
Lecture Notes on
Memory Management

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 21
April 5, 2011

1 Introduction

Unlike C0 and other modern languages like Java, C#, or ML, C requires pro-
grams to explicitly manage their memory. Allocation is relatively straight-
forward, like in C0, requiring only that we correctly calculate the size of
allocated memory. Deallocating (“freeing”) memory, however, is difficult
and error-prone, even for experienced C programmers. Mistakes can ei-
ther lead to attempts to access memory that has already been deallocated,
in which case the result is undefined and may be catastrophic, or it can
lead the running program to hold on to memory no longer in use, which
may slow it down and eventually crash it when it runs out of memory. The
second category is a so-called memory leak.

Your goal as a programmer should therefore be

• You should never free memory that is still in use.

• You should always free memory that is no longer in use.

Freeing memory counts as a final use, so the goals imply that you should
not free memory twice. And, indeed, in C the behavior of freeing mem-
ory that has already been freed is undefined and may be exploited by and
adversary.

The golden rule of memory management in C is

You allocate it, you free it!

By inference, if you didn’t allocate it, you are not allowed to free it!
In the remainder of the lecture we explore how this rule plays out in

common situations.

LECTURE NOTES APRIL 5, 2011



Memory Management L21.2

2 Simple Libraries

As a first example, consider again the stack data structure discussed in the
last lecture. As a client, we are not supposed to know or exploit the im-
plementation of stacks and we therefore cannot free the elements of the
structure directly. Moreoever, we (as the client) did not perform the ac-
tual allocation, so it is up to them (the library) to free the allocated space.
In order to allow this, the data structure implementation must provide an
interface function to free allocated memory.

void stack_free(stack S); /* S must be empty */

Because in this first scenario the stack must be empty, the implementation
is simple:

void stack_free(stack S) {
REQUIRES(is_stack(S) && stack_empty(S));
ASSERT(S->top == S->bottom);
free(S->top);
free(S);

}

As a client, we call this usually in the same scope in which we create a stack

stack S = stack_new();
...
stack_free(S);

In this simple scenario we could successively pop elements of the stack and
free them until the stack is empty, and then free S in the manner shown
above.

3 Freeing Internal Structure

We would like to call stack_free(S) even if S is non-empty. In general,
for richer data structures, the simple idea of successively deleting elements
may not be possible and not even be supported in the interface. This means
the stack_free function would have to look something like the following,
passing the buck to another function to free list segments.

void stack_free(stack S) {
REQUIRES(is_stack(S));

LECTURE NOTES APRIL 5, 2011



Memory Management L21.3

segment_free(S->top, S->bottom);
free(S->bottom);
free(S);

}

Clearly, the segment_free function should not be visible to the client, just
like the whole list type is not visible. This function would go over the list
and free each node, but it would be incorrect to write the following:

void segment_free(list start, list end) {
REQUIRES(is_segment(start, end));
list p = start;
while (p != end) {
ASSERT(p != NULL);
free(p);
p = p->next; /* bug here! */

}
return;

}

In the marked line, we would access the next field of the struct that p is
pointing to, but this has been deallocated in the preceding line. We must
introduce a temporary variable tmp to hold the next pointer, which is a
characteristic pattern for deallocation.

void segment_free(list start, list end) {
REQUIRES(is_segment(start, end));
while (p != NULL) {
ASSERT(p != NULL);
list tmp = p->next;
free(p);
p = tmp;

}
return;

}

What happens to the data stored at each node? Clearly, the library code
cannot free this data, because it did not allocate it. Doing so would violate
the Golden Rule! On the other hand, the client may not have any way to
do so. For example, the stack might be the only place the data are stored,
in which case they would become unreachable after the list has been deal-
located. With a garbage collector, this is a common occurrence and the

LECTURE NOTES APRIL 5, 2011



Memory Management L21.4

correct behavior, because the garbage collector will now deallocate the un-
reachable data. With explicit memory management we need a different
solution.

4 Function Pointers

A general solution is to pass a function as an argument to stack_free (and
in turn to list_free) whose reponsibility it is to free the embedded data
elements. The client knows what this function should be, and is therefore in
a position to pass it to the library. The library then applies this function to
each data element in the list just before freeing the node where it is stored.

