMI2002/icmi2002_stiefelhagen.pdf

[34]. David M. Kroenke, �Database Processing: Fundamentals, Design &
Implementation�, 8th Edition, Prentice Hall, 2002

[35]. Sebastien Populaire, Joelle Blanc, Thierry Denoeux, Philippe Ginestet, and Albert
Mpe A Guilikeng, �Fusion of Expert Knowledge with Data using Belief Functions:
a case study in wastewater treatment�, 5th International Conference on Information
Fusion, Annapolis, Maryland, USA, 7-11 July 2002

[36]. Ren C. Luo and M. G. Kay, �Multisensor Integration and Fusion in Intelligent
Systems,� IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-19(5)
Page 901-931, http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=44007

[37]. R. C. Luo and M. G. Kay, �Data Fusion and Sensor Integration: State-of-the-art
1990s�, Chapter 2 of �Data Fusion in Robotics and Machine Intelligence�,
Academic Press, Inc., 1992

[38]. H. Qi, X. Wang, S. S. Iyengar, and K. Chakrabarty, �Multisensor Data Fusion In
Distributed Sensor Networks Using Mobile Agents�, Proceedings of International
Conference on Information Fusion, pp. 11-16, August 2001

[39]. H. Qi, S. S. Iyengar and K. Chakrabarty, �Distributed Sensor Fusion - A Review Of
Recent Research�, Journal of the Franklin Institute, vol. 338, pp. 655-668, 2001.

[40]. H. Qi, S. S. Iyengar and K. Chakrabarty, �Distributed Multi-Resolution Data
Integration Using Mobile Agents�, Proc. IEEE Aerospace Conference, vol. 3, pp.
1133-1141, 2001.

[41]. H. Qi, S. S. Iyengar and K. Chakrabarty, �Multi-Resolution Data Integration Using
Mobile Agents In Distributed Sensor Networks�, IEEE Transactions on Systems,
Man, and Cybernetics Part C: Applications and Reviews, vol. 31, no. 3, pp383-391,
August, 2001.

[42]. Gregory D. Abowd, Elizabeth D. Mynatt, and Tom Rodden, �The Human
Experience�, IEEE Pervasive Computing, Vol.1 No.1; January-March, pp. 48-57,
ISSN 1536-1268, http://csdl.computer.org/dl/mags/pc/2002/01/b1048.pdf

[43]. David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste, �Project Aura:
Toward Distraction-Free Pervasive Computing�, IEEE Pervasive Computing, Vol.1
No.2; April-June, pp. 22-31, ISSN 1536-1268,
http://csdl.computer.org/dl/mags/pc/2002/02/b2022.pdf

185

[44]. Hani Naguib and George Coulouris, �Location Information Management�,
Proceedings of Annual Conference on Ubiquitous Computing 2001, Atlanta,
USA,October 2001,
http://www-lce.eng.cam.ac.uk/qosdream/Publications/ubicomp.pdf

[45]. Angela Pawlowski and Craig Stoneking, �Army Aviation Fusion of Sensor-Pushed
and Agent-Pulled Information�, American Helicopter Society 57th Annual Forum,
Washington, DC, May 9-11, 2001,
http://www.atl.external.lmco.com/overview/papers/1107.pdf

[46]. Steve Jameson, �Architectures for Distributed Information Fusion To Support
Situation Awareness on the Digital Battlefield�, 4th International Conference on
Data Fusion, August 2001,
http://www.atl.external.lmco.com/overview/papers/1030.pdf

[47]. Charles Dean Haynie, �Development of a Novel Zero-Turn Radius Autonomous
Vehicle�, M.S. Thesis, Mechanical Engineering Department, Virginia Polytechnic
Institute and State University, August 1998,
http://scholar.lib.vt.edu/theses/available/etd-7698-132910/

[48]. James Llinas, and David Hall, �An Introduction to Multi-Sensor Data Fusion�,
Proceedings of the IEEE, Vol. 85, No.1, January, 1997, pp.6-20,
http://www.infofusion.buffalo.edu/reports/Dr. Llinas'
stuff/papers/intro_mltisnsr_data_fusion.pdf

[49]. Edward L. Waltz, �Information Understanding: Integrating Data Fusion and Data
Mining Processes�, Circuits and Systems, 1998. ISCAS '98. Proceedings of the
1998 IEEE International Symposium on , Volume: 6 , 31 May-3 June 1998 Page(s):
553 -556 vol.6,
http://ingengineering.com/Documents/Docs-DataFusion/MPA11_6.PDF

