
Lecture Notes on
Queues

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 9
February 8, 2011

1 Introduction

In this lecture we introduce queues as a data structure and linked lists that
underly their implementation. In order to implement them we need recur-
sive types, which are quite common in the implementation of data struc-
tures.

2 Linked Lists

Linked lists are a common alternative to arrays in the implementation of
data structures. Each item in a linked list contains a data element of some
type and a pointer to the next item in the list. It is easy to insert and delete
elements in a linked list, which is not a natural operation on arrays. On the
other hand access to an element in the middle of the list is usually O(n),
where n is the length of the list.

An item in a linked list consists of a struct containing the data element
and a pointer to another linked list. This gives rise to the following defini-
tion:

struct list {
string data;
struct list* next;

};
typedef struct list* list;

LECTURE NOTES FEBRUARY 8, 2011

Queues L9.2

This definition is an example of a recursive type. A struct of this type
contains a pointer to another struct of the same type, and so on. We usu-
ally use the special element of type t*, namely NULL, to indicate that we
have reached the end of the list. Sometimes (as will be the case for queues
introduced next), we can avoid the explicit use of NULL and obtain more el-
egant code. The type definition is there to create the type name list, which
stands for a pointer to a struct list.

There are some restriction on recursive types. For example, a declara-
tion such as

struct infinite {
int x;
struct infinite next;

}

would be rejected by the C0 compiler because it would require an infinite
amount of space. The general rule is that a struct can be recursive, but
the recursion must occur beneath a pointer or array type, whose values are
addresses. This allows a finite representation for values of the struct type.

We don’t introduce any general operations on lists; let’s wait and see
what we need where they are used. Linked lists as we use them here are
a concrete type which means we do not construct an interface and a layer of
abstraction around them. When we use them, we know about and exploit
their precise internal structure. This is contrast to abstract types such as
queues or stacks (see next lecture) whose implementation is hidden behind
an interface, exporting only certain operations. This limits what clients
can do, but it allows the author of a library to improve its implementation
without having to worry about breaking client code. Concrete types are
cast into concrete once and for all.

3 The Queue Interface

A queue is a data structure where we add elements at the back and remove
elements from the front. In that way a queue is like “waiting in line”: the
first one to be added to the queue will be the first one to be removed from
the queue. This is also called a FIFO (First In First Out) data structure.
Queues are common in many applications. For example, when we read a
book from a file as in Assignment 2, it would be natural to store the the
words in a queue so that when we are finished reading the file the words
are in the order they appear in the book. Another common example are

LECTURE NOTES FEBRUARY 8, 2011

Queues L9.3

buffers for network communication that temporarily store packets of data
arriving on a network port. Generally speaking, we want to process them
in the order that they arrive.

Before we consider the implementation to a data structure it is helpful
to consider the interface. We then program against the specified interface.
Based on the description above, we require the following functions:

typedef struct queue* queue;

bool queue_empty(queue Q); /* O(1), check if queue is empty */
queue queue_new(); /* O(1), create new empty queue */
void enq(queue Q, string s); /* O(1), add item at back */
string deq(queue Q); /* O(1), remove item from front */

We can write out this interface without committing to an implementation
of queues. After the type definition we know only that a queue will be
implemented as a pointer to a struct queue.

4 The Queue Implementation

Here is a picture of the queue data structure the way we envision imple-
menting it, where we have elements 1, 2, and 3 in the queue.

1  3 2  X  X 

front  back 

data  next 

A queue is implemented as a struct with a front and back field. The
front field points to the front of the queue, the back field points to the back
of the queue. In arrays, we often work with the length which is one greater
than the index of the last element in the array. In queues, we use a similar
strategy, making sure the back pointer points to one element past the end
of the queue. Unlike arrays, there must be something in memory for the
pointer to refer to, so there is always one extra element at the end of the

LECTURE NOTES FEBRUARY 8, 2011

Queues L9.4

queue which does not have valid data or next pointer. We have indicated
this in the diagram by writing X.

The above picture yields the following definition.

struct queue {
list front;
list back;

};

When does a struct of this type represent a valid queue? In fact, whenever
we define a new data type representation we should first think about the
data structure invariants. Making these explicit is important as we think
about and write the pre- and postconditions for functions that implement
the interface.

