
Lecture Notes on
Restoring Invariants

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 16
March 15, 2011

1 Introduction

In this lecture we will implement operations on heaps. The theme of this
lecture is reasoning with invariants that are partially violated, and making
sure they are restored before the completion of an operation. We will only
briefly review the algorithms for inserting and deleting the minimal node
of the heap; you should read the notes for Lecture 15 on priority queues
and keep them close at hand.

Temporarily violating and restoring invariants is a common theme in
algorithms. It is a technique you need to master.

2 The Heap Ordering Invariant

Before we implement the operations, we define a function that checks the
heap invariants. The shape invariant is automatically satisfied due to the
representation of heaps as arrays, but we need to carefully check the order-
ing invariants. It is crucial that no instance of the data structure that is not a
true heap will leak across the interface to the client, because the client may
then incorrectly call operations that require heaps with data structures that
are not.

First, we check in a precondition that the heap is not null and that the
length of the array matches the given limit. The latter must be checked in
a precondition, because in C and C0, the length of an array is not available
to us at runtime.

LECTURE NOTES MARCH 15, 2011

http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/15-priorqs.pdf

Restoring Invariants L16.2

Second we check that next is in range, between 1 and limit . As a general
stylistic choice, when writing functions that check data structure invariants
and have to return a boolean, we think of the test like assertions. If they
would fail, we return false instead. Therefore we usually write negated
conditionals and return false if the negated condition is true. In the code
below, we think

bool is_heap(heap H) {
//@assert !(H == NULL);
//@assert \length(H->heap) == H->limit;
//@assert 1 <= H->next && H->next <= H->limit;
...

}

and write

bool is_heap(heap H) {
if (H == NULL) return false;
//@assert \length(H->heap) == H->limit;
if (!(1 <= H->next && H->next <= H->limit)) return false;
...

}

As noted in prior lectures, we cannot change the middle condition to an or-
dinary test, since \length is available only when compiling with dynamic
checking of annotations enabled.

The remaining code has to check the ordering invariant. It turns out to
be simpler in the second form, which stipulates that each node except the
root needs to be greater or equal to its parent. For this iterating through
the array and comparing each node A[i] with its parent, except for the root
(i = 1) which has no parent. As a matter of programming style, we always
put the parent to left in any comparison, to make it easy to see that we are
comparing the correct elements.

bool is_heap(heap H) {
if (H == NULL) return false;
//@assert \length(H->heap) == H->limit;
if (!(1 <= H->next && H->next <= H->limit)) return false;
/* check parent <= node for all nodes except root (i = 1) */
for (int i = 1; i < H->next; i++)
//@loop_invariant 1 <= i && i <= H->next;
if (!(i == 1 || H->heap[i/2] <= H->heap[i])) return false;

LECTURE NOTES MARCH 15, 2011

Restoring Invariants L16.3

return true;
}

3 Insert and Sifting Up

Insertion is very short; we only need to make sure the heap is not full. Since
this is something quick to check and might be overlooked by the client,
we use an explicit assert statement which is always executed, even if full
dynamic checking of invariants is not enabled. After that, we place the new
element at next, increment the next index, and then call sift_up in order
to restore the invariant.

void sift_up(heap H, int n);

void heap_insert(heap H, int x)
//@requires is_heap(H);
//@ensures is_heap(H);
{
assert(!heap_full(H)); /* cannot insert into full heap */
H->heap[H->next] = x;
H->next++;
sift_up(H, H->next-1);

}

The difficult part is, of course, the definition of sift_up. But we cannot
write this yet, because we have no way to express a precondition. Clearly,
H is not a valid heap, because the ordering invariant might be violated at
n, the index of the new element we inserted. In the left tree in the picture
below, this would be at n = 7 where the new element with key 1 is stored.

2 

4  3 

7  8 9  1 

2 

4  1 

7  8 9  3 

After one step of sifting up we obtain the tree on the right, where the in-
variant is now violated at index n = 3.