[50]. Kristof Van Laerhoven, �On-line Adaptive Context Awareness Starting from Low-
level Sensors�, Masters Thesis, the Free University of Brussels (VUB). Brussels,
Belgium, 1999, http://www.comp.lancs.ac.uk/~kristof/old/papers/thesis99.pdf

[51]. M. Kokar, J. A. Tomasik, and J. Weyman, �A formal approach to information
fusion�, Proceedings of 2nd Intern. Conf. On Information Fusion, vol. I, pp. 133--
140, 1999, http://www.coe.neu.edu/~kokar/publications/f99-mjj.ps

[52]. Dave McDaniel, �An Information Fusion Framework for Data Integration�,
Proceedings of the 13th Software Technology Conference, 2001

[53]. David L. Hall and James Llinas (editors), �Handbook of Multisensor Data Fusion�,
CRC Press, 2001

[54]. R.S. Doyle and C.J. Harris, �Multi-Sensor Data Fusion for Obstacle Tracking Using
Neuro-Fuzzy Estimation Algorithms�, SPIE (The International Society for Optical

186

Engineering) Proceedings Vol.2233, Sensor Fusion and Aerospace Applications II,
6-7 April 1994, Orlando, Florida, Page 112-123

[55]. Shulin Yang and Kuo-Chu Chang, �Modular Neural Net Architecture for Automatic
Target Recognition�, SPIE Proceedings Vol.2755, Signal Processing, Sensor Fusion,
and Target Recognition V, 8-10 April 1996, Orlando, Florida, Page 166-177

[56]. Ronald P.S. Mahler, �Unified Data Fusion: Fuzzy Logic, Evidence, and Rules�,
SPIE Proceedings Vol.2755, Signal Processing, Sensor Fusion, and Target
Recognition V, 8-10 April 1996, Orlando, Florida, Page 226-237

[57]. Ronald P.S. Mahler, �Combining Ambiguous Evidence With Respect To
Ambiguous A Priori Knowledge, I: Boolean Logic�, IEEE Transactions on Systems,
Man and Cybernetics, Part A, Volume: 26 Issue: 1 , Jan. 1996, Page 27-41

[58]. Ronald P.S. Mahler, �The modified Dempster-Shafer approach to classification�,
IEEE Transactions on Systems, Man and Cybernetics, Part A, Volume: 27 Issue: 1,
Jan. 1997, Page 96 -104

[59]. Firooz A. Sadjadi (editor), �Selected Papers on Sensor and Data Fusion�, SPIE
Milestore Series Volume MS 124, SPIE Press, 1996, ISBN 0-8194-2265-7

[60]. Richard T. Antony, �Principles of Data Fusion Automation�, Artech House Inc.,
1995, ISBN 0-89006-760-0

[61]. Alan N. Steinberg, Christopher L. Bowman, and F. E. White, �Revisions to the JDL
Data Fusion Model�, Proceedings of SPIE AeroSense (Sensor Fusion: Architectures,
Algorithms and Applications III), page 430-441, Orlando, Florida, 1999.

[62]. Erik. P. Blasch and Susan Plano, �JDL Level 5 fusion model: user refinement issues
and applications in group tracking,� SPIE Vol. 4729, Aerosense, 2002, pp. 270 �
279

[63]. David Lee Hall, �Mathematical Techniques in Multisensor Data Fusion�, Artech
House Inc., 1992 ISBN 0-89006-558-6

[64]. I. R. Goodman, Ronald P. S. Mahler, and Hung T. Hguyen, �Mathematics of Data
Fusion�, Kluwer Academic Publishers, 1997, ISBN 0-7923-4674-2

[65]. Todor Tagarev and Petya Ivanova, �Computational Intelligence in Multi-Source
Data and Information Fusion�, Inform & Security, Vol. 2, 1999, ISSN 1311-1493,
http://www.isn.ethz.ch/researchpub/publihouse/infosecurity/volume_2/f4/f4_index.
htm

[66]. Albrecht Schmidt, �Implicit Human Computer Interaction Through Context�,
Personal Technologies, Vol. 4(2), June 2000
http://citeseer.nj.nec.com/schmidt00implicit.html

187

[67]. Martin Jansson, �Context Shadow: An Infrastructure for Context Aware
Computing�, Proceedings of Artificial Intelligence in Mobile System 2002, Lyon,
France, http://www.dsv.su.se/feel/DSV/ContextShadow.pdf

