
Lecture Notes on
Binary Search

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 6
January 27, 2011

1 Introduction

One of the fundamental and recurring problems in computer science is to
find elements in collections, such as elements in sets. An important algo-
rithm for this problem is binary search. We use binary search for an integer
in a sorted array to exemplify it. We started in the last lecture by discussing
linear search and giving some background on the problem.

We will also once again see the importance of loop invariants in writing
correct code. Here is a note by Jon Bentley about binary search:

I’ve assigned [binary search] in courses at Bell Labs and IBM. Profes-
sional programmers had a couple of hours to convert [its] description
into a program in the language of their choice; a high-level pseudocode
was fine. At the end of the specified time, almost all the programmers
reported that they had correct code for the task. We would then take
thirty minutes to examine their code, which the programmers did with
test cases. In several classes and with over a hundred programmers,
the results varied little: ninety percent of the programmers found bugs
in their programs (and I wasn’t always convinced of the correctness of
the code in which no bugs were found).

I was amazed: given ample time, only about ten percent of profes-
sional programmers were able to get this small program right. But
they aren’t the only ones to find this task difficult: in the history in
Section 6.2.1 of his Sorting and Searching, Knuth points out that

LECTURE NOTES JANUARY 27, 2011

Binary Search L6.2

while the first binary search was published in 1946, the first published
binary search without bugs did not appear until 1962.

—Jon Bentley, Programming Pearls (1st edition), pp.35–36

I contend that what these programmers are missing is the understanding
of how to use loop invariants in composing their programs. They help
us to make assumptions explicit and clarify the reasons why a particular
program is correct. Part of the magic of pre- and post-conditions as well as
loop invariants and assertions is that they localize reasoning. Rather than
having to look at the whole program, or the whole function, we can focus
on individual statements tracking properties via the loop invariants and
assertions.

2 Binary Search

Can we do better than searching through the array linearly? If you don’t
know the answer already it might be surprising that, yes, we can do signif-
icantly better! Perhaps almost equally surprising is that the code is almost
as short!

Before we write the code, let us describe the algorithm. We start by
examining the middle element of the array. If it smaller than x than x must
be in the upper half of the array (if it is there at all); if is greater than x then
it must be in the lower half. Now we continue by restricting our attention
to either the upper or lower half, again finding the middle element and
proceeding as before.

We stop if we either find x, or if the size of the subarray shrinks to zero,
in which case x cannot be in the array.

Before we write a program to implement this algorithm, let us analyze
the running time. Assume for the moment that the size of the array is a
power of 2, say 2k. Each time around the loop, when we examine the mid-
dle element, we cut the size of the subarrays we look at in half. So before the
first iteration the size of the subarray of interest is 2k. After the second iter-
ation it is of size 2k−1, then 2k−2, etc. After k iterations it will be 2k−k = 1,
so we stop after the next iteration. Altogether we can have at most k + 1
iterations. Within each iteration, we perform a constant amount of work:
computing the midpoint, and a few comparisons. So, overall, when given
a size of array n we perform c ∗ log2(n) operations.1

1In general in computer science, we are mostly interested in logarithm to the base 2 so
we will just write log(n) for log to the base 2 from now on unless we are considering a

LECTURE NOTES JANUARY 27, 2011

Binary Search L6.3

If the size n is not a power of 2, then we can round n up to the next
power of 2, and the reasoning above still applies. For example, is n = 13
we round it up to 16 = 24. The actual number of steps can only be smaller
than this bound, because some of the actual subintervals may be smaller
than the bound we obtained when rounding up n.

The logarithm grows much slower than the linear function that we ob-
tained when analyzing linear search. As before, consider that we are dou-
bling the size of the input, n′ = 2∗n. Then the number of operations will be
c ∗ log(2 ∗n) = c ∗ (log(2) + log(n)) = c ∗ (1 + log(n)) = c + c ∗ log(n). So the
number of operations increases only by a constant amount c when we dou-
ble the size of the input. Considering that the largest representable positive
number in two’s complement representation is 231 − 1 (about 2 billion) bi-
nary search even for unreasonably large arrays will only traverse the loop
31 times! So the maximal number of operations is effectively bounded by a
constant if it is logarithmic.

different base.

LECTURE NOTES JANUARY 27, 2011

Binary Search L6.4

3 Implementing Binary Search

The specification for binary search is the same as for linear search.

int binsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A, n);
/*@ensures (-1 == \result && !is_in(x, A, n))

|| ((0 <= \result && \result < n) && A[\result] == x);
@*/
;

We have two variables, lower and upper, which hold the lower and upper
end of the subinterval in the array that we are considering. We start with
lower as 0 and upper as n, so the interval includes lower and excludes
upper. This often turns out to be a convenient choice when computing
with arrays.

