
Lecture Notes on
Generic Data Structures

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 22
April 7, 2011

1 Introduction

Using void* to represent pointers to values of arbitrary type, we were able
to implement generic stacks in that the types of the elements were arbitrary.
The main remaining restriction was that they had to be pointers. Generic
queues or unbounded arrays can be implemented in an analogous fashion.
However, when considering, say, hash table or binary search trees, we run
into difficulties because implementations of these data structures require
operations on data provided by the client. For example, a hash table im-
plementation requires a hash function and an equality function on keys.
Similarly, binary search trees require a comparison function on keys with
respect to an order. In this lecture we show how to overcome this limitation
using function pointers as introduce in the previous lecture.

2 The Hash Table Interface Revisited

Recall the client-side interface for hash tables, in file ht.c0. The client must
provide a type elem (which must be a pointer), a type key (which was arbi-
trary), a hash function on keys, an equality function on keys, and a function
to extract a key from an element. We write ___ while a concrete type must
be supplied there in the actual file.

/************************************/
/* Hash table client-side interface */
/************************************/

LECTURE NOTES APRIL 7, 2011

http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/14-interface/ht.c0

Generic Data Structures L22.2

typedef ___* elem;
typedef ___ key;

int hash(key k, int m)
//@requires m > 0;
//@ensures 0 <= \result && \result < m;

;

bool key_equal(key k1, key k2);

key elem_key(elem e)
//@requires e != NULL;

;

We were careful to write the implementation so that it did not need to know
what these types and functions were. But due to limitations in C0, we could
not obtain multiple implementations of hash tables to be used in the same
application, because once we fix elem, key, and the above three functions
they cannot be changed.

Given the above the library provides a type ht of hash tables and means
to create, insert, and search through a hash table.

/*************************************/
/* Hash table library side interface */
/*************************************/
struct ht;
typedef struct ht* ht;

ht ht_new(int m)
//@requires m > 0;

;
elem ht_search(ht H, key k); /* O(1) avg. */
void ht_insert(ht H, elem e) /* O(1) avg. */
//@requires e != NULL;

;

3 Generic Types

Since both keys and elements are defined by the clients, they turn into
generic pointer types when we implement a truly generic structure in C.

LECTURE NOTES APRIL 7, 2011

Generic Data Structures L22.3

We might try the following in a file hashtable.c, where we have added
the function ht_free to the interface. As explained in the last lecture, we
provide it with a function to apply to each element stored in the table.

#ifndef _HASHTABLE_H_
#define _HASHTABLE_H_

typedef void* ht_key;
typedef void* ht_elem;

/* Hash table interface */
typedef struct ht* ht;
ht ht_new (int init_size)
void ht_insert(ht H, ht_elem e);
ht_elem ht_search(ht H, ht_key k);
void ht_free(ht H, void (*elem_free)(ht_elem e));

#endif

We use type definitions instead of writing void* in this interface so the role
of the arguments as keys or elements is made explicit (even if the compiler
is blissfully unaware of this distinction).

However, this does not yet work. Before you read on, try to think about
why not, and how we might solve it

LECTURE NOTES APRIL 7, 2011

Generic Data Structures L22.4

4 Generic Operations via Function Pointers

The problem with the approach in the previous section is that the imple-
mentation of hashtables must call the functions elem_key, key_equal, and
key_hash. Their types would now involve void* but in the environment in
which the hash table implementation is compiled, there is can still only be
one of each of these functions. This means the implementation cannot be
truly generic.

Instead, we should pass pointers to these functions! But where do we
pass them? We could pass all three to ht_insert and ht_search, where
they are actually used. However, it is awkward to do this on every call.
We notice that for a particular hash table, all three functions should be the
same for all calls to insert into and search this table, because a single hash
table stores elements of the same type and key. We can therefore pass these
functions just once, when we first create the hash table, and store them with
the table!

This gives us the following interface (in file hashtable.h):

#ifndef _HASHTABLE_H_
#define _HASHTABLE_H_

typedef void* ht_key;
typedef void* ht_elem;

/* Hash table interface */
typedef struct ht* ht;
ht ht_new (int init_size,

ht_key (*elem_key)(ht_elem e),
bool (*key_equal)(ht_key k1, ht_key k2),
int (*key_hash)(ht_key k, int m));

void ht_insert(ht H, ht_elem e);
ht_elem ht_search(ht H, ht_key k);
void ht_free(ht H, void (*elem_free)(ht_elem e));

#endif

Storing the function for manipulating the data brings us closer to the
realm of object-oriented programming where such functions are called meth-
ods, and the structure they are stored in are objects. We don’t pursue this
analogy further in this course, but you may see it in follow-up courses,
specifically 15-214 Software System Construction.

LECTURE NOTES APRIL 7, 2011

Generic Data Structures L22.5

5 Using Generic Hashtables

First, we see how the client code works with the above interface. We use
here the example of word counts, which we also used to illustrate and test
hash tables earlier. The structure contains a string and a count.

/* elements */
struct elem {

char* word; /* key */
int count; /* information */

};
typedef struct elem* elem;

As mentioned before, strings are represented as arrays of characters (type
char*). The C function strcmp from library with header string.h com-
pares strings. We then define:

bool key_equal(ht_key s1, ht_key s2) {
return strcmp((char*)s1,(char*)s2) == 0;

}

Keep in mind that ht_key is defined to be void*. We therefore have to cast
it to the appropriate type char* before we pass it to strcmp, which requires
to strings as arguments. Similarly, when extracting a key from an element,
we are given a pointer of type void* and have to cast it as of type elem
(which is struct elem*).