[68]. Albrecht Schmidt and Jessica Forbess, �What GPS Doesn�t Tell You: Determining
One�s Context with Low-level Sensors�, The 6th IEEE International Conference on
Electronics, Circuits and Systems, September 5 - 8, 1999, Paphos, Cyprus,
http://www.hum.auc.dk/~slau01/inf8/artikler/Barkhuus_Artikel_Ref/what-gps-
doesn-t.pdf

[69]. Hans-W. Gellersen, Michael Beigl and Albrecht Schmidt, �Sensor-based Context-
Awareness for Situated Computing�, Workshop on Software Engineering for
Wearable and Pervasive Computing SEWPC00 at the 22nd Int. Conference on
Software Engineering ICSE 2000, Limerick, Ireland, 6.June 2000,
http://www.teco.uni-karlsruhe.de/~albrecht/publication/sewpc00/sensor-based-
context.pdf

[70]. Hans-W. Gellersen, Albrech Schmidt, and Michael Beigl, �Multi-Sensor Context-
Awareness in Mobile Devices and Smart Artifacts�, Mobile Networks and
Applications (MONET), Oct 2002,
http://www.comp.lancs.ac.uk/~albrecht/pubs/pdf/gellersen_monet_2002.pdf

[71]. Datong Chen, Albrecht Schmidt, and Hans-W. Gellesen, �An Architecture for
Multi-Sensor Fusion in Mobile Environments�, Proceedings International
Conference on Information Fusion, Sunnyvale, CA, USA, July 1999. Vol. II, pp
861-868, http://www.comp.lancs.ac.uk/~albrecht/pubs/pdf/chen_fusion1999.PDF

[72]. Panu Korpipaa, Jani Mantyjarvi, Juha Kela, Heikki Keranen, and Esko-Juhani
Malm, �Managing Context Information in Mobile Devices�, IEEE Pervasive
Computing, Volume 2 Number 3, July-September 2003, pp. 42-51, ISSN 1536-
1268

[73]. Stephen S. Yau, Fariaz Karim, Yu Wang, Bin Wang, and Sandeep K.S. Gupta,
�Reconfigurable Context-Sensitive Middleware for Pervasive Computing�, IEEE
Pervasive Computing, Vol.1 No.3; July-September 2002, pp. 33-40, ISSN 1536-
1268, http://csdl.computer.org/dl/mags/pc/2002/03/b3033.pdf

[74]. Scott F. Midkiff, �Mobile Computing �Killer App� Competition�, IEEE Pervasive
Computing, Vol.1 No.3; July-September 2002, pp. 101-104, ISSN 1536-1268,
http://csdl.computer.org/dl/mags/pc/2002/03/b3101.pdf

[75]. Vince Stanford, �Using Pervasive Computing to Deliver Elder Care�, IEEE
Pervasive Computing, Vol.1 No.1; January-March 2002, pp. 10-13, ISSN 1536-
1268, http://csdl.computer.org/dl/mags/pc/2002/01/b1010.pdf

[76]. Nigel Davies and Hans-Werner Gellersen, �Beyond Prototypes: Challenges in
Deploying Ubiquitous Systems�, IEEE Pervasive Computing, Vol.1 No.1; January-

188

March 2002, pp. 26-35, ISSN 1536-1268,
http://csdl.computer.org/dl/mags/pc/2002/01/b1026.pdf

[77]. Roy Want, Gaetano Borriello, Trevor Pering, and Keith I. Farkas, �Disappearing
Hardware�, IEEE Pervasive Computing, Vol.1 No.1; January-March 2002, pp. 36-
47, ISSN 1536-1268, http://csdl.computer.org/dl/mags/pc/2002/01/b1036.pdf

[78]. Deborah Estrin, David Culler, Kris Pister, and Gaurav Sukhatme, �Connecting the
Physical World with Pervasive Networks�, IEEE Pervasive Computing, Vol.1 No.1;
January-March 2002, pp. 59-69, ISSN 1536-1268,
http://csdl.computer.org/dl/mags/pc/2002/01/b1059.pdf

[79]. Tim Kindberg and Armando Fox, �System Software for Ubiquitous Computing�,
IEEE Pervasive Computing, Vol.1 No.1; January-March 2002, pp. 70-81, ISSN
1536-1268, http://csdl.computer.org/dl/mags/pc/2002/01/b1070.pdf