The for loop from linear search becomes a while loop, exiting when
the interval has size zero, that is, lower == upper. We can easily write the
first loop invariant, relating lower and upper to each other and the overall
bound of the array.

int binsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A,n);
/*@ensures (-1 == \result && !is_in(x, A, n))

|| ((0 <= \result && \result < n) && A[\result] == x);
@*/

{ int lower = 0;
int upper = n;
while (lower < upper)
//@loop_invariant 0 <= lower && lower <= upper && upper <= n;
{
// ...??...
}
return -1;

}

In the body of the loop, we first compute the midpoint mid. We assert
that the midpoint is indeed between lower and upper . That assertion is easy
to see, because lower ≤ upper and therefore upper − lower > 0. Further-
more, lower+(upper−lower) = upper , so if we divide the second summand

LECTURE NOTES JANUARY 27, 2011

Binary Search L6.5

by 2 (which truncates towards 0), we will have lower +(upper − lower)/2 <
upper .

Next in the loop body we check if A[mid] = x. If so, we have found the
element and return mid .

int binsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A,n);
/*@ensures (-1 == \result && !is_in(x, A, n))

|| ((0 <= \result && \result < n) && A[\result] == x);
@*/

{ int lower = 0;
int upper = n;
while (lower < upper)
//@loop_invariant 0 <= lower && lower <= upper && upper <= n;
//@loop_invariant ...??...
int mid = lower + (upper-lower)/2;
//@assert lower <= mid && mid < upper;
if (A[mid] == x) return mid;
// ...??...

}
return -1;

}

Now comes the hard part. What is the missing part of the invariant?
The first instinct might be to say that x should be in the interval from
A[lower] to A[upper]. But that may not even be true when the loop is en-
tered the first time. Looking back at linear search we notice that the invari-
ant was somewhat different: we expressed that x could not be outside of
the chosen interval. We say that here by saying that A[lower − 1] < x and
A[upper] > x. The asymmetry arises because the interval under considera-
tion includes A[lower] but excludes A[upper].

As in linear search, we have to worry about the boundary condition
when lower = 0 or upper = n, in which case we have not yet excluded any
part of the array. And, again, we use disjunction and exploit short-circuit
evaluation to put these together.

LECTURE NOTES JANUARY 27, 2011

Binary Search L6.6

int binsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A,n);
/*@ensures (-1 == \result && !is_in(x, A, n))

|| ((0 <= \result && \result < n) && A[\result] == x);
@*/
{ int lower = 0;

int upper = n;
while (lower < upper)
//@loop_invariant 0 <= lower && lower <= upper && upper <= n;
//@loop_invariant (lower == 0 || A[lower-1] < x);
//@loop_invariant (upper == n || A[upper] > x);
{ int mid = lower + (upper-lower)/2;
//@assert lower <= mid && mid < upper;
if (A[mid] == x) return mid;
// ...??...

}
return -1;

}

At this point, let’s check if the loop invariant is strong enough to imply
the postcondition of the function. If we return from inside the loop because
A[mid] = x we return mid , so A[\result] == x as required.

If we exit the loop because lower < upper is false, we know lower =
upper , by the first loop invariant. Now we have to distinguish some cases.

1. If A[lower−1] < x and A[upper] > x, then A[lower] > x (since lower =
upper). Because the array is sorted, x cannot be in it.

2. If lower = 0, then upper = 0. By the second conjunct, then either
n = 0 (and so the array has no elements and we must return −1), or
A[upper] = A[lower] = A[0] > x. Because A is sorted, x cannot be in
A if its first element is already strictly greater than x.

3. If upper = n, then lower = n. By the first conjunct, then either n = 0
(and so we must return −1), or A[n− 1] = A[upper − 1] = A[lower −
1] < x. Because A is sorted, x cannot be in A if its last element is
already strictly less than x.

Notice that we could verify all this without even knowing the complete
program! As long as we can finish the loop to preserve the invariant and

LECTURE NOTES JANUARY 27, 2011

Binary Search L6.7

terminate, we will have a correct implementation! This would again be a
good point for you to interrupt your reading and to try to complete the
loop, reasoning from the invariant.

We have already tested if A[mid] = x. If not, then A[mid] must be less or
greater than x. If it is less, then we can keep the upper end of the interval
as is, and set the lower end ot mid + 1. Now A[lower − 1] < x (because
A[mid] < x and lower = mid + 1), and the condition on the upper end
remains unchanged.