Actually, in C, functions are not first class, so we pass a pointer to a func-
tion instead. The syntax for function pointers is somewhat arcane. Here is
what the interface declaration of stack_free looks like.

void stack_free(stack S, void (*data_free)(void* e));

The first argument name S is a stack. The second argument has name
data_free. We read the declaration starting at the inside and moving out-
wards, considering what kind of operation can be applied to the argument.

1. data_free names an argument.

2. *data_free shows it can be dereferenced and therefore must be a
pointer.

3. (*data_free)(void* e)means that the result of dereferencing data_free
must be a function that can be applied to an argument of type void*.

4. void (*data_free)(void* e) finally shows that this function does
not return a value.

In summary, data_free names a pointer to a function expecting a void*
pointer as argument and returning no value. Its effect is inteded to free
the data element it was given. The stack is a generic data structure, so for
reasons discussed in the last lecture, the data element is viewed as having
type void*.

The implementation of stack_free is actually quite straightforward.
Since it doesn’t hold any data element, it just passes the function pointer to
the list_free function.

LECTURE NOTES APRIL 5, 2011



Memory Management L21.5

void stack_free(stack S, void (*data_free)(void* e)) {
REQUIRES(is_stack(S));
segment_free(S->top, S->bottom, data_free);
free(S->bottom);
free(S);
return;

}

Freeing the list elements has some pitfalls. Consider the following simple
attempt.

void segment_free(list start, list end, void (*data_free)(void* e)) {
REQUIRES(is_segment(start, end));
while (p != end) {
ASSERT(p != NULL);
list tmp = p->next;
(*data_free)(p->data);
free(p);
p = tmp;

}
return;

}

This actually has two somewhat subtle bugs. See if you can spot them
before reading on.

LECTURE NOTES APRIL 5, 2011



Memory Management L21.6

The first problem is that data_free is a function pointer and therefore
could be null. Attempting to dereference it would yield undefined behav-
ior. The convention is that if we pass NULL we mean for the elements in the
list not to be deallocated, perhaps because they are still needed elsewhere.

The second problem is that p->data may be null. We cannot free NULL
because it has actually not been allocated and doesn’t point to memory.

We therefore need to test these two conditions before we can apply the
*data_free function.

void segment_free(list start, list end, void (*data_free)(void* e))
{
REQUIRES(is_segment(start, end));
list p = start;
while (p != end) {
ASSERT(p != NULL);
list tmp = p;
p = p->next;
if (data_free != NULL && tmp->data != NULL)
(*data_free)(tmp->data);

free(tmp);
}
return;

}

When writing your own function along these lines, keep in mind that the
order of the operations here is crucial: first we have to save the next pointer,
then free p->data, then free p and then continue with the next element.

Finally, we examine the call site to see how we actually obtain a pointer
to a function. First, we define an appropriate function. In this simple ex-
ample, it just frees the memory holding an integer.

void int_free(void* p) {
free((int*)p); /* this coercion is optional */

}

We refer to this function below using the address-of operator &, after push-
ing two pointers onto the stack. The use of this operator before function
names is optional, but preferred because it makes it clear that a pointer is
passed, not the function itself (which cannot be done in C).

LECTURE NOTES APRIL 5, 2011



Memory Management L21.7

int main () {
stack S = stack_new();
int* x1 = xmalloc(sizeof(int));
*x1 = 1;
int* x2 = xmalloc(sizeof(int));
*x2 = 2;
push(x1, S);
push(x2, S);
stack_free(S, &int_free);
...

}

5 Double Free

In the above example, we have variables x1 and x2 in the main function,
so we can deallocate the stack without deallocating its elements. This is
done by passing NULL to stack_free, after which the main function itself
can free x1 and x2.

stack_free(S, NULL);
free(x1);
free(x2);

However, we have to be careful not to attempt freeing allocated memory
more than once. The following has undefined behavior and is therefore a
bug that may be security-critical.

stack_free(S, &int_free);
free(x1); /* bug; x1 already freed */
free(x2); /* bug; x2 already freed */
stack_free(S, NULL); /* bug, S already freed */

6 Stack Allocation

In C, we can also allocate data on the system stack (which is different from
the explicit stack data structure used in the running example). As discussed
in the lecture on memory layout, each function allocates memory in its so-
called stack frame for local variables. We can obtain a pointer to this memory
using the address-of operator. For example:

LECTURE NOTES APRIL 5, 2011



Memory Management L21.8

int main () {
stack S = stack_new();
int a1 = 1;
int a2 = 2;
push(&a1, S);
push(&a2, S);
...