[80]. Steve Shafer, Barry Brumitt, and Brian Meyers, �The EasyLiving Intelligent
Environment System�, CHI Workshop on Research Directions in Situated
Computing, April 2000, http://research.microsoft.com/easyliving/Documents/�2000
04 Steve Shafer CHI.doc�

[81]. Mark Weiser, �The Computer of the 21st Century,� Scientific American, Vol.265
No.3, September 1991, pp.19-25,
http://www.cc.gatech.edu/fac/Gregory.Abowd/hci-resources/area-bok/papers/p94-
weiser.pdf

[82]. Stelios C.A. Thomopoulos, �Sensor Integration and Data Fusion�, Journal of
Robotics Systems, Volume 7 Number 3 Page 337 � 372, June 1990, ISSN 0741-
2223

[83]. S.C.A. Thomopoulos, R. Viswanathan, and D.K. Bougoulias, �Optimal Distributed
Decision Fusion�, IEEE Transactions on Aerospace and Electronic Systems,
Volume 25 Issue 5, September 1989, Page 761 � 765

[84]. Miguel A. Munoz, Marcela Rodriguez, Jesus Favela, Ana I. Martinez-Garcia, and
Victor M. Gonzalez, �Context-Aware Mobile Communication in Hospitals�, IEEE
Computer (ISSN 0018-9162) September 2003, Volume 36 Number 9, Page 38 � 46

[85]. Brad A. Myers, Michael Beigl, �Handheld Computing�, IEEE Computer (ISSN
0018-9162), September 2003, Volume 36 Number 9, Page 27 � 29

[86]. Irfan A. Essa, �Ubiquitous Sensing for Smart and Aware Environments:
Technologies towards the Building of an Aware Home�, Position Paper for the
DARPA/NSF/NIST Workshop on Smart Environments, July 1999,
http://www.cc.gatech.edu/fce/ahri/publications/pp.pdf

[87]. Jeffrey Hightower, and Gaetano Borriello, �Location Systems for Ubiquitous
Computing�, IEEE Computer (ISSN 0018-9162), August 2001, Page 57 � 66

189

[88]. Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman, Pete Steggles, Andy
Ward, and Andy Hopper, �Implement a Sentient Computing System�, IEEE
Computer (ISSN 0018-9162), August 2001, Page 50 � 56

[89]. Robert M. Mosee, �A Discipline Independent Definition of Information�, Journal of
the American Society for Information Science, 48 (3) 1997, 254 � 269
http://www.ils.unc.edu/~losee/book5.pdf

[90]. Salil Pradhan, Cyril Brignone, Jun-Hong Cui, Alan McReynolds, and Mark T.
Smith, �Websigns: Hyperlinking Physical Locations to the Web�, IEEE Computer
(ISSN 0018-9162) August 2001, Page 42 � 48

[91]. Nigel Davies, Keith Cheverst, Keith Mitchell, and Alon Efrat, �Using and
Determining Location in a Context-Sensitive Tour Guide�, IEEE Computer (0018-
9162) August 2001, Page 35 � 41

[92]. Francesco Bellotti, Riccardo Berta, Alessandro De Gloria, Edmondo Ferretti, and
Massimiliano Margarone, �VeGame: Exploring Art and History in Venice�, IEEE
Computer (ISSN 0018-9162) September 2003 Volume 36 Number 9, Page 48 � 55

[93]. Roy Thomas Fielding, �Architectural Styles and the Design of Network-based
Software Architecture�, doctoral dissertation, School of Information and Computer
Science, University of California, Irvine, 2000,
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

[94]. Nenad Medvidovic, Marija Mikic-Rakic, Nikunj R. Mehta, and Sam Malek,
�Software Architectural Support for Handheld Computing�, IEEE Computer (ISSN
0018-9162) September 2003 Volume 36 Number 9, Page 66 � 73

[95]. Stan Franklin, and Art Graesser, �Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents�, Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages, Springer Verlag, 1996,
http://www.cs.memphis.edu/~franklin/AgentProg.html

[96]. Eric M. Dashofy, Nenad Medvidovic, and Richard N. Taylor, �Using Off-The-Shelf
Middleware to Implement Connectors in Distributed Software Architectures�,
Proceeding of 1999 International Conference on Software Engineering (ICSE�99),
ACM, New York, 1999, 3-12.