/* extracting keys from elements */
ht_key elem_key(ht_elem e)
{ REQUIRES(e != NULL);

return ((elem)e)->word;
}

The hash function is defined in a similar manner.
Here is an example where we insert strings created from integers (func-

tion itoa) into a hash table and then search for them.

int n = (1<<10);
ht H = ht_new(n/5, &elem_key, &key_equal, &key_hash);
for (int i = 0; i < n; i++) {
elem e = xmalloc(sizeof(struct elem));
e->word = itoa(i);
e->count = i;

LECTURE NOTES APRIL 7, 2011

Generic Data Structures L22.6

ht_insert(H, e);
}
for (int i = 0; i < n; i++) {
char* s = itoa(i);
assert(((elem)ht_search(H, s))->count == i);
free(s);

}

Not the required cast when we receive an element from the table, while the
arguments e and s do not need to be cast because the conversion from t*
to void* is performed implicitly by the compiler.

6 Implementing Generic Hash Tables

The hash table structure, defined in file hashtable.c now needs to store
the function pointers passed to it.

struct ht {
int size; /* m */
list* A; /* \length(A) == size */
ht_key (*elem_key)(ht_elem e); /* extracting keys from elements */
bool (*key_equal)(ht_key k1, ht_key k2); /* comparing keys */
int (*key_hash)(ht_key k, int m); /* hashing keys */

};

ht ht_new(int init_size,
ht_key (*elem_key)(ht_elem e),
bool (*key_equal)(ht_key k1, ht_key k2),
int (*key_hash)(ht_key k, int m))

{ REQUIRES(init_size > 1);
list* A = xcalloc(init_size, sizeof(list));
ht H = xmalloc(sizeof(struct ht));
H->size = init_size;
H->A = A; /* all initialized to NULL; */
H->elem_key = elem_key;
H->key_equal = key_equal;
H->key_hash = key_hash;
ENSURES(is_ht(H));
return H;

}

LECTURE NOTES APRIL 7, 2011

Generic Data Structures L22.7

When we search for an element (and insertion is similar) we retrieve the
functions from the hash table structure and call them. We exploit here that
C allows function pointers to be directly applied to arguments, implicitly
dereferencing the pointer.

/* ht_search(H, k) returns NULL if key k not present in H */
ht_elem ht_search(ht H, ht_key k)
{

REQUIRES(is_ht(H));
int h = H->key_hash(k, H->size);
list l = H->A[h];
while (l != NULL)
//@loop_invariant is_chain(H, l, h);
{
if (H->key_equal(H->elem_key(l->data), k))

return l->data;
l = l->next;

}
return NULL;

}

This concludes this short discussion of generic implementations of li-
braries, exploiting void* and function pointers.

In more modern languages such ML, so-called parametric polymorphism
can eliminate the need for checks when coercing from void*. The corre-
sponding construct in object-oriented languages such as Java is usually
called generics. We do not discuss these in this course.

7 Separate Compilation

Although the C language does not provide much support for modularity,
convention helps. The convention rests on a distinction between header files
(with extension .h) and program files (with extension c).

When we implement a data structure or other code, we provide not
only filename.c with the code, but also a header file filename.h with
declarations providing the interface for the code in filename.c. The im-
plementation filename.c contains #include "filename.h" at its top, and
client will have the same line. The fact that both implementation and client
include the same header file provides a measure of consistency between
the two.

LECTURE NOTES APRIL 7, 2011

Generic Data Structures L22.8

Header files filename.h should never contain any function definitions
(that is, code), only type definition, structure declarations, macros, and
function declarations (so-called function prototypes). In contrast, program
files filename.c can contain both declarations and definitions, with the
understanding that the definitions are not available to other files.

We only ever #include header files, never program files, in order to
maintain the separation between code and interface.

When gcc is invoked with multiple files, it behaves somewhat differ-
ently than cc0. It compiles each file separately, referring only to the included
header files. Those come in two forms, #include <syslib.h>where syslib
is a system library, and #include "filename.h", where filename.h is pro-
vided in the local directory. Therefore, if the right header files are not in-
cluded, the program file will not compiler correctly. We never pass a header
file directly to gcc.

The compiler then produces a separate so-called object file filename.o
for each filename.c that is compiled. All the object files and then linked
together to create the executable. By default, that is a.out, but it can also
be provided with the -o executable switch.

Let us summarize the most important conventions:

• Every file filename, except for the one with the main function, has a
header file filename.h and a program file filename.c.

• The program filename.c and any client that would like to use it has
a line #include "filename.h" at the beginning.

• The header file filename.h never contains any code, only macros,
type definition, structure definitions, and functions header files. It
has appropriate header guards to void problems if it is loaded more
than once.

• We never #include any program files, only header files (with .h ex-
tension).

• We only pass program files (with .c extension) to gcc on the com-
mand line.

LECTURE NOTES APRIL 7, 2011

Generic Data Structures L22.9

Exercises

Exercise 1 Convert the interface and implementation for binary search trees from
C0 to C and make them generic. Also convert the testing code, and verify that no
memory is leaked in your tests. Make sure to adhere to the conventions described
in Section 7.

LECTURE NOTES APRIL 7, 2011

	Introduction
	The Hash Table Interface Revisited
	Generic Types
	Generic Operations via Function Pointers
	Using Generic Hashtables
	Implementing Generic Hash Tables
	Separate Compilation