}

Note that there is no call to malloc or calloc which allocates spaces on the
system heap (again, this is different from the heap data structure we used
for priority queues).

Note that we can only free memory allocated with malloc or calloc,
but not memory that is on the system stack. Such memory will automat-
ically be freed when the function whose frame it belongs to returns. This
has two important consequences. The first is that the following is a bug,
because stack_free will try to free the memory holding a1 and a2 which
are not on the heap.

int main () {
stack S = stack_new();
int a1 = 1;
int a2 = 2;
push(&a1, S);
push(&a2, S);
stack_free(S, &int_free); /* bug; a1 and a2 cannot be freed */

}

Instead, we must call stack_free(S, NULL). The second consequence is
pointers to data stored on the system stack do not survive the function’s
return. For example, the following is a bug:

void push1(stack S) {
int a = 1;
push(&a, S); /* bug: a is deallocated when push1 returns */
return;

}

A correct implementation requires us to allocate on the system heap, using
a call to malloc or calloc (or one of the library functions which calls them
in turn).

LECTURE NOTES APRIL 5, 2011



Memory Management L21.9

void push1 (stack S) {
int* x = xmalloc(sizeof(int));
*x = 1;
push(x, S); /* correct: x will persist when push1 returns */
return;

}

7 Pointer Arithmetic in C

We have already discussed that C does not distinguish between pointers
and arrays; essentially a pointer holds a memory address which may be
the beginning of an array. In C we can actually calculate with memory
addresses. Before we explain how, please heed our recommendation: rec-
ommendation

Do not perform arithmetic on pointers!

Code with explicit pointer arithmetic will generally be harder to read and
is more error-prone than using the usual array access notation A[i].

Now that you have been warned, here is how it works. We can add an
integer to a pointer in order to obtain a new address. In our running ex-
ample, we can allocate an array and then push pointers to the first, second,
and third elements in the array onto a stack.

int* A = xcalloc(3, sizeof(int));
A[0] = 0; A[1] = 1; A[2] = 2;
push(A, S); /* push a pointer to A[0] onto stack */
push(A+1, S); /* push a pointer to A[1] onto stack */
push(A+2, S); /* push a pointer to A[2] onto stack */

The actual address denoted by A + 1 depends on the size of the elements
stored at ∗A, in this case, the size of an int. A much better way to achieve
the same effect is

int* A = xcalloc(3, sizeof(int));
A[0] = 0; A[1] = 1; A[2] = 2;
push(&A[0], S); /* push a pointer to A[0] onto stack */
push(&A[1], S); /* push a pointer to A[1] onto stack */
push(&A[2], S); /* push a pointer to A[2] onto stack */

We cannot free array elements individually, even though they are located
on the heap. The rule is that we can apply free only to pointers returned
from malloc or calloc. So in the example code we can only free A.

LECTURE NOTES APRIL 5, 2011



Memory Management L21.10

int* A = xcalloc(3, sizeof(int));
A[0] = 0; A[1] = 1; A[2] = 2;
push(&A[0], S); /* push a pointer to A[0] onto stack */
push(&A[1], S); /* push a pointer to A[1] onto stack */
push(&A[2], S); /* push a pointer to A[2] onto stack */
stack_free(S, &int_free); /* bug: cannot free A[1] or A[2] separately */

The correct way to free this is as follows.

int* A = xcalloc(3, sizeof(int));
A[0] = 0; A[1] = 1; A[2] = 2;
push(&A[0], S); /* push a pointer to A[0] onto stack */
push(&A[1], S); /* push a pointer to A[1] onto stack */
push(&A[2], S); /* push a pointer to A[2] onto stack */
stack_free(S, NULL);
free(A);

We will see examples of code implementing generic data structures that
depend on code provided by the client in the next lecture.

LECTURE NOTES APRIL 5, 2011


	Introduction
	Simple Libraries
	Freeing Internal Structure
	Function Pointers
	Double Free
	Stack Allocation
	Pointer Arithmetic in C

