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ABSTRACT
Motivation: Protein secondary structure prediction is
an important step towards understanding how proteins
fold in three dimensions. Recent analysis by information
theory indicates that the correlation between neighboring
secondary structures are much stronger than that of
neighboring amino acids (Crooks & Brenner, 2004). In
this paper, we focus on the combination problem for
sequences, i.e. combining the scores or assignments from
single or multiple prediction systems under the constraint
of a whole sequence, as a target for improvement in
protein secondary structure prediction.
Results: We apply several graphical chain models to
solve the combination problem and show that they are
consistently more effective than the traditional window-
based methods. In particular, conditional random fields
(CRFs) improve moderately the predictions for helices and
more importantly, for beta sheets, which are the major
bottleneck for protein secondary structure prediction.
Contact: yanliu@cs.cmu.edu

INTRODUCTION
Protein secondary structure prediction involves the projec-
tion of primary sequences onto a string of secondary struc-
ture assignments, such as helix, sheet or coil. It is widely
believed that secondary structures can contribute valuable
information to discerning how proteins fold in three di-
mensions.

Protein secondary structure prediction has been exten-
sively studied for decades (Cuff & Barton, 1999; Rost,
2001). Recent improvements have been accomplished not
only by incorporating evolutionary information, but also
by combining the results of multiple independent predic-
tion methods into a consensus prediction (Rost, 2001).

The architecture of a typical consensus prediction
system is outlined in Figure 1. First, profile generation
( [A] in Figure 1), or feature extraction, converts the
primary protein sequences to a set of features that can

be used to predict the labels of secondary structures.
Divergent profiles of multiple sequence alignments and
a large variety of informative features have been used
(Rost & Sander, 1993; Jones, 1999). Next, a sequence-to-
structure mapping process ( [B] in Figure 1) outputs the
predicted scores for each structure type using the features
from [A] as input. Complex machine learning algorithms
have been applied, including neural networks (Rost &
Sander, 1993), recurrent neural networks (Pollastriet al.,
2002), Support Vector Machines (SVMs) (Hua & Sun,
2001) and Hidden Markov Models (HMMs) (Bystroffet
al., 2000). Then, the output scores from [B] are converted
to secondary structure labels. This involves considering
the influence of neighboring structures by structure-to-
structure mapping [C] and removing physically unlikely
conformations by a Jury system [D], also referred as
“filters” or “smoothers”. Some systems separate [C] and
[D] for explicit evaluation, while others keep them in
one unit (Rost & Sander, 1993; King & Sternberg,
1996). Finally, a consensus is formed by combining
predicted scores or labels from multiple independent
systems into a single labeled sequence. Several methods
have been applied to consensus formation, such as a
complex combination of neural networks (Cuff & Barton,
2000), multivariate linear regression (Guermeuret al.,
1999), decision trees (Selbiget al., 1999) and cascaded
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Fig. 1. The architecture of current secondary structure predictions
(adapted from (Rost & Sander, 1993))
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multiple classifiers (Ouali & King, 2000).
While profile generation [A] and sequence-to-structure

mapping [B] have been studied extensively, the structure-
to-structure mapping and jury system [C, D] have not been
explored in detail although they are commonly used in
various systems. Recent analysis by information theory
also indicates that the correlation between neighboring
secondary structures are much stronger than that of
neighboring amino acids (Crooks & Brenner, 2004). From
a machine learning perspective, both the jury system
[C, D] and the consensus [E] can be formulated as the
combination problem for sequences: given the predicted
scores or labels, how should we combine them into
the final labels, taking into account the dependencies of
neighbors and constraints of a single protein sequence?

Note that the combination problem for sequences is
distinct from another closely-related task: given the
predicted scores or labels from different systems for one
residue, how can we combine them into the optimal la-
bels? This task is a classical problem for machine learning
known as an ensemble approach and many ensemble
methods have been used for consensus formation. The
difference between our task and the ensemble problem
is that ensemble treats each residue as independent and
does not consider the extra information from neighboring
structures or constraints of a single sequence. Therefore
our combination problem is more general and difficult
than a classical ensemble problem.