[97]. Philip A. Bernstein, �Middleware: A Model for Distributed System Services�,
Communications of the ACM February 1996 Vol. 39 No. 2, pp.86-98

[98]. Mary Shaw, and Paul Clements, �A Field Guide to Boxology: Preliminary
Classification of Architectural Styles for Software Systems�, Proceeding of the 2nd
International Software Architecture Workshop (ISW-2), San Francisco, CA, USA,
October 1996, pp. 50 � 54

190

[99]. Nenad Medvidovic, and David S. Rosenblum, �Domains of Concern in Software
Architectures and Architecture Description Languages�, Proceedings of the 1997
USENIX Conference on Domain-Specific Languages, October 15-17, Santa
Barbara, California,

[100]. Antonio Carzaniga, Elisabetta Di Nitto, David S. Rosenblum, and Alexander L.
Wolf, �Issues in Supporting Event-based Architectural Styles�, Proceedings of the
3rd International Software Architecture Workshop (ISAW-3), Orlando, Florida, USA,
November 1998 http://www.cs.colorado.edu/users/carzanig/papers/isaw3.pdf

[101]. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf, �Design of a
Scalable Event Notification Service: Interface and Architecture�, Technical Report
CU-CS-863-98, Department of Computer Science, University of Colorado, August,
1998, http://www.cs.colorado.edu/users/carzanig/papers/CU-CS-863-98.pdf

[102]. Marco Castaldi, Antonio Carzaniga, Paola Inverardi, and Alexander L. Wolf, �A
Lightweight Infrastructure for Reconfiguring Applications�, in B. Westfechtel, A.
van der Hoek (Editors): SCM 2001/2003, LNCS 2649, pp. 231-244, 2003,
Springer-Verlag. in conjunction with ICSE 03, International Conference on
Software Engineering. Portland, Oregon. May, 2003,
http://www.cs.colorado.edu/users/carzanig/papers/cciw_scm11.pdf

[103]. Antonio Carzaniga, �Architectures for an Event Notification Service Scalable to
Wide-area Networks�, PhD Thesis, Politecnico di Milano, December 1998,
http://www.cs.colorado.edu/users/carzanig/papers/phd_thesis.pdf

[104]. Robert J. Allen, �A Formal Approach to Software Architecture�, Ph.D. Thesis,
CMU-CS-97-144, SCS CMU, May `1997,
http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-144.pdf

[105]. David Garlan, �Software architecture: a Roadmap�, Proceedings of the
Conference on The Future of Software, ELimerick, Ireland, May 2000, Page 91 �
101, ISBN 1-58113-253-0

[106]. William G. Griswold, Robert Boyer, Steven W. Brown, and Tan Minh Truong, �A
Component Architecture for an Extensible, Highly Integrated Context-Aware
Computing Infrastructure�, 2003 International Conference on Software Engineering
(ICSE 2003), May 2003, http://www.cs.ucsd.edu/~wgg/Abstracts/ac-arch.pdf

[107]. Asim Smailagic, Daniel P. Siewiorek, Joshua Anhalt, and Francine Gemperle,
Daniel Salber, Sam Weber, Jim Beck, Jim Jennings, �Towards Context Aware
Computing: Experiences and Lessons�, IEEE Journal on Intelligent Systems, Vol.
16, No. 3, June 2001, pp 38-46
http://www.cs.cmu.edu/~asim/DistractionFreeComputing.pdf

[108]. Andreas Braun, Allen H. Dutoit, and Bernd Brügge, �A Software Architecture for
Knowledge Acquisition and Retrieval for Global Distributed Teams�, International
Workshop on Global Software Development, International Conference on Software

191

Engineering. Portland, Oregon, May 9, 2003,
http://wwwbruegge.in.tum.de/publications/includes/pub/braun2003dcba/braun2003
dcba.pdf

[109]. Gaëtan Rey, Joëlle Coutaz, and James L. Crowley, �The Contextor: A
Computational Model for Context-Aware Computing�, Position paper of Workshop
of Ubiquitous Computing 2002 (UBICOMP 2002) September 29 � October 1,
Goteborg, Sweden, http://iihm.imag.fr/rey/papier/UbicompWorkshop.pdf

[110]. J. Coutaz and G. Rey, �Foundation for a Theory of Contextors�, in the
Proceedings of the 4th International Conference on Computer-Aided Design of User
Interfaces (CADUI02), ACM Publ., Valenciennes, France, May 2002, pp. 283 � 302,
http://iihm.imag.fr/rey/papier/cadui02.pdf

[111]. James L. Crowley, Jolle Coutaz, Gaeten Rey, and Patrick Reignier, �Perceptual
Components for Context Aware Computing�, Ubiquitous Computing: Proceedings
of 4th International Conference (UbiComp 2002), Göteborg, Sweden, September 29
- October 1, 2002,
http://www-prima.inrialpes.fr/publi/CrowleyCoutaz-Ubicomp2002.pdf

