
Lecture Notes on
Tries

15-122: Principles of Imperative Computation
Thomas Cortina

Notes by Frank Pfenning

Lecture 24
April 19, 2011

1 Introduction

In the data structures implementing associative arrays so far, we have needed
either an equality operation and a hash function, or a comparison operator
with a total order on keys. Similarly, our sorting algorithms just used a total
order on keys and worked by comparisons of keys. We obtain a different
class of representations and algorithms if we analyze the structure of keys
and decompose them. In this lecture we explore tries, an example from this
class of data structures. The asymptotic complexity we obtain has a differ-
ent nature from data structures based on comparisons, depending on the
structure of the key rather than the number of elements stored in the data
structure.

2 The Boggle Word Game

The Boggle word game is played on an n × n grid (usually 4 × 4 or 5 × 5).
We have n ∗ n dice that have letters on all 6 sides and which are shaken so
that they randomly settle into the grid. At that point we have an n×n grid
filled with letters. Now the goal is to find as many words as possible in this
grid within a specified time limit. To construct a word we can start at an
arbitrary position and use any of the 8 adjacent letters as the second letter.
From there we can again pick any adjacent letter as the third letter in the
word, and so on. We may not reuse any particular place in the grid in the

LECTURE NOTES APRIL 19, 2011

Tries L24.2

same word, but they may be in common for different words. For example,
in the grid

E F R A

H G D R

P S N A

E E B E

we have the words SEE, SEEP, and BEARDS, but not SEES. Scoring as-
signs points according to the lengths of the words found, where longer
words score higher.

One simple possibility for implementing this game is to systematically
search for potential words and then look them up in a dictionary, perhaps
stored as a sorted word list, some kind of binary search tree, or a hash table.
The problem is that there are too many potential words on the grid, so we
want to consider prefixes and abort the search when a prefix does not start
a word. For example, if we start in the upper right-hand corner and try
horizontally first, then EF is a prefix for a number of words, but EFR, EFD,
EFG, EFH are not and we can abandon our search quickly. A few more
possibilities reveal that no word with 3 letters or more in the above grid
starts in the upper left-hand corner.

Because a dictionary is sorted alphabetically, by prefix, we may be able
to use a sorted array effectively in order for the computer to play Boggle
and quickly determine all possible words on a grid. But we may still look
for potentially more efficient data structures which take into account that
we are searching for words that are constructed by incrementally extending
the prefix.

3 Multi-Way Tries

One possibility is to use a multi-way trie, where each node has a potential
child for each letter in the alphabet. Consider the word SEE. We start at the
root and follow the link labeled S, which gets us to a node on the second
level in the tree. This tree indexes all words with first character S. From
here we follow the link labeled E, which gets us to a node indexing all
words that start with SE. After one more step we are at SEE. At this point
we cannot be sure if this is a complete word or just a prefix for words stored
in it. In order to record this, we can either store a boolean (true if the
current prefix is a complete word) or terminate the word with a special
character that cannot appear in the word itself.

LECTURE NOTES APRIL 19, 2011

Tries L24.3

Below is an example of a multi-way trie indexing the three words BE,
BED, and BACCALAUREATE.

A  B  C  D  E  …  Z 

A  B  C  D  E  …  Z 

A  B  C  D  E  …  Z 

A  B  C  D  E  …  Z 

false 

false 

true 

false 

A  B  C  D  E  …  Z 

true 

While the paths to finding each word are quite short, including one more
node than characters in the word, the data structure consumes a lot of
space, because there are a lot of nearly empty arrays.

An interesting property is that the lookup time for a word is O(k),
where k is the number of characters in the word. This is independent of
how many words are stored in the data structure! Contrast this with, say,
balanced binary search trees where the search time is O(log(n)), where n is
the number of words stored. For the latter analysis we assumed that key
comparisons where constant time, which is not really true because the keys
(which are strings) have to be compared character by character. So each
comparison, while searching through a binary search tree, might take up to
O(k) individual character comparison, which would make it O(k ∗ log(n))
in the worst case. Compare that with O(k) for a trie.

On the other hand, the wasted space of the multi-way trie with an array
at each node costs time in practice. This is not only because this memory
must be allocated, but because on modern architectures the so-called mem-
ory hierarchy means that accesses to memory cells close to each other will be

LECTURE NOTES APRIL 19, 2011

Tries L24.4

much faster than accessing distant cells. You will learn more about this in
15-213 Computer Systems.