Previous methods for Jury and consensus use window-
based approaches, i.e. taking predicted scores or labels
from a sliding window and treating it as a classification
problem (Rost & Sander, 1993; King & Sternberg, 1996;
Sollich & Krogh, 1996; Selbiget al., 1999; Cuff & Barton,
2000) (as shown in Figure 2). However, the window-based
methods cannot capture long-distance interactions, which
are a hallmark of protein tertiary structures and known
to influence the formulation and stability of secondary
structures. Therefore we propose to use graphical chain
models for the combination since they are able to consider
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Fig. 2. Comparison of combination methods for protein secondary
structure predictions

the correlations between labels, to include long-distance
interaction and to model the protein sequence as a whole.

MATERIALS AND METHODS
We formulate our combination problem as follows: given
a protein sequenceP = x1x2 . . . xN , the raw output by
a secondary structure prediction system is either a label
sequenceL = l1l2 . . . lN , or a N × 3 score matrix S,
whereSij = Sj(xi) is the score of residuexi for classj,
j ∈ Y = {H,E, C} andi ∈ {1, 2, . . . , N}. Taking the
predicted labelsL or score matrixS, we try to predict the
true labelY1Y2 . . . YN .

Without loss of generality, we assume that (1) the
predicted scores are non-negative and normalized; (2) for
one residuexi, the higher the scoreSij , the larger the
probability that the residuexi belongs to classj.

Traditional Window-based Combination
Window-Based Method for Label CombinationThe
standard method for converting scores to predicted
secondary structure labels is to assign the class with the
highest score. After that, many systems employ rule-based
methods to improve upon the first-pass assignment, i.e.
the label combination, for instance: Rost and Sander
manually define heuristic rules to remove helices with
a length less than 3 and strands of length one (Rost &
Sander, 1993; Salamov & Solovyev, 1995); King and
Sternberg applied a decision tree algorithm to learn the
rules automatically with ten-fold cross-validation (King
& Sternberg, 1996).

Predefined heuristic rules, without considering the prop-
erties of the data, have not improved the accuracy consis-
tently (Rost & Sander, 1993). In contrast, rules extracted
automatically by supervised classifiers not only can gener-
ate the rules to filter out physically unrealistic predictions,
but also can reduce the inductive biases from the particu-
lar learning algorithm that the system used for prediction,
such as neural networks and SVMs (Wolpert, 1992).

The window-based label combination works as follows:
given the labels predicted by a systeml1l2 . . . lN , and the
window sizew, let d = (w − 1)/2 be the half of the
window size. The input features for residuexi are the
predicted labels within the windoww, i.e. 〈li−d, li−d+1,
. . . , li+d−1, li+d〉 (a null label is assigned if the label does
not exist). Then a rule-based classifier, such as decision
tree or CART (Rost & Sander, 1993), can be applied. The
window sizew is a parameter with which we can tune
the trade-off between including useful information and
excluding “noisy” more remote features.

Window-Based Method for Score CombinationIn
current secondary structure prediction systems,score
combinationis used widely. Window-based score com-
bination works similar to label combination except:
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(1) the input features for residuexj are scores instead
of labels, i.e. 〈SH(xi−d), SE(xi−d),SC(xi−d), . . . ,
SH(xi+d), SE(xi+d), SC(xi+d)〉; (2) powerful classi-
fiers, such as neural networks andk-Nearest-Neighbor,
are used instead of rule-based classifiers.

Empirically, score combination has demonstrated more
improvement in accuracy than label combination since the
scoreSj(xi) indicates the confidence of the prediction
that residuexi belong to classj and thus contains more
information than a single label (Rost & Sander, 1993;
Salamov & Solovyev, 1995; Jones, 1999; Guoet al.,
2004). On the other hand, we can expect that applying
label combination after score combination will hardly
change the final predictions since the information from
labels has been implicitly encoded in the scores (Rost
& Sander, 1993). Both window-based label combination
and score combination have the disadvantages of only
considering the local information.

Graphical Models for Score Combination
Simple graphical chain models, such as Hidden Markov
models (HMMs), have been successfully applied to sec-
ondary structure prediction (Bystroffet al., 2000; Karplus
et al., 1998). HMMs are generative models, which assume
that the data are generated by a particular model. These
models work by computing the joint distribution of obser-
vationsx and statesy, P (x, y) and make predictions by
using Bayes rules to calculateP (y|x). Two kinds of prob-
ability distributions are defined in HMMs: (1) the transi-
tion probabilitiesP (yi|yi−1) and (2) the observation prob-
abilitiesP (xi|yi). By the independence assumptions, i.e.
p(xi|yi) = p(xi|yi, yi−1), we have the joint probabil-
ity P (xi, yi|yi−1) = P (xi|yi)P (yi|yi−1) (The graphical
structure of HMMs is shown in Figure 3-A).