[112]. Nenad Medvidovic, �Modeling Software Architecture in the Unified Modeling
Language�, ACM Transactions on Software Engineering and Methodology
(TOSEM), Volume 11 Issue 1, January 2002, Page 2 � 57 (ISSN:1049-331X)

[113]. Jason I. Hong, and James A. Landay, �An Infrastructure Approach to Context-
Aware Computing�, Human-Computer Interaction Vol. 16 No.2-4, December 2001,
pp. 287 � 303, http://guir.berkeley.edu/projects/cfabric/pubs/context-essay-final.pdf

[114]. Gruia-Catalin Roman, Christine Julien, and Amy L. Murphy, �A Declarative
Approach to Agent Centered Context-Aware Computing in Ad Hoc Wireless
Environments�, Software Engineering for Large-Scale Multi-Agent Systems,
Garcia, A., Lucena, C., Zambonelli, F., Omicini, A., and Castro, J., (editors),
Springer LNCS 2603, 2003,
http://www.cs.wustl.edu/mobilab/pubs/SELMAS-02.pdf

[115]. Terry Winograd, �Architecture for Context�, Human-Computer Interaction, Vol.
16 No. 2-4, 2001, pp. 401-419,
http://www1.ics.uci.edu/~jpd/NonTradUI/SpecialIssue/winograd.pdf

[116]. Ivica Crnkovic, and Magnus Larsson (editors), �Building Reliable Component-
Based Software Systems�, Artech House Inc., 2002, ISBN 1-58053-327-2

[117]. Douglas K. Barry, �Web Services and Service-Oriented Architecture: The Savvy
Manager�s Guide�, Morgan Kaufmann Publisher 2003, ISBN 1558609067

[118]. David S. Frankel, �Model Driven Architecture: Applying MDA to Enterprise
Computing�, Wiley Publishing Inc. 2003, ISBN 0-471-31920-1

192

[119]. Christine Hofmeister, Robert Nord, and Dilip Soni, �Applied Software
Architecture�, Addison Wesley Longman, Inc. 2000, ISBN 0-201-32571-3

[120]. Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann, �Pattern-
Oriented Software Architecture, Volume 2, Patterns for Concurrent and Networked
Objects�, John Wiley & Son 2000, ISBN 0471606952

[121]. Dov Dori, �Conceptual Modeling and System Architecting, Introduction�,
Communications of ACM (Association for Computing Machinery), October 2003,
Volume 46 Number 10, pp. 63 � 65, ISSN 0001-0782

[122]. Nathan R. Soderborg, Edward F. Crawley, and Dov Dori, �System Function and
Architecture: OPM-based Definitions and Operational Templates�,
Communications of ACM, October 2003 Vol. 46 No.10, pp. 67 � 72, ISSN 0001-
0782

[123]. Gregory Abowd, Robert Allen, and David Garlan, �Formalizing Style to
Understand Descriptions of Software Architecture�, ACM Transactions on Software
Engineering and Methodology, Vol. 4, No. 4, October 1995, page 319 � 364
file://reports.adm.cs.cmu.edu/usr/anon/1995/CMU-CS-95-111.ps

[124]. Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, E. James
Whitehead Jr., Jason E. Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L.
Dubrow, �A Component- and Message-Based Architectural Style for GUI
Software�, IEEE Transactions on Software Engineering, Vol. 22, No. 6, June 1996,
pp. 390 � 406, http://sunset.usc.edu/~neno/teaching/s99/C2-TSE.pdf

[125]. Mohan Kumar, Behrooz A. Shirazi, Sajal K. Das, Byung Y. Sung, David Levine,
and Mukesh Singhal, �PICO: A Middleware Framework for Pervasive Computing�,
IEEE Pervasive Computing, Volume 2 Number 3, July-September 2003, pp. 72 �
79, ISSN 1536-1268

[126]. Daniel D. Corkill, �Blackboard Systems�, Journal of AI Expert, Vol. 6, No. 9,
September 1991, pp. 40 � 47, http://bbtech.com/papers/ai-expert.pdf

[127]. Frantisek Plasil, and Michael Stal, �An Architectural View of Distributed Objects
and Components in CORBA, Java RMI, and COM/DCOM�, (Journal of) Software
� Concepts and Tools, Vol. 19, No. 1, 1998, pp. 14 � 28,
http://www.stal.de/Downloads/springer98.pdf