4 Binary Tries

The idea of the multi-way trie is quite robust, and there are useful special
cases. One of these if we want to represent sets of numbers. In that case
we can decompose the binary representation of numbers bit by bit in order
to index data stored in the trie. We could start with the most significant or
least significant bit, depending on the kind of numbers we expect. In this
case every node would have at most two successors, one for 0 and one for
1. This does not waste nearly as much space and can be efficient for many
purposes.

5 Ternary Search Tries

For the particular application we have in mind, namely searching for words
on a grid of letters, we could either use multiway tries directly (wasting
space) or use binary tries (wasting time and space, because each character
is decomposed into individual bits).

A more suitable data structure is a ternary search trie (TST) which com-
bines ideas from binary search trees with tries. Roughly, at each node in a
trie we store a binary search tree with characters as keys. The entries are
pointers to the subtries.

More precisely, at each node we store a character c and three point-
ers. The left subtree stores all words starting with characters alphabetically
less than c. The right subtree stores all words starting with characters al-
phabetically greater than c and the middle stores a subtrie with all words
starting with c, from the second character on. Below is a diagram, again for
the words BE, BED, and BACCALAUREATE. Instead of booleans, we use a
special non-alphabetic character (period ’.’ in this case), which is shown
as a small filled circle in the diagram. We have indicated null pointers by

LECTURE NOTES APRIL 19, 2011

Tries L24.5

short lines in the appropriate position in the tree.

B 

A 

C 

C  E 

D 

In the ASCII table, the period is smaller than the letters from the alphabet,
do D ends up to the right of ’.’.

6 Asymptotic Complexity

For lookup, we have to make at most 26 comparisons between each charac-
ter in the input string and the characters stored in the tree. Therefore search
time is O(26 ∗ k) = O(k), where k is the length of the string. Insertion has
the same asymptotic complexity bound. Note that this does not change
with the number of strings, only with its length. Even when the embed-
ded trees are perfectly balanced, the constant factor decreases, but not the
asymptotic complexity because O(log(26) ∗ k) = O(k).

7 Specifying an Interface

In the example above and the code that we develop, we just represent a
set of words rather than an associative array that stores arbitrary informa-
tion for every key. Moreover, we commit to strings as keys. In that sense

LECTURE NOTES APRIL 19, 2011

Tries L24.6

our interface is not very abstract, but well-suited to our application. We
also commit to words as consisting of only lowercase letters and provide a
function is_word to verify whether a string is valid before entering it into
the table or searching for it.

typedef struct tst* tst;
tst tst_new();
bool tst_search(tst TST, string s);
void tst_insert(tst TST, string s);
bool is_word(string s);

The string checking is simple.

bool is_wordchar(char c) {
return ’a’ <= c && c <= ’z’;

}

bool is_word(string s) {
int len = string_length(s);
int i;
for (i = 0; i < len; i++)
if (!is_wordchar(string_charat(s,i)))
return false;

return true;
}

8 Checking Invariants

The declarations of the types is completely straightforward.

typedef struct trie* trie;
struct trie {
char c; /* discriminating character */
trie left;
trie middle;
trie right;

};

struct tst {
trie root;

};

LECTURE NOTES APRIL 19, 2011

Tries L24.7

To check that a trie is valid we use two mutually recursive functions.
One checks the order invariant for the binary search trees embedded in the
trie, the other checks the correctness of the subtries. For mutually recursive
functions we need forward declare the function which comes textually sec-
ond in the file so that type checking by the compiler can be done in order.

bool is_trie_root(trie T);
bool is_trie(trie T, char lower, char upper) {
if (T == NULL) return true;
//@assert T != NULL;
if (!(is_wordchar(T->c) || T->c == ’.’)) return false;
if (!(lower < T->c && T->c < upper)) return false;
return
is_trie(T->left, lower, T->c)
&& ((T->c == ’.’ && T->middle == NULL)

|| (T->c != ’.’ && is_trie_root(T->middle)))
&& is_trie(T->right, T->c, upper);

}

bool is_trie_root(trie T) {
return is_trie(T, ’ ’, ’~’);

}

In the last function we use a space (’ ’) as a character whose ASCII code is
small than all letters, and a tilde (’~’) as a character whose ASCII code is
greater than all letters, essentially functioning as−∞ and +∞ for checking
the intervals of a binary search tree with letters as keys.

