
Lecture Notes on
Quicksort

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 8
February 3, 2011

1 Introduction

In this lecture we revisit the general description of quicksort from last lec-
ture1 and develop an imperative implementation of it in C0. As usual, con-
tracts and loop invariants will bridge the gap between the abstract idea of
the algorithm and its implementation.

2 The Quicksort Algorithm

Quicksort again uses the technique of divide-and-conquer. We proceed as
follows:

1. Pick an arbitrary element of the array (the pivot).

2. Divide the array into two subarrays, those that are smaller and those
that are greater (the partition phase).

3. Recursively sort the subarrays.

4. Put the pivot in the middle, between the two sorted subarrays to ob-
tain the final sorted array.

In mergesort, it was easy to divide the input (we just picked the midpoint),
but it was expensive to merge the results of the sorting the left and right
subarrays. In quicksort, dividing the problem into subproblems could be

1omitted from the lecture notes there

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.2

computationally expensive (as we analyze partitioning below), but putting
the results back together is immediate. This kind of trade-off is frequent in
algorithm design.

Let us analyze the asymptotic complexity of the partitioning phase of
the algorithm. Say we have the array

{3, 1, 4, 4, 7, 2, 8}

and we pick 3 as our pivot. Then we have to compare each element of this
(unsorted!) array to the pivot to obtain a partition such as

lt = {2, 1}, pivot = 3, geq = {4, 7, 8, 4}

We have picked an arbitrary order for the elements in the subarrays; all that
matters is that all smaller ones are to the left of the pivot and all larger ones
are to the right.

Since we have to compare each element to the pivot, but otherwise
just collect the elements, it seems that the partition phase of the algorithm
should have complexity O(k), where k is the length of the array segment
we have to partition.

How many recursive calls do we have in the worst case, and how long
are the subarrays? In the worst case, we always pick either the smallest or
largest element in the array so that one side of the partition will be empty,
and the other has all elements except for the pivot itself. In the example
above, the recursive calls might proceed as follows:

call pivot
qsort({3, 1, 4, 4, 7, 2, 8}) 1
qsort({3, 4, 4, 7, 2, 8}) 2
qsort({3, 4, 4, 7, 8}) 3
qsort({4, 4, 7, 8}) 4
qsort({4, 7, 8}) 4
qsort({7, 8}) 7
qsort({8})

All other recursive calls are with the empty array segment, since we never
have any elements less than the pivot. We see that in the worst case there
are n − 1 significant recursive calls for an array of size n. The kth recur-
sive call has to sort a subarray of size k, which proceeds by partitioning,
requiring O(k) comparisons.

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.3

This means that, overall, for some constant c we have

c

n−1∑
i=0

i = c
n(n− 1)

2
∈ O(n2)

comparisons. Here we used the fact that O(p(n)) for a polynomial p(n) is
always equal to the O(nk) where k is the leading exponent of the polyno-
mial. This is because the largest exponent of a polynomial will eventually
dominate the function, and big-O notation ignores constant coefficients.

So quicksort has quadratic complexity in the worst case. How can we
mitigate this? If we always picked the median among the elements in the
subarray we are trying to sort, then half the elements would be less and
half the elements would be greater. So in this case there would be only
log(n) recursive calls, where at each layer we have to do a total amount of
n comparisons, yielding an asymptotic complexity of O(n ∗ log(n)).

Unfortunately, it is not so easy to compute the median to obtain the
optimal partitioning. It turns out that if we pick a random element, it will
be on average close enough to the median that the expected running time
of algorithm is still O(n ∗ log(n)).

We really should make this selection randomly. With a fixed-pick strat-
egy, there may be simple inputs on which the algorithm takes O(n2) steps.
For example, if we always pick the first element, then if we supply an array
that is already sorted, quicksort will take O(n2) steps (and similarly if it
is “almost” sorted with a few exceptions)! If we pick the pivot randomly
each time, the kind of array we get does not matter: the expected running
time is always the same, namely O(n ∗ log(n)). This is an important use of
randomness to obtain a reliable average case behavior.

3 The qsort Function

We now turn our attention to developing an imperative implementation of
quicksort, following our high-level description. We implement quicksort
in the function qsort as an in-place sorting function that modifies a given
array instead of creating a new one. It therefore returns no value, which is
expressed by giving a return type of void.

void qsort(int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ensures is_sorted(A, lower, upper);
{

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.4

...
}

We sort the segment A[lower ..upper) of the array between lower (inclu-
sively) and upper (exclusively). The precondition in the @requires an-
notation verifies that the bounds are meaningful with respect to A. The
postcondition in the @ensures clause guarantees that the given segment is
sorted when the function returns. It does not express that the output is
a permutation of the input, which is required to hold but is not formally
expressed in the contract (see Exercise 1).

Before we start the body of the function, we should consider how to
terminate the recursion. We don’t have to do anything if we have an array
segment with 0 or 1 elements. So we just return if upper − lower ≤ 1.

void qsort(int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ensures is_sorted(A, lower, upper);
{
if (upper-lower <= 1) return;
...