[128]. Kari Sentz and Scott Ferson, �Combination of Evidence in Dempster-Shafer
Theory�, Technical Report, April 2002 Los Alamos National Laboratory, Los
Alamos, NM, http://www.sandia.gov/epistemic/Reports/SAND2002-0835.pdf

[129]. Robert A. Hummel and Michael S. Landy, �A Statistical Viewpoint on the Theory
of Evidence�, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
10, No. 2, March 1988, pp. 235 � 247

193

[130]. Jurg Kohlas and Paul-Andre Monney, �A Mathematical Theory of Hints, An
Approach to the Dempster-Shafer Theory of Evidence�, Springer-Verlag Berlin
Heidelberg, 1995, ISBN 3-540-59176-1

[131]. Ronald R. Yager, Janusz Kacprzyk, and Mario Fedrizzi (editors), �Advances in
the Dempster-Shafer Theory of Evidence�, John Wiley & Sons, February 1994,
ISBN 0471552488 (CMU# 006.3.A2448)

[132]. James W. Hall, David I. Blockley, and John P. Davis, �Uncertainty Inference
using Interval Probability Theory�, Internationial Journal of Approximate
Reasoning, Vol.19, No.3-4 (October 1998) pp. 247 � 264,
http://www.cen.bris.ac.uk/civil/staff/jwh/Publications/IJAR19.pdf

[133]. James W. Hall, and Jonathan Lawry, �Generation, Combination and Extension of
Random Set Approximations to Coherent Lower and Upper Probabilities�, to in
Journal of Reliability & System Safety, ISSN 0951-8320,
http://www.cen.bris.ac.uk/civil/staff/jwh/Publications/hall_lawry_RESS_revised.pd
f

[134]. George J. Klir, �Uncertainty and Information Measures for Imprecise Probability:
An Overview�, the Proceedings of the first International Probabilities and Their
Applications�, Ghent, Belgium, June 29 � July 2, 1999,
ftp://decsai.ugr.es/pub/utai/other/smc/isipta99/050.pdf

[135]. David Harmanec, �Measures of Uncertainty and Information�, Imprecise
Probability Project (http://ippserv.rug.ac.be/home/ipp.html),
http://www.sipta.org/documentation/summary_measures/summary_measures.html

[136]. Luis Mateus Rocha, �Relative Uncertainty and Evidence Sets: A Constructivist
Framework�, International Journal of General Systems, Vol. 26 (1-2), pp. 35 � 61,
http://www.c3.lanl.gov/~rocha/ijgs_unc.html

[137]. Igor Douven, �Inference to Best Explanation is Coherent�, in the �PSA(98):
Proceedings of the Biennial Meeting of the Philosophy of Science Association, Part
1: Contributed Papers�, University of Chicago Press, Don A. Howard (Editor),
1998, pp. 424 � 435,
http://www.phil.uu.nl/preprints/preprints/PREPRINTS/preprint182.ps.Z

[138]. Luis Raul Pericchi, �Sets of Prior Probabilities and Bayesian Robustness�,
Imprecise Probability Project (http://ippserv.rug.ac.be/home/ipp.html),
http://ippserv.rug.ac.be/documentation/robust/robust.html

[139]. Ronald P. S. Mahler, �Combing Ambiguous Evidence with respect to Ambiguous
a priori Knowledge, I: Boolean Logic�, IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, Vol. 26, No. 1, January 1996, pp. 27 �
41

194

[140]. S. James Press, �The Subjectivity of Scientists and the Bayesian Approach�, John
Wiley and Sons, Inc., 2001, ISBN 0-471-39685-0 (CMU 507.2.P93S)

[141]. S. James Press, �Subjective and Objective Bayesian Statistics: Principles, Models,
and Applications, Second Edition�, John Wiley and Sons, Inc., 2003, ISBN 0-471-
34843-0 (CMU 507.2.P93S2)

[142]. David A. Freedman, �Notes on the Dutch Book Argument�, Lecture Notes,
Department of Statistics, University of Berkley at Berkley,
http://www.stat.berkeley.edu/~census/dutchdef.pdf

[143]. Glenn Shafer and Judea Pearl (editors), �Readings in Uncertainty Reasoning�,
Morgan Kaufmann Publihser Inc., 1990, ISBN 1-55860-125-2

[144]. Philippe Semts and Robert Kennes, �The Transferable Belief Model�, Artificial
Intelligence Journal, Vol. 66 (1994), pp. 191 � 234,
http://iridia.ulb.ac.be/~psmets/TBM-AIJ.pdf