If A[mid] > x we can set upper to mid and keep lower the same. We
do not need to test this last condition, because the fact the tests A[mid] = x
and A[mid] < x both failed implies that A[mid] > x. We note this in an
assertion.

int binsearch(int x, int[] A, int n)
//@requires 0 <= n && n <= \length(A);
//@requires is_sorted(A,n);
/*@ensures (-1 == \result && !is_in(x, A, n))

|| ((0 <= \result && \result < n) && A[\result] == x);
@*/
{ int lower = 0;

int upper = n;
while (lower < upper)
//@loop_invariant 0 <= lower && lower <= upper && upper <= n;
//@loop_invariant (lower == 0 || A[lower-1] < x);
//@loop_invariant (upper == n || A[upper] > x);
{ int mid = lower + (upper-lower)/2;
//@assert lower <= mid && mid < upper;
if (A[mid] == x) return mid;
else if (A[mid] < x) lower = mid+1;
else /*@assert(A[mid] > x);@*/ upper = mid;

}
return -1;

}

Does this function terminate? If proceed to the loop body, that is, lower <
upper , then the interval from lower to upper is non-empty. Moreover, the
intervals from lower to mid and from mid + 1 to upper are both strictly
smaller than the original interval. Unless we find the element, the differ-
ence between upper and lower must eventually become 0 and we exit the
loop.

LECTURE NOTES JANUARY 27, 2011

Binary Search L6.8

4 One More Observation

You might be tempted to calculate the midpoint with

int mid = (lower + upper)/2;

but that is in fact incorrect. Consider this change and try to find out why
this would introduce a bug.

LECTURE NOTES JANUARY 27, 2011

Binary Search L6.9

Were you able to see it? It’s subtle, but somewhat related to other prob-
lems we had. When we compute (lower + upper)/2; we could actually
have an overflow, if lower + upper > 231 − 1. This is somewhat unlikely in
practice, since 231 = 2G, about 2 billion, so the array would have to have at
least 1 billion elements. This is not impossible, and, in fact, a bug like this
in the Java libraries2 was actually exposed.

Fortunately, the fix is simple3: because lower < upper , we know that
upper − lower > 0 and represents the size of the interval. So we can divide
that in half and add it to the lower end of the interval to get its midpoint.

Other operations in this program take place on quantities bounded from
above by n and thus cannot overflow.

5 Big-O Notation

Our brief analysis so far already indicates that linear search should take
about n iterations of a loop while binary search take about log2(n) itera-
tions, with a constant number of operations in each loop body. This suggest
that binary search should more efficient. In the design and analysis of al-
gorithms we try to make this mathematically precise by deriving so-called
asymptotic complexity measures for algorithms. There are two fundamental
principles that guide our mathematical analysis.

1. We only care about the behavior of an algorithm in the long run, that is,
on larger and larger inputs. It is when the inputs are large that differ-
ences between algorithms become really pronounced. For example,
linear search on a 10-element array will be practically the same as bi-
nary search on a 10-element array, but once we have an array of, say,
a million entries the difference will be huge.

2. We do not care about constant factors in the mathematical analysis. For
example, in analyzing the search algorithms we count how often we
have to iterate, not exactly how many operations we have to perform
on each iteration. In practice, constant factors make a big difference,
but they are influenced by so many factors (compiler, runtime system,
machine model, available memory, etc.) that at the abstract, mathe-
matical level a precise analysis is neither appropriate nor feasible.

Let’s see how these two fundamental principles guide us in the comparison
between functions that measure the running time of an algorithm.

2see Joshua Bloch’s Extra, Extra blog entry
3and was suggested first in lecture

LECTURE NOTES JANUARY 27, 2011

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

Binary Search L6.10

Let’s say we have functions f and g that measure the number of oper-
ations of an algorithm as a function of the size of the input. For example
f(n) = 3 ∗ n measures the number of comparisons performed in linear
search for an array of size n, and g(n) = 3 ∗ log(n) measures the number of
comparisons performed in binary search for an array of size n.

The simplest form of comparison would be

g ≤0 f if for every n ≥ 0, g(n) ≤ f(n).

However, this violates principle (1) because we compare the values and g
and f on all possible inputs n.

We can refine this by saying that eventually, g will always be smaller or
equal to f . We express “eventually” by requiring that there be a number n0

such that g(n) ≤ f(n) for all n that are greater than n0.

g ≤1 f if there is some n0 such that for every n ≥ n0 we have g(n) ≤
f(n).

This now incorporates the first principle (we only care about the func-
tion in the long run, on large inputs), but constant factors still matter. For
example, according to the last definition we have 3 ∗n ≤1 5 ∗n but 5 ∗n 6≤1

3 ∗ n. But if constants factors don’t matter, then the two should be equiva-
lent. We can repair this by allowing the right-hand side to be multiplied by
an arbitrary constant.

g ≤2 f if there is a constant c > 0 and some n0 such that for
every n ≥ n0 we have g(n) ≤ c ∗ f(n).