}

Next we have to call a partition function. We want partitioning to be
done in place, modifying the array A. Still, partitioning needs to return
the index i of the pivot element because we then have to recursively sort
the two subsegments to the left and right of the where the pivot is after
partitioning. So we declare:

int partition(int[] A, int lower, int upper)
//@requires 0 <= lower && lower < upper && upper <= \length(A);
//@ensures lower <= \result && \result < upper;
//@ensures gt(A[\result], A, lower, \result);
//@ensures leq(A[\result], A, \result+1, upper);
;

Here we use the auxiliary functions gt (for greater than) and leq (for less or
equal), where

• gt(x, A, lower, i) if x > y for every y in A[lower ..i).

• leq(x, A, i+1, upper) if x ≤ y for very y in A[i + 1..upper).

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.5

Their definitions can be found in the qsort.c0 file on the course web pages.
Some details on this specification: we require lower < upper because if

they were equal, then the segment could be empty and we cannot possibly
pick a pivot element or return its index. We ensure that result < upper so
that the index of the pivot is a legal index in the segment A[lower ..upper).

Now we can fill in the remainder of the main sorting function.

void qsort(int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ensures is_sorted(A, lower, upper);
{
if (upper-lower <= 1) return;
int i = partition(A, lower, upper);
qsort(A, lower, i);
qsort(A, i+1, upper);
return;

}

It is a simple but instructive exercise to reason about this program, using
only the contract for partition together with the preconditions for qsort
(see Exercise 2).

To show that the qsort function terminates, we have to show the array
segment becomes strictly smaller in each recursive call. First, i − lower <
upper − lower since i < upper by the postcondition for partition. Sec-
ond, upper − (i + 1) < upper − lower because i + 1 > lower , also by the
postcondition for partition.

4 Partitioning

The trickiest aspect of quicksort is the partitioning step, in particular since
we want to perform this operation in place. Once we have determined
the pivot element, we want to divide the array segment into four different

LECTURE NOTES FEBRUARY 3, 2011

http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/08-qsort/qsort.c0


Quicksort L8.6

subsegments as illustrated in this diagram.

2  1  3  7  4  8  7  9  0  6  1  9  4  8  3  4 

< pivot  ≥ pivot  unscanned  pivot 

lower  le3  right  upper 

…  … 

We fix lower and upper as they are when partition is called. The segment
A[lower ..left) contains elements known to be less than the pivot, the seg-
ment A[left ..right) contains elements greater or equal to the pivot, and the
element at A[upper−1] is the pivot itself. The segment from A[right ..upper−
1) has not yet been scanned, so we don’t know yet how these elements com-
pare to the pivot.

We proceed by comparing A[right ] with the pivot. In this particular
example, we see that A[right ] < pivot . In this case we swap the element
with the element at A[left ] and advance both left and right , resulting in the
following situation:

2  1  3  0  4  8  7  9  7  6  1  9  4  8  3  4 

< pivot  ≥ pivot  unscanned  pivot 

lower  le3  right  upper 

…  … 

The other possibility is that A[right ] ≥ pivot . In that case we can just ad-
vance the right index by one and maintain the invariants without swapping

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.7

any elements. The resulting situation would be the following.

2  1  3  0  4  8  7  9  7  6  1  9  4  8  3  4 

< pivot  ≥ pivot  unscanned  pivot 

lower  le3  right  upper 

…  … 

When right reaches upper − 1, the situation will look as follows:

2  1  3  0  1  3  7  9  7  6  4  9  4  8  8  4 

< pivot  ≥ pivot  pivot 

lower  le- 
right 

upper 

…  … 

We can now just swap the pivot with A[left ], which is known to be greater
or equal to the pivot.

2  1  3  0  1  3  4  9  7  6  4  9  4  8  8  7 

< pivot  ≥ pivot pivot 

lower  le- 
right 

upper 

…  … 

The resulting array segment has been partitioned, and we return left as the
index of the pivot element.

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.8

Throughout this process, we have only ever swapped two elements of
the array. This guarantees that the array segment after partitioning is a
permutation of the segment before.

However, we did not consider how to start this algorithm. We begin by
picking a random element as the pivot and then swapping it with the last
element in the segment. We then initialize left and right to lower . We then
have the situation

2  4  1  7  3  8  7  9  0  6  1  9  4  8  3  4 

unscanned  pivot 

lower 
le1 

right  upper 

…  … 

where the two segments with smaller and greater elements than the pivot
are still empty.

In this case (where left = right), if A[right ] ≥ pivot then we can incre-
ment right as before, preserving the invariants for the segments. However,
if A[left ] < pivot , swapping A[left ] with A[right ] has no effect. Fortunately,
incrementing both left and right preserves the invariant since the element
we just checked is indeed less than the pivot.

2  4  1  7  3  8  7  9  0  6  1  9  4  8  3  4 

unscanned  pivot 

lower 
le1 

right  upper 

…  … 

If left and right ever separate, we are back to the generic situation we dis-

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.9

cussed at the beginning. In this example, this happens in the next step.

