
Lecture Notes on
Hash Tables

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 13
February 24, 2011

1 Introduction

In this lecture we introduce so-called associative arrays, that is, data struc-
tures that are similar to arrays but are not indexed by integers, but other
forms of data such as strings. One popular data structures for the imple-
mentation of associative arrays are hash tables. To analyze the asymptotic
efficiency of hash tables we have to explore a new point of view, that of
average case complexity. Another computational thinking concept that we
see for the first time is randomness. In order for hash tables to work effi-
ciently in practice we need hash functions whose behavior is predictable
(deterministic) but has some aspects of randomness.

2 Associative Arrays

Arrays can be seen as a mapping, associating with every integer in a given
interval some data item. It is finitary, because its domain, and therefore
also its range, is finite. There are many situations when we want to index
elements differently than just by integers. Common examples are strings
(for dictionaries, phone books, menus, data base records), or structs (for
dates, or names together with other identifying information). They are so
common that they are primitive in some languages such as PHP, Python,
or Perl and perhaps account for some of the popularity of these languages.
In many applications, associative arrays are implemented as hash tables
because of their performance characteristics. We will develop them incre-
mentally to understand the motivation underlying their design.

LECTURE NOTES FEBRUARY 24, 2011

Hash Tables L13.2

3 Chains

In many applications requiring associative arrays, we are storing complex
data values and want to access them by a key which is derived from the
data. A typical example of keys are strings, which are appropriate for many
scenarios. For example, the key might be a student id and the data entry
might be a collection of grades, perhaps another associative array where
the key is the name of assignment or exam and the data is a score. We
make the assumption that keys are unique in the sense that in an associative
array there is at most one data item associated with a given key. In some
applications we may need to complicate the structure of keys to achieve this
uniqueness. This is consistent with ordinary arrays, which have a unique
value for every valid index.

A first idea to explore is to implement the associative array as a linked
list, called a chain. If we have a key k and look for it in the chain, we just
traverse it, compute the intrisic key for each data entry, and compare it
with k. If they are equal, we have found our entry, if not we continue the
search. If we reach the end of the chain and do not find an entry with key k,
then no entry with the given key exists. If we keep the chain unsorted this
gives us O(n) worst case complexity for finding a key in a chain of length
n, assuming that computing and comparing keys is constant time.

Given what we have seen so far in our search data structures, this seems
very poor behavior, but if we know our data collections will always be
small, it may in fact be reasonable on occasion.

Can we do better? One idea goes back to binary search. If keys are
ordered we may be able to arrange the elements in an array or in the form
of a tree and then cut the search space roughly in half every time we make
a comparison. This approch will occupy us for a few lectures after the first
midterm. Designing such data structures is a rich and interesting subject.
The best we can hope for with this approach is O(log(n)), where n is the
number of entries. We have seen that this function grows very slowly, so
this is quite a practical approach.

Nevertheless, the challenge arises if we can do better than O(log(n)),
say, constant time O(1) to find an entry with a given key. We know that
it can done be for arrays, indexed by integers, which allow constant-time
access. Can we also do it, for example, for strings?

LECTURE NOTES FEBRUARY 24, 2011

Hash Tables L13.3

4 Hashing

The first idea behind hash tables is to exploit the efficiency of arrays. So:
to map a key to an entry, we first map a key to an integer and then use the
integer to index an array A. The first map is called a hash function. We write
it as hash(). Given a key k, our access could then simply be A[hash(k)].

There is an immediate problem with this approach: there are only 231

positive integers, so we would need a huge array, negating any possible
performance advantages. But even if we were willing to allocate such a
huge array, there are many more strings than int’s so there cannot be any
hash function that always gives us different int’s for different strings.

The solution is to allocate an array of smaller size, say m, and then look
up the result of the hash function modulo m, for example, A[hash(k)%m].
This creates a new problem: it is inevitable that multiple strings will map
to the same array index. For example, if the array has size m then if we
have more then m elements, at least two must map to the same index. In
practice, this will happen much sooner that this.

If two hash functions map a key to the same integer value (modulo m),
we say we have a collision. In general, we would like to avoid collisions,
because some additional operations will be required to deal with them,
slowing down operations and taking more space. We analyze the cost of
collisions more below.

5 Separate Chaining

How do we deal with collisions of hash values? The simplest is a technique
called separate chaining. Assume we have hash(k1)%m = i = hash(k2)%m,
where k1 and k2 are the distinct keys for two data entries e1 and e2 we want
to store in the table. In this case we just arrange e1 and e2 into a chain
(implemented as a linked list) and store this list in A[i].

In general, each element A[i] in the array will either be NULL or a chain of
entries. All of these must have the same hash value for their key (modulo
m), namely i. As an exercise, you might consider other data structures
here instead of chains and weigh their merits: how about sorted lists? Or
queues? Or doubly-linked lists? Or another hash table?

We stick with chains because they are simple and fast, provided the
chains don’t become too long. This technique is called separate chaining
because the chains are stored seperately, not directly in the array. Another
technique, which we do not discuss, is linear probing where we continue by

LECTURE NOTES FEBRUARY 24, 2011

Hash Tables L13.4

searching (linearly) for an unused spot array itself, starting from the place
where the has function put us.

6 Average Case Analysis

Under separate chaining, a snapshot of a hash table might look something
like this picture.

0 

m 

How long do we expect the chains to be on average? For a total number
n of entries in a table of size m, it is n/m. This important number is also
called the load factor of the hash table. How long does it take to search for
an entry with key k? We follow these steps:

1. Compute i = hash(k)%m. This will be O(1) (constant time), assuming
it takes constant time to compute the hash function.

2. Go to A[i], which again is constant time O(1).

3. Search the chain starting at A[i] for an element whose key matches k.
We will analyze this next.

The complexity of the last step depends on the length of the chain. In the
worst case it could be O(n), because all n elements could be stored in one
chain. This worst case could arise if we allocated a very small array (say,
m = 1), or because the hash function maps all input strings to the same
table index i, or just out of sheer bad luck.

Ideally, all the chains would be approximately the same length, namely
n/m. Then for a fixed load factor such as n/m = α = 2 we would take on

LECTURE NOTES FEBRUARY 24, 2011

Hash Tables L13.5

the average 2 steps to go down the chain and find k. In general, as long
as we don’t let the load factor become too large, the average time should be
O(1).

If the load factor does become too large, we could dynamically adapt its
size, like in an unbounded array. As for unbounded arrays, it is beneficial
to double the size of the hash table when the load factor becomes too high,
or possibly halve it if the size becomes too small. Analyzing these factors
is a task for amortized analysis, just as for unbounded arrays.

7 Randomness

The average case analysis relies on the fact that the hash values of the key
are relatively evenly distributed. This can be restated as saying that the
probability that each key maps to an array index i should be about the
same, namely 1/m. In order to avoid systematically creating collisions,
small changes in the input string should result in unpredicable change in
the output hash value. We can achieve this by exploiting the idea behind
the pseudorandom number generator that we have already used in order
to create random tests.

The code for the a hash function based on the a random number gener-
ator using linear congruential method can be in the file hash-string.c0.

Handwritten hash functions often do not work well, which can signif-
icantly affect the performance of the hash table. Whenever possible, tech-
niques like the above should be used to avoid any systematic bias.

8 Implementation

In the next lecture we will consider the implementation. A particularly crit-
ical aspect of that is the interface to hash tables, which is more complicated
than the interface to data structures we have considered so far.

LECTURE NOTES FEBRUARY 24, 2011

http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/14-interfaces/hash-string.c0