This definition is now appropriate.
The less-or-equal symbol≤ is already overloaded with many meanings,

so we write instead:

g ∈ O(f) if there is a constant c > 0 and some n0 such that for
every n ≥ n0 we have g(n) ≤ c ∗ f(n).

This notation derives from the view of O(f) as a set of functions, namely
those that eventually are smaller than a constant times f .4 Just to be ex-
plicit, we also write out the definition of O(f) as a set of functions:

O(f) = {g | there are c > 0 and n0 s.t. for all n ≥ n0, g(n) ≤ c ∗ f(n)}
4In textbooks and research papers you may sometimes see this written as g = O(f) but

that is questionable, comparing a function with a set of functions.

LECTURE NOTES JANUARY 27, 2011

Binary Search L6.11

With this definition we can check that O(f(n)) = O(c ∗ f(n)).
When we characterize the running time of a function using big-O nota-

tion we refer to it as the asymptotic complexity of the function. Here, asymp-
totic refers to the fundamental principles listed above: we only care about
the function in the long run, and we ignore constant factors.

The asymptotic time complexity of linear search is O(n), which we also
refer to as linear time. The asymptotic time complexity of binary search is
O(log(n)), which we also refer to as logarithmic time. Constant time is usually
described as O(1), expressing that the running time is independent of the
size of the input.

Some brief fundamental facts about big-O. For any polynomial, only
the highest power of n matters, because it eventually comes to dominate the
function. For example, O(5∗n2+3∗n+83) = O(n2). Also O(log(n)) ⊆ O(n),
but O(n) 6⊆ O(log(n)). Logarithms to different (constant) bases are asymp-
totically the same: O(log2(n)) = O(logb(n)) because logb(n) = log2(n)/log2(b).

As a side note, it is mathematically correct to say the running time of
binary search is O(n), because log(n) ∈ O(n). It is, however, a looser char-
acterization than saying that the running time of binary search is O(log(n)),
which is also correct. Of course, it would be incorrect to say that the run-
ning time is O(1). Generally, when we ask you to characterize the worst-
case running time of an algorithm we are asking for the tightest bound in
big-O notation.

6 Some Measurements

Algorithm design is an interesting mix between mathematics and an ex-
perimental science. Our analysis above, albeit somewhat preliminary in
nature, allow us to make some predictions of running times of our imple-
mentations. We start with linear search. We first set up a file to do some
experiments. We assume we have already tested our functions for correct-
ness, so only timing is at stage. See the file find-time.c0 on the course web
pages. We compile this file, together with the our implementation from
this lecture with the cc0 command below. We can get an overall end-to-
end timing with the Unix time command. Note that we do not use the -d
flag, since that would dynamically check contracts and completely throw
off our timings.

% cc0 find.c0 find-time.c0
% time ./a.out

LECTURE NOTES JANUARY 27, 2011

http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/06-binsearch/find-time.c0

Binary Search L6.12

When running linear search 2000 times (1000 elements in the array and 1000
random elements) on 218 elements (256 K elements) we get the following
answer

Timing 1000 times with 2^18 elements
0
4.602u 0.015s 0:04.63 99.5% 0+0k 0+0io 0pf+0w

which indicates 4.602 seconds of user time.
Running linear search 2000 times on random arrays of size 218, 219 and

220 we get the timings on our MacBook Pro

array size time (secs)
218 4.602
219 9.027
220 19.239

The running times are fairly close to doubling consistently. Due to mem-
ory locality effects and other overheads, for larger arrays we would expect
larger numbers.

Running the same experiments with binary search we get

array size time (secs)
218 0.020
219 0.039
220 0.077

which is much, much faster but looks suspicously linear as well.
Reconsidering the code we see that the time might increase linearly be-

cause we actually must iterate over the whole array in order to initialize it
with random elements!

We comment out the testing code to measure only the initialization
time, and we see that for 220 elements we measure 0.072 seconds, as com-
pared to 0.077 which is insignificant. Effectively, we have been measuring
the time to set up the random array, rather than to find elements in it with
binary search!

This is a vivid illustration of the power of divide-and-conquer. Loga-
rithmic running time for algorithms grow very slowly, a crucial difference
to linear-time algorithms when the data sizes become large.

LECTURE NOTES JANUARY 27, 2011

	Introduction
	Binary Search
	Implementing Binary Search
	One More Observation
	Big-O Notation
	Some Measurements