What we need here is if we follow front and then move down the
linked list we eventually arrive at back. We call this a list segment. We
also want both front and back not to be NULL so it conforms to the picture,
with one element already allocated even if the queue is empty.

bool is_queue(queue Q) {
if (Q == NULL) return false;
if (Q->front == NULL || Q->back == NULL) return false;
return is_segment(Q->front, Q->back);

}

Next, the code for checking whether two pointers delineate a list segment.
When both start and end are NULL, we consider it a valid list segment, even
though this will never come up for queues. It is a common code pattern for
working with linked lists and similar data representation to have a pointer
variable, here called p, that is updated to the next item in the list on each
iteration until we hit the end of the list.

bool is_segment(list start, list end) {
list p = start;
while (p != end) {
if (p == NULL) return false;
p = p->next;

}
return true;

}

Here we stop in two situations: if p = null , then we cannot come up against
end any more because we have reached the end of the list and we return

LECTURE NOTES FEBRUARY 8, 2011

Queues L9.5

false. The other situation is if we find end , in which case we return true
since we have a valid list segment. This function may not terminate if the
list contains a cycle. We will address this issue in the next lecture; for now
we assume all lists are acycle.

To check if the queue is empty, we just compare its front and back. If
they are equal, the queue is empty; otherwise it is not. We require that we
are being passed a valid queue. Generally, when working with a data struc-
ture, we should always require and ensure that its invariants are satisifed
in the pre- and post-conditions of the functions that manipulate it.

bool queue_empty(queue Q)
//@requires is_queue(Q);
{
return Q->front == Q->back;

}

To obtain a new empty queue, we just allocate a list struct and point
both front and back of the new queue to this struct. We do not initialize the
list element because its contents are irrelevant, according to our represen-
tation.

queue queue_new()
//@ensures is_queue(\result);
//@ensures queue_empty(\result);
{
queue Q = alloc(struct queue);
list l = alloc(struct list);
Q->front = l;
Q->back = l;
return Q;

}

To enqueue something, that is, add a new item to the back of the queue,
we just write the data (here: a string) into the extra element at the back,
create a new back element, and make sure the pointers updated correctly.
You should draw yourself a diagram before you write this kind of code.
Here is a before-and-after diagram for inserting "3" into a list. The new or

LECTURE NOTES FEBRUARY 8, 2011

Queues L9.6

updated items are dashed in the second diagram.

1  X 2 

front  back 

data  next 

X 

Q 

1  3 2  X  X 

front  back 

data  next 

Q 

Another important point to keep in mind as you are writing code that ma-
nipulates pointers is to make sure you perform the operations in the right
order, if necessary saving information in temporary variables.

void enq(queue Q, string s)
//@requires is_queue(Q);
//@ensures is_queue(Q);
{
list l = alloc(struct list);
Q->back->data = s;
Q->back->next = l;
Q->back = l;

}

The invariant marked internal is one that only makes sense in the context
of the present implementation, but would not be meaningful to a client.

Finally, we have the dequeue operation. For that, we only need to
change the front pointer, but first we have to save the dequeued element

LECTURE NOTES FEBRUARY 8, 2011

Queues L9.7

in a temporary variable so we can return it later. In diagrams:

1  3 2  X  X 

front  back 

data  next 

1  3 2  X  X 

front  back 

data  next 

And in code:

string deq(queue Q)
//@requires is_queue(Q);
//@requires !queue_empty(Q);
//@ensures is_queue(Q);
{
assert(!queue_empty(Q));
string s = Q->front->data;
Q->front = Q->front->next;
return s;

}

We included an explicit assert statement with an error message so that if
deq is called with an empty queue we can issue an appropriate error mes-
sage. Unlike the precondition of the function, this will always be checked,
which is good practice when writing library code that might be called in-
correctly from the outside.

We do not always check whether the given queue is valid for two rea-
sons. First, it takes O(n) time when there are n elements in the queue, so

LECTURE NOTES FEBRUARY 8, 2011

Queues L9.8

dequeuing and enqueuing would no longer be constant time. Second, if
the client respects the interface and manipulates the data structure only
through the given interface, then it should not be possible to construct an
invalid queue. On the other hand, it is perfectly possible to construct an
empty queue and mistakenly hand it to the deq function, so we check this
condition explicitly.

An interesting point about the dequeue operation is that we do not ex-
plicitly deallocate the first element. If the interface is respected there cannot
be another pointer to the item at the front of the queue, so it becomes un-
reachable: no operation of the remainder of the running programming could
ever refer to it. This means that the garbage collector of the C0 runtime sys-
tem will recycle this list item when it runs short of space.

LECTURE NOTES FEBRUARY 8, 2011

	Introduction
	Linked Lists
	The Queue Interface
	The Queue Implementation