Although successfully applied to many sequence data
problems, HMMs are not appropriate for our combination
task. First, it is difficult to include overlapping long-range
features due to the independence assumption. Second,
generative models such as HMMs, work well only when
the underlying assumptions are appropriate. On the other
hand, discriminative models do not make any assumptions
and compute the posterior probability directly. Recently,
the machine learning community has proposed several
discriminative models for sequence data, such as Maxi-
mum Entropy Markov Models (MEMMs) (McCallumet
al., 2000) and Conditional Random fields (CRFs) (Laf-
ferty et al., 2001). They have been successfully applied
to many applications, including information retrieval and
computer vision, and achieved significant improvement
over HMMs (McCallum , 2003). Compared with window-
based methods, these graphical models are able to take
into consideration the correlations between labels and
long-distance information. Therefore we propose to use
the discriminative graphical chain models for score com-

bination. To the best of our knowledge, this approach has
not been studied in previous protein secondary structure
prediction literature and is the primary focus of our paper.

Maximum Entropy Markov ModelsAs shown in Figure
3-B, Maximum Entropy Markov Models (MEMMs) re-
place the generative joint probability (P (x, yi|yi−1)) pa-
rameterization in HMMs with the conditional probabilities
P (yi|yi−1, x) based on an exponential model(McCallum
et al., 2000):

P (yi|yi−1, x) =
1

Z(yi−1, x)
exp (

X
k

λkfk(x, yi, yi−1)), (1)

whereZ(yi−1, x) is a normalizing factor. The exponential
models, derived by maximum entropy, are able to handle
arbitrary, non-independent featuresfk including long-
distance interactions. The model parameterλk, i.e. the
weight for featurefk, is learned via maximizing the
conditional likelihood of the training data

∏
t P (yt|xt).

Despite the differences between HMMs and MEMMs,
there is still an efficient dynamic programming solution to
the problem of identifying the most likely state sequence
givenan observation. Compared to HMMs, McCallumet
al. (2000) redefinedαi(y) to be the probability of being in
statey at timei given the observation sequence up to time
i. Then the recursive step is

αi+1(y) =
X

y′∈Y

αt(y
′) · P (y|y′, xi+1). (2)

Similarly, βi(y) is redefined to be the probability of
starting from statey at time i given the observation
sequence after timei and the recursive step is

βi(y′) =
∑
y∈Y

P (y|y′, xi+1) · βi+1(y).

Given the observationx1x2 . . . xN , we can compute (a)
the marginal mode of the optimal labelsl1l2 . . . lN by

li = arg max
y∈Y

[αi(y)βi(y)],

or (b) MAP estimate by using Viterbi algorithm as defined
in eq(2) except for using a maximization operation in place
of summation (see (Rabiner, 1989) for detail).
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Fig. 3. Graphical structures of simple HMM(A), MEMM(B), and
chain-structured CRF(C)
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For score combination, we define two kinds of features:
one is the score feature

f score
j (xi, yi) =

{
Sj(xi) if yi = j

0 otherwise.

and the other is the transition feature

f trans
<j,k>(xi, yi, yi−1) =

(
P (yi|yi−1) if yi = j, yi−1 = k

0 otherwise,
(3)

wherej, k ∈ Y = {H, E,C}. P (yi|yi−1) can be learned
from the training data:

P (y|y′) =
# of occurences y′y

# of occurences y′
.

We notice that for MEMMs the transition information is
already encoded implicitly in the Viterbi process. Since
MEMMs have the advantage of allowing as many features
as possible without decreasing the performance, we also
treatf trans as explicit features in case they might help.

Higher-order Markov Models As shown in Figure
3-B, MEMMs have first-order Markov assumption, i.e.
P (yi+1|yi) = P (yi+1|yi, yi−1). The effect is two fold: on
one hand, it simplifies the model and dramatically reduces
the computational cost; on the other hand, this assumption
is clearly inappropriate for secondary structure prediction,
where the structure dependencies extend over several
residues and even involve long-distance interactions.
To solve this problem, higher-order Markov Models
(HOMEMMs) can be applied (Rabiner, 1989).