LECTURE NOTES MARCH 15, 2011

Restoring Invariants L16.4

So we need a new function that checks if a given argument of type heap
is almost a heap, but where the parent of the given node n might be smaller
than its parent. We call this is_heap_except_up. It is literally the same
as is_heap, except if the index i is equal to n we do not compare with its
parent.

bool is_heap_except_up(heap H, int n) {
if (H == NULL) return false;
//@assert \length(H->heap) == H->limit;
if (!(1 <= H->next && H->next <= H->limit)) return false;
/* check parent <= node for all nodes except root (i = 1) and n */
for (int i = 1; i < H->next; i++)
//@loop_invariant 1 <= i && i <= H->next;
if (!(i == 1 || i == n || H->heap[i/2] <= H->heap[i])) return false;

return true;
}

We can think of the crucial last test as

//@assert i == 1 || i == n || H->heap[i/2] <= H->heap[i];

rewritten as a conditional returning false.
Now the code for sift_up almost writes itself. We start with a heap

except at n and modify it to be a true heap.

void sift_up(heap H, int n)
//@requires 1 <= n && n < H->limit;
//@requires is_heap_except_up(H, n);
//@ensures is_heap(H);
{ ... }

The body of the function consists of a loop that walks up the tree, swapping
the new element with its parent or directly returning from the function if
the invariant has been restored before we reach the root. We reach the root
when the loop index i has become 1, which means we remain in the loop
as long as i > 1.

void sift_up(heap H, int n)
//@requires 1 <= n && n < H->limit;
//@requires is_heap_except_up(H, n);
//@ensures is_heap(H);
{ int i = n;

LECTURE NOTES MARCH 15, 2011

Restoring Invariants L16.5

while (i > 1)
//@loop_invariant is_heap_except_up(H, i);
{
if (H->heap[i/2] <= H->heap[i]) return;
swap(H->heap, i/2, i); /* swap i with parent */
i = i/2; /* consider parent next */

}
//@assert i == 1;
//@assert is_heap_except_up(H, 1);
return;

}

Note how is_heap_except_up(H, i) serves as a loop invariant. At any
stage in the computation, we have a valid heap except at the node we have
inserted and are sifting upward in the tree.

It is clear that if we return from the middle of the loop, then is_heap
must be satisfied, since it is satisfied everywhere except at i (by loop invari-
ant) and it is satisfied at i when the condition is true. So we can return.

When we exit the loop and we have reached the root, we note that H is
a heap except at the root. But the root has no parent, so the heap invariant
must be true everywhere. Looking at the code for is_heap_except_up we
can see that the exception i = n is the same as i = 1 and the function
behaves just like is_heap.

The postcondition is therefore established before both return statements.

4 Deleting the Minimum and Sifting Down

Recall that deleting the minimum swaps the root with the last element in
the current heap and then applies the sifting down operation to restore the
invariant. As with insert, the operation itself is rather straightforward, al-
though there are a few subtleties. First, we have to check that H is a heap,
and that it is not empty. Then we save the minimal element, swap it with
the last element (at next − 1), and delete the last element (now the element
that was previously at the root) from the heap by decrementing next .

int heap_delmin(heap H)
//@requires is_heap(H);
//@ensures is_heap(H);
{ assert(!heap_empty(H)); /* cannot delete from empty heap */
int x = H->heap[1];

LECTURE NOTES MARCH 15, 2011

Restoring Invariants L16.6

swap(H->heap, 1, H->next-1);
H->next--;
if (H->next > 1) sift_down(H, 1);
return x;

}

Next we need to restore the heap invariant by sifting down from the root,
with sift_down(H, 1). We only do this if there is at least one element left
in the heap.