[145]. Philippe Smets, �No Dutch Book Can Be Built Against TBM Even Though
Update Is Not Obtained by Bayes Rule of Conditioning�, SIS, Workshop on
Probabilistic Expert Systems, R. Scozzafava(ed.), Roma, Italy, 1993 pp. 181 � 204,
http://iridia.ulb.ac.be/~psmets/Dynamic_Dutch_Books.pdf

[146]. Joseph Y. Halpern and Riccardo Pucella, �A Logic for Reasoning about Upper
Probabilities�, Journal of Artificial Intelligence Research, 17, pp. 57 � 81, 2002,
http://www.cs.cornell.edu/home/halpern/upjair.pdf

[147]. Bing Ma, �Parametric and Nonparametric Approaches for Multisensor Data
Fusion�, Ph.D. dissertation, Electrical Engineering: Systems, the University of
Michigan, 2001, http://ww.eecs.umich.edu/~hero/Preprints/thesis_ma.pdf

[148]. Andrew Martin Robert Ward, �Sensor-driven Computing�, Ph.D. dissertation,
Corpus Christi College, University of Cambridge, August, 1998,
http://www.sigmobile.org/phd/1999/theses/ward.pdf

[149]. Jennifer A. Healey, �Wearable and Automotive Systems for Affect Recognition
from Physiology�, Ph.D. dissertation, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, May 2000,
ftp://whitechapel.media.mit.edu/pub/tech-reports/TR-526.ps.Z

[150]. Huadong Wu, Mel Siegel, and Sevim Ablay, �Sensor Fusion using Dempster-
Shafer Theory II: Static Weighting and Kalman Filter-like Dynamic Weighting�,
IMTC (IEEE annual Instrumentation and Measurement Technology Conference)
2003 proceedings, Vail, CO USA, May 20-22, 2003,
http://www-2.cs.cmu.edu/~whd/publications/7179.pdf

[151]. Ted Faison, �Interaction Patterns for Communicating Processes�, The
Proceedings of Pattern Languages of Program Conference, August 11-14, 1998,

195

Allerton Park, Monticello, Illinois, USA,
http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P02.pdf

[152]. John William McManus, �Design and Analysis Techniques for Concurrent
Blackboard Systems�, Ph.D. Dissertation, Department of Computer Science,
College of William and Mary in Virginia, April 1992,
http://techreports.larc.nasa.gov/ltrs/PDF/phd-92-mcmanus.pdf

[153]. John W. McManus, �Design and Analysis Tools for Concurrent Blackboard
Systems�, 10th AIAA/IEEE Digital Avionics Systems Conference, Los Angeles,
California, October 14 - 17, 1991, pp. 432-439,
http://techreports.larc.nasa.gov/ltrs/PDF/conf-10-dasc.pdf

[154]. David Howie, �Interpreting Probability: Controversies and Development in the
Twentieth Century�, Cambridge University Press, August 2002, ISBN 0521812518

[155]. Albert Tebo, �Sensor Fusion Employs A Variety of Architecture, Algorithm, and
Applications�, OE Reports (the International Society for Optical Engineering) 164,
August 1997, http://www.spie.org/web/oer/august/aug97/sensor.html

[156]. Wilfried Elmenreich, �Sensor Fusion in Time-Triggered Systems�, Ph.D.
dissertation, Vienna University of Technology, October 2002,
http://www.vmars.tuwien.ac.at/~wilfried/papers/elmenreich_Dissertation_sensorFu
sionInTimeTriggeredSystems.pdf

[157]. Scott Stillman and Irfan Essa, �Toward Reliable Mulitmodal Sensing in Aware
Environments�, Perceptual User Interfaces (PUI 2001) Workshop (held in
conjunction with ACM UIST 2001 Conference), Orlando, Florida, November 15-16,
2001, http://www.cs.ucsb.edu/conferences/PUI/PUIWorkshop/PUI-2001/a18.pdf

[158]. Michael Hahn and Emmanuel Baltsavias, �Cooperative Algorithms and
Techniques of Image Analysis and GIS�, D. Fritsch, M. Englich, and M. Sester
(editors), The International Archives of Photogrammetry and Remote Sensing
Volume XXXII Part 4, ISPRS Commission IV Symposium on GIS � GIS Between
Visions and Applications, http://www.ifp.uni-
stuttgart.de/publications/commIV/hahn13neu.pdf