For simplicity, we only consider second-order Markov
Models, in which the next state depends upon the two
previous states (Figure 4-B). The second-order Markov
Models can be transformed to an equivalent first-order
Markov Model by redefining the statêyi as

ŷi = 〈yi, yi−1〉 ∈ Y × Y = Ω.

In secondary structure prediction the set of new states isΩ
= {HC, HE, HH, EC, EE, EH, CC, CE, CH}. We notice
that the number of states grows exponentially.

The score feature is the same as discussed above and the
transition feature is defined as follows:

P (ŷi|ŷi−1) = P (〈yi, yi−1〉|〈yi−1, yi−2〉) = P (yi|yi−1, yi−2).
(4)
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Fig. 4. Graphical structures of MEMM(A) and Second-Order
MEMM(B)

Pseudo State Duration Markov ModelsHigher-order
Markov Models provide a solution to circumvent the
state independence assumptions. However, the number
of new states‖Ω‖ is an exponential function of the
order K. As K grows large, the computational costs will
become intractable. To solve the problem, we devise
a heuristic method which is able to encompass more
history information with the same computational cost as
one-order Markov Models, namely pseudo state duration
Markov Models (PSMEMMs).

Our heuristics are based on the observation that the
distribution of the segment length varies for different
structures, as shown in Table 1-(I) (only segments less
than 20 residues are shown). From the graph, we can see
that different segment lengths are preferred by different
structures. For example, around 25% of beta-strands have
only one residue, which are in fact beta-bridges; there are
also short310-helices with 3 or 4 residues.

To incorporate such kind of information, we define
P (y|y′, N) as the probability that the current state isy
given the recent history ofN consecutivey′. P (y|y′, N)
is learned from the training data in the following way:

P (y|y′, N) =
# of occurences ȳ′

Nz }| {
y′y′ . . . y′ y

# of occurences ȳ′y′y′ . . . y′
.

The distribution of P (H|E, N), P (H|H, N) and
P (E|E, N), P (E|H,N) for N ≤ 20 is plotted in Table
1-(II, III) respectively (we assume there is no direct transi-
tion from H to E, or from E to H). Data sparsity problems
might occur whenN grows larger. It can be addressed by
smoothing methods, such as Laplace smoothing.

All the algorithms and definitions are similar as
MEMMs except that the transition feature is:

f trans
<j,k>(xi, yi, yi−1) =

{
P (yi|yi−1, N) if yi = j, yi−1 = k

0 otherwise,

where N can be back-traced from the maximization
histories in the dynamic programming process.

Conditional Random Fields In addition to Markov as-
sumption, MEMMs also suffer from the problem known as
the label biasproblem. In short, thelabel biasmeans that
the total probability “received” byyi−1 must be passed on
to labelsyi at timei even ifxi is completely incompatible
with yi−1 (see (Laffertyet al., 2001) for full discussion).
Conditional Random Fields (CRFs) proposed by Lafferty
et al., are a globally normalized extension to MEMMs that
avoid the label bias problem (Laffertyet al., 2001).

CRFs areundirectedgraphical models (also known as
random fields) and calculate the conditional likelihood
P (y|x) directly. The graphical structure for chain-form
CRFs is shown in Figure 3-C. By Hammersely-Clifford
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Table 1.(I) The distribution of the segment length for different structures; (II) The transition probability of helices; (III) The transition probability of beta-sheet
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theorem (Hammersley & Clifford, 1971) and using
exponential model, the conditional probabilityP (y|x) is
defined as

P (y|x) =
1

Z0
exp(

NX
i=1

X
k

fk(yi−1, yi, x)), (5)

Similar to MEMMs, fk can be arbitrary features and
the weightλk is learned via maximizing the conditional
likelihood of the training data.

Comparing eq(5) with eq(1) in MEMM, the only
difference between the two is: MEMMs take a local
normalizationZ0 while CRFs are global. This enables
CRFs to have convex optimization function so that the
global optimal solutions are guaranteed (Laffertyet al.,
2001). However, it is not straightforward for CRFs to
find the optimum quickly. Very recently, the quasi-Newton
methods are shown to be significantly more efficient than
other methods (McCallum , 2003).

As in MEMMs, the “forward value”αi(y) is defined
as the probability of being in statey at time i given
the observation up to timei andβi(y) is the probability
of starting from statey at time i given the observation
sequence after timei. The recursive step is:

αi+1(y) =
∑
y′

αi(y′) exp(
∑

k

λkfk(y′, y, x, i + 1)),

βi(y′) =
∑
y∈Y

exp(
∑

k

λkfk(y′, y, x, i + 1))βi+1(y).