But what is the precondition for the sifting down operation? Again, we
cannot express this using the functions we have already written. Instead,
we need a function is_heap_except_down(H, n) which verifies that the
heap invariant is satisfied in H , expect possibly at n. This time, though,
it is between n and its children where things may go wrong, rather than
between n and its parent as in is_heap_except_up(H, n). In the pictures
below this would be at n = 1 on the left and n = 2 on the right.

8 

3  4 

7 9 

3 

8  4 

7 9 

We change the test accordingly.

bool is_heap_except_down(heap H, int n) {
if (H == NULL) return false;
//@assert \length(H->heap) == H->limit;
if (!(1 <= H->next && H->next <= H->limit)) return false;
/* check parent <= node for all nodes except root (i = 1) */
/* and children of n (i/2 = n) */
for (int i = 1; i < H->next; i++)
//@loop_invariant 1 <= i && i <= H->next;
if (!(i == 1 || i/2 == n || H->heap[i/2] <= H->heap[i])) return false;

return true;
}

In the crucial last condition, the ordering invariant must be satisfied except
at the root (i = 1) or if the parent i/2 of the current node i is equal to n.

LECTURE NOTES MARCH 15, 2011

Restoring Invariants L16.7

With this we can have the right invariant to write our sift_down func-
tion. The tricky part of this function is the nature of the loop. Our loop
index i starts at n (which actually will always be 1 when this function is
called). We have reached a leaf if 2 ∗ i ≥ next because if there is no left
child, there cannot be a right one, either. So the outline of our function
shapes up as follows:

void sift_down(heap H, int n)
//@requires 1 <= n && n < H->next;
//@requires is_heap_except_down(H, n);
//@ensures is_heap(H);
{ int i = n;
while (2*i < H->next)
//@loop_invariant is_heap_except_down(H, i);
{ ... }

}

We also have written down the loop invariant: the heap invariant is satis-
fied everywhere, except possibly at i, looking down.

We want to return from the function if we have restored the invariant,
that is heap[i] ≤ heap[2 ∗ i] and heap[i] ≤ heap[2 ∗ i + 1]. However, the
latter reference might be out of bounds, namely if we found a node that
has a left child but not a right child. So we have to guard this access by a
bounds check. Clearly, when there is no right child, checking the left one is
sufficient.

while (2*i < H->next)
//@loop_invariant is_heap_except_down(H, i);
{
if (H->heap[i] <= H->heap[2*i] &&

(2*i+1 >= H->next || H->heap[i] <= H->heap[2*i+1]))
return;

...
}

If this test fails, we have to determine the smaller of the two children. If
there is no right child, we pick the left one, of course. Once we have found
the smaller one we swap the current one with the smaller one, and then
make the child the new current node i.

void sift_down(heap H, int n)
//@requires 1 <= n && n < H->next;

LECTURE NOTES MARCH 15, 2011

Restoring Invariants L16.8

//@requires is_heap_except_down(H, n);
//@ensures is_heap(H);
{ int i = n;
while (2*i < H->next)
//@loop_invariant is_heap_except_down(H, i);
{
if (H->heap[i] <= H->heap[2*i] &&

(2*i+1 >= H->next || H->heap[i] <= H->heap[2*i+1]))
return;

if (2*i+1 >= H->next || H->heap[2*i] <= H->heap[2*i+1]) {
swap(H->heap, i, 2*i);
i = 2*i;

} else {
swap(H->heap, i, 2*i+1);
i = 2*i+1;

}
}

return;
}

Before the second return, we know that is_heap_except_down(H,i) and
2 ∗ i ≥ next . This means there is no node j in the heap such that j/2 = i
and the exception in is_heap_except_down will never apply. H is indeed a
heap.

5 Heapsort

We rarely discuss testing in these notes, but occasionally it is useful to con-
sider how to write decent test cases. Mostly, we have been doing random
testing, which has some drawbacks but is often a tolerable first cut at giving
the code a workout. It is much more effective in languages that are type safe
such as C0, and even more effective when we dynamically check invariants
along the way.