One small refinement applied in the code above is the test that when
we encounter the period ’.’ there cannot be any middle subtree. This is
because a period cannot appear in the middle of a word. The presence of
the period itself signals that the prefix that led us down to the node is in
the tree.

9 Implementing Search on TSTs

Implementing search is just a direct combination of searching through a
trie and searching through binary search tree. We pass a trie T , a string s
and an index i which should either be a valid string index or be equal to
the length of the string. If it is equal, we silently consider the character to
be the word-ending period.

LECTURE NOTES APRIL 19, 2011

Tries L24.8

bool trie_search(trie T, string s, int i)
//@requires is_trie_root(T);
//@requires is_word(s);
//@requires 0 <= i && i <= string_length(s);
{ char si = (i == string_length(s)) ? ’.’ : string_charat(s, i);
assert(is_wordchar(si) || si == ’.’, "illegal character in string");
...

}

If the tree is null, the word is not stored in the trie and we return false.
On the other hand, if we are at the end of the string (si = ’.’) and the
character stored at the node is also ’.’, then the word is in the trie and we
return true. Otherwise, we continue to search in the left, middle, or right
subtree as appropriate.

if (T == NULL) return false;
if (si == ’.’ && T->c == ’.’) return true;
if (si < T->c) return trie_search(T->left, s, i);
else if (si > T->c) return trie_search(T->right, s, i);
else //@assert(si == T->c);
return trie_search(T->middle, s, i+1);

Important for the last case: if the string character si is equal to the character
stored at the node, then we look for the remainder of the word in the middle
subtrie. This is implemented by passing i + 1 to the subtrie.

10 Implementing Insertion

Insertion follows the same structure as search, which is typical for the kind
of data structure we have been considering in the last few weeks. If the tree
to insert into is null, we create a new node with the character of the string
we are currently considering (the ith) and null children and then continue
with the insertion algorithm.

trie trie_insert(trie T, string s, int i)
//@requires is_trie_root(T);
//@requires is_word(s);
//@requires 0 <= i && i <= string_length(s);
{ char si = (i == string_length(s)) ? ’.’ : string_charat(s, i);
assert(is_wordchar(si) || si == ’.’, "illegal character in string");
if (T == NULL) {

LECTURE NOTES APRIL 19, 2011

Tries L24.9

T = alloc(struct trie);
T->c = si; T->left = NULL; T->right = NULL;
T->middle = NULL;

}
...

}

As usual with recursive algorithms, we return the the trie after insertion to
handle the null case gracefully, but we operate imperatively on the subtries.

if (si == ’.’ && T->c == ’.’) return T;
if (si < T->c) T->left = trie_insert(T->left, s, i);
else if (si > T->c) T->right = trie_insert(T->right, s, i);
else T->middle = trie_insert(T->middle, s, i+1);
return T;

At the top level we just insert into the root, with an initial index of 0. At
this (non-recursive) level, insertion is done purely by modifying the data
structure.

void tst_insert(tst TST, string s)
//@requires is_tst(TST);
//@requires is_word(s);
{
TST->root = trie_insert(TST->root, s, 0);
return;

}

LECTURE NOTES APRIL 19, 2011

Tries L24.10

Exercises

Exercise 1 Implement the game of Boggle as sketched in this lecture. Make sure
to pick the letters according to the distribution of their occurrence in the English
language. You might use the Scrabble dictionary itself, for example, to calculate
the relative frequency of the letters.

If you are ambitious, try to design a simple textual interface to print a random
grid and then input words from the human player and show the words missed by
the player.

Exercise 2 Modify the implementation TSTs so it can store, for each word, the
number of occurrences of that word in a book that is read word by word.

Exercise 3 Modify the implementation of search in TSTs so it can process a star
(’*’) character in the search string. It can match any number of characters for
words stored in the trie. This matching is done by adding all matching string to a
queue that is an input argument to the generalized search function.

For example, after we insert BE, BED, and BACCALAUREATE, the string
"BE*" matches the first two words, and "*A*" matches the only the third, in three
different ways. The search string "*" should match the entire set of words stored
in the trie and produce them in alphabetical order. You should decide if the different
ways to match a search string should show up multiple times in the result queue
or just one.

LECTURE NOTES APRIL 19, 2011

	Introduction
	The Boggle Word Game
	Multi-Way Tries
	Binary Tries
	Ternary Search Tries
	Asymptotic Complexity
	Specifying an Interface
	Checking Invariants
	Implementing Search on TSTs
	Implementing Insertion