The forward-backward and Viterbi algorithms can be
derived accordingly. The features for score combination
are the same as defined for MEMMs.

Summary Table 2 summarizes the properties of the
graphical models discussed above. We can see that all
the models except HMMs have the flexibility of including
any feature and therefore are good for score combination.
However, this only indicates the general power of the

models; the effectiveness and computational costs will be
further discovered in our experiments.

Table 2.Summary of the Graphical Models

1st-order
Markov

Label
Bias

Flexibility of
Features

Global
Optimum

HMMs + + − −
MEMMs + − + −

HOMEMMs − − + −
PSMEMMs − − + −

CRFs + + + +

Materials
In our experiments, we used the CB513 dataset by Cuff
& Barton (Cuff & Barton, 1999), which many previous
papers reported results on (Hua & Sun, 2001; Kim &
Park, 2003; Guoet al., 2004). It consists of 513 non-
homologous protein chains which have an SD score,
i.e. Z score for comparison of the native sequences
given by (V − x)/σ, of less than 5 (Cuff & Barton,
1999). The dataset can be downloaded from the web
http://barton.ebi.ac.uk/.

We followed the DSSP definition for protein secondary
structure assignment (Kabsch & Sander, 1983). The
definition is based on hydrogen bonding patterns and
geometrical constraints. Based on the discussion by Cuff
& Barton (1999), the 8 DSSP labels are reduced to a 3
state model as follows: H & G to Helix (H), E & B to
Sheets (E), all other states to Coil (C).

All the combination methods discussed above can be
applied to combine predictions from single or multiple
systems. To provide accurate evaluation, we choose to
use outputs from a single system to distinguish the
improvement from considering correlations of labels and
long-distance interactions with the improvement from the
overlapping information by different systems.
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For protein secondary structure prediction, the state-
of-art performance is achieved by window-base methods
using the PSI-BLAST profiles (Jones, 1999). In our
experiments, we apply a linear transformationL to the
PSSM matrix elements according to

L(x) =





0 if (x ≤ −5)

L(x) = 1
2

+ x
10

if (−5 ≤ x ≤ 5),

L(x) = 1 otherwise.

This is the same transform used by (Kim & Park, 2003)
in the recent CASP (Critical Assessment of Structure
Predictions) competition, which achieved one of the best
results for protein secondary structure prediction. The
window size is set to 13 by cross-validation.

Various measures are used to evaluate the prediction
accuracy, including overall per-residue accuracy (Q3),
Matthew’s correlation coefficients per structure type
(CH ,CC ,CE) and segment of overlap (SOV) (Rostet al.,
1994; Zemlaet al., 1999), and the per-residue accuracy
for each type of secondary structure (QH , QE, QC ;
Qpre

H , Qpre
E , Qpre

C ) (see (Hua & Sun, 2001) for detailed
definition). Seven-fold cross-validation was used, which
is the same setting as in (Rost & Sander, 1993; Hua &
Sun, 2001).

RESULTS
Score Distribution
One of the assumptions for why combination methods
work is that the score contains more information than
a single label. If two scoresSj(xi) and Sk(xi) for
residuexi are very close, then combining them with the
information from neighbors might help the final prediction
adjust to the correct label by overriding the small score
difference. From information theory aspect, we try to use
combination methods for error-correction.

Therefore we studied the distribution of the differences
between the maximum scoreM(xi) and the second
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) 

Fig. 5. The distribution of the differences between Max Score and
Second Max Score

maximum scoreM ′(xi) for residuexi, as shown in Figure
5. From the plot, we can see that the probability that the
differencesD are close to 0 is very high. The cases falling
into the green area (P (|D| ≤ 0.1) covers around 5% of
the total residues, which demonstrates that there is still
room for improvement by score combination.

Comparison of Combination Strategies
To fairly evaluate the effectiveness of different methods,
we use the same input, i.e. the score matrix S generated
from SVMs with RBF kernels using the PSI-BLAST
profiles. For the window-based combination, we use the
decision tree algorithm C4.5 (Quinlan, 1993) for label
combination and SVMs with RBF kernels for score
combination. The window sizew is set to 15.