In the example of heaps, one cool way to test the implementation is to
insert a random sequence of numbers, then repeatedly remove the minimal
element until the heap is empty. If we store the elements in an array in the
order we take them out of the heap, the array should be sorted when the
heap is empty! This is the idea behind heapsort. We first show the code,
using the random number generator we have used for several lectures now,
then analyze the complexity.

LECTURE NOTES MARCH 15, 2011

Restoring Invariants L16.9

int main() {
int n = (1<<9)-1; // 1<<9 for -d; 1<<13 for timing
int num_tests = 10; // 10 for -d; 100 for timing
int seed = 0xc0c0ffee;
rand_t gen = init_rand(seed);
int[] A = alloc_array(int, n);
heap H = heap_new(n);

print("Testing heap of size "); printint(n);
print(" "); printint(num_tests); print(" times\n");
for (int j = 0; j < num_tests; j++) {
for (int i = 0; i < n; i++) {
heap_insert(H, rand(gen));

}
for (int i = 0; i < n; i++) {
A[i] = heap_delmin(H);

}
assert(heap_empty(H)); /* heap not empty */
assert(is_sorted(A, 0, n)); /* heapsort failed */

}
print("Passed all tests!\n");
return 0;

}

Now for the complexity analysis. Inserting n elements into the heap is
bounded by O(n ∗ log(n)), since each of the n inserts is bounded by log(n).
Then the n element deletions are also bounded by O(n ∗ log(n)), since each
of the n deletions is bounded by log(n). So all together we get O(2 ∗ n ∗
log(n)) = O(n ∗ log(n)). Heapsort is asymptotically as good as mergesort
or quicksort (the latter we haven’t discussed yet).

The sketched algorithm uses O(n) auxiliary space, namely the heap.
One can use the same basic idea to do heapsort in place, using the unused
portion of the heap array to accumulate the sorted array.

Testing, including random testing, has many problems. In our context,
one of them is that it does not test the strength of the invariants. For ex-
ample, say we write no invariants whatsoever (the weakest possible form),
then compiling with or without dynamic checking will always yield the
same test results. We really should be testing the invariants themselves by
giving examples where they are not satisfied. However, we should not be
able to construct such instances of the data structure on the client side of the

LECTURE NOTES MARCH 15, 2011

Restoring Invariants L16.10

interface. Furthermore, within the language we have no way to “capture”
an exception such as a failed assertion and continue computation.

6 Summary

We briefly summarize key points of how to deal with invariants that must
be temporarily violated and then restored.

1. Make sure you have a clear high-level understanding of why invari-
ants must be temporarily violated, and how they are restored.

2. Ensure that at the interface to the abstract type, only instances of the
data structure that satisfy the full invariants are being passed. Other-
wise, you should rethink all the invariants.

3. Write predicates that test whether the partial invariants hold for a
data structure. Usually, these will occur in the preconditions and
loop invariants for the functions that restore the invariants. This will
force you to be completely precise about the intermediate states of the
data structure, which should help you a lot in writing correct code for
restoring the full invariants.

Exercises

Exercise 1 Write a recursive version of is_heap.

Exercise 2 Write a recursive version of is_heap_except_up.

Exercise 3 Write a recursive version of is_heap_except_down.

Exercise 4 Say we want to extend priority queues so that when inserting a new
element and the queue is full, we silently delete the element with the lowest priority
(= maximal key value) before adding the new element. Describe an algorithm,
analyze its asymptotic complexity, and provide its implementation.

Exercise 5 Using the invariants described in this lecture, write an function heapsort
which sort a given array in place by first constructing a heap, element by element,
within the same array and then deconstructing the heap, element by element.
[Hint: It may be easier to sort the array in descending order and reverse in a last
pass or use so called max heaps where the maximal element is at the top]

LECTURE NOTES MARCH 15, 2011