2  4  1  7  3  8  7  9  0  6  1  9  4  8  3  4 

unscanned  pivot 

lower 
le1 

right  upper 

…  … 

< pivot  ≥ pivot 

If left and right always stay the same, all elements in the array segment are
strictly less than the pivot, excepting only the pivot itself. In that case, too,
swapping A[left ] and A[right ] has no effect and we return left = upper − 1
as the correct index for the pivot after partitioning.

Implementing Partitioning

Now that we understand the algorithm and its correctness proof, it remains
to turn these insights into code. We start by computing the index of the
pivot and move the pivot to A[upper − 1]. To keep the code simple, we take
the midpoint of the segment instead of randomly selecting one. This will
work well if the array is random, or if it is almost sorted.

int partition(int[] A, int lower, int upper)
//@requires 0 <= lower && lower < upper && upper <= \length(A);
//@ensures lower <= \result && \result < upper;
//@ensures gt(A[\result], A, lower, \result);
//@ensures leq(A[\result], A, \result+1, upper);
{
int pivot_index = lower+(upper-lower)/2;
int pivot = A[pivot_index];
swap(A, pivot_index, upper-1);
...

}

At this point we initialize left and right to lower . We scan the array using
the index right until it reaches upper − 1.

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.10

int pivot_index = lower+(upper-lower)/2;
int pivot = A[pivot_index];
swap(A, pivot_index, upper-1);
int left = lower;
int right = lower;
while (right < upper-1)
...
{
}

Next, we should turn the observations about the state of the algorithm
made in the preceding section into loop invariants. The zeroth one just
records the relative position of the indices into the array. The first one
states that the pivot is strictly greater than any element in the segment
A[lower ..left). The second states the the pivot is less or equal any element in
the segment A[left ..right). The third one expresses that the pivot is stored
at A[upper − 1]

swap(A, pivot_index, upper-1);
int left = lower;
int right = lower;
while (right < upper-1)
//@loop_invariant lower <= left && left <= right && right < upper;
//@loop_invariant gt(pivot, A, lower, left);
//@loop_invariant leq(pivot, A, left, right);
//@loop_invariant pivot == A[upper-1];
{
...

}

It is easy to verify that the invariants are satisfied initially, given that we
also know lower < upper from the function precondition.

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.11

In the body of the loop we compare the pivot with A[right ] and, in each
case, take the appropriate actions described in the previous section.

while (right < upper-1)
//@loop_invariant lower <= left && left <= right && right < upper;
//@loop_invariant gt(pivot, A, lower, left);
//@loop_invariant leq(pivot, A, left, right);
//@loop_invariant pivot == A[upper-1];
{
if (pivot <= A[right]) {
right++;

} else {
swap(A, left, right);
left++;
right++;

}
}

Again, it is straightforward to check that the loop invariant is preserved,
based on the description in the previous section. It is important to distin-
guish the special case that left = right when the second invariant (leq(...))
is vacuously satisfied.

At the end, we swap A[left ] with A[upper − 1] and return left as the
index of the pivot in the partitioned arrays. The complete code is on the
next page

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.12

int partition(int[] A, int lower, int upper)
//@requires 0 <= lower && lower < upper && upper <= \length(A);
//@ensures lower <= \result && \result < upper;
//@ensures gt(A[\result], A, lower, \result);
//@ensures leq(A[\result], A, \result+1, upper);
{
int pivot_index = lower+(upper-lower)/2;
int pivot = A[pivot_index];
swap(A, pivot_index, upper-1);
int left = lower;
int right = lower;
while (right < upper-1)
//@loop_invariant lower <= left && left <= right && right < upper;
//@loop_invariant gt(pivot, A, lower, left);
//@loop_invariant leq(pivot, A, left, right);
//@loop_invariant pivot == A[upper-1];
{
if (pivot <= A[right]) {
right++;

} else {
swap(A, left, right);
left++;
right++;

}
}

swap(A, left, upper-1);
return left;

}

LECTURE NOTES FEBRUARY 3, 2011



Quicksort L8.13

Exercises

Exercise 1 In this exercise we explore strengthening the contracts on in-place
sorting functions.

1. Write a function is_permutation which checks that one segment of an
array is a permutation of another.

2. Extend the specifications of sorting and partitioning to include the permu-
tation property.

3. Discuss any specific difficulties or problems that arise. Assess the outcome.

Exercise 2 Prove that the precondition for qsort together with the contract for
partition implies the postcondition. During this reasoning you may also assume
that the contract holds for recursive calls.

Exercise 3 Our implementation of partitioning did not pick a random pivot, but
took the middle element. Construct an array with seven elements on which our
algorithm will exhibit its worst-case behavior, that is, on each step, one of the par-
titions is empty.

LECTURE NOTES FEBRUARY 3, 2011


	Introduction
	The Quicksort Algorithm
	The qsort Function
	Partitioning