Table 3 lists the results of the window-based methods.†:

• Generally speaking, the window-based score combination im-
proved the prediction more than the label combination. This
confirms our expectation since the scores contain more infor-
mation than a single label.

• The label combination resulted in maximum improvement
for predicting helices rather than other structures. King and
Sternberg reported a similar observation and showed that the
extracted rules are most relevant to helices (King & Sternberg,
1996).

• The prediction accuracy has increased for both helices and
sheets by score combination.

In terms of the graphical models for score combination,
we examined the four methods discussed before. To
fairly compare with window-based methods, only two
kinds of features are used for the prediction: the score
featuresf score and the transition featuresf trans, although
we believe incorporating other features will improve the
predictions more. For higher-order MEMMs, we choose
the second-order MEMMs as representative. To get the
optimumλk in MEMMs and CRFs, the conjugate gradient
algorithm was applied (the code can be downloaded from
http://www.cs.toronto.edu/∼buescher/). Table 4 shows the
results of the four graphical models for score combination:

• Generally speaking, the graphical models for score combination
are consistently better than the window-based approaches,
especially in SOV measure.

• For the MEMMs, the prediction accuracy using Viterbi algo-
rithm is better than using marginal mode. It is interesting to note
that the opposite is true for CRFs.

• Compared with MEMMs, HOMEMMs and PSMEMMs were
somewhat improved in SOV measure since these methods
consider more history information. However, there is little dif-
ference in performance between HOMEMMs and PSMEMMs.

†The results for window-based score combination using SVMs are slightly
better than the results reported in (Guoet al., 2004) on the same dataset.
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Table 3.Results of protein secondary structure prediction on CB513 dataset using window-based combination methods

Combination
Method

SOV(%) Q3(%) QH (%) QC (%) QE (%) Qpre
H (%) Qpre

C (%) Qpre
E (%) CH CC CE

None 75.6 76.7 78.0 83.2 62.7 83.6 72.1 77.2 0.71 0.58 0.62
Dtree 75.7 76.7 78.0 83.2 62.8 83.7 72.1 77.1 0.72 0.58 0.62
SVM 75.7 76.9 81.4 76.7 70.5 82.1 75.2 72.2 0.72 0.58 0.63

Table 4.Results on CB513 dataset using different combination strategies. MEMMp, CRFp: p refers to different way to compute the labels;p = 1: marginal
model;p = 2: Viterbi algorithm

Combination
Method

SOV(%) Q3(%) QH (%) QC (%) QE (%) Qpre
H (%) Qpre

C (%) Qpre
E (%) CH CC CE

None 75.6 76.7 78.0 83.2 62.7 83.6 72.1 77.2 0.71 0.58 0.62
MEMM1 75.6 76.7 77.8 83.6 62.1 83.7 71.8 77.8 0.71 0.58 0.62
MEMM2 76.0 76.8 78.2 83.4 62.2 83.7 72.0 78.0 0.71 0.58 0.62
HOMEMMs2 76.1 76.9 78.3 83.4 62.4 83.6 72.1 77.9 0.71 0.59 0.62
PSMMEMMs2 76.1 76.9 78.3 83.3 62.2 83.6 72.0 78.0 0.71 0.58 0.62
CRF1 76.2 77.0 78.3 83.4 63.4 83.7 72.1 78.0 0.72 0.58 0.63

This might indicate that higher-order MEMMs will hardly add
more value than second-order MEMMs.

• CRFs perform the best among the four graphical models. It
exhibits moderate improvements for predicting helices and
especially sheets. Global optimization and removing label bias
seem to help since these are the only differences between
MEMMs and CRFs.

Table 5 summarizes our discussion above and provides
a qualitative estimation of computational costs as well as
the performance for each method.

Table 5. Summary of computational costs and effectiveness for different
combination strategies. H/L/M: high/low/medium computational costs;
+/−: improvement/no improvement over the baseline results without
combination

Train Test Helices Sheets Coil Segment

DTree M L + − − −
SVM H H + + − −
MEMMs H L − − − +
HOMEMMs H L − − − +
PSMEMMs H L − − − +
CRFs H L + + − +

Combination Bounds Using PSI-BLAST Profiles
We discussed several combination strategies using graph-
ical models and our experiments demonstrate that those
methods can improve the secondary structure prediction

performance to a certain extent. However, what is the best
performance we can get by combining the predictions?
Answering those questions will involve much deeper anal-
ysis and more thorough experiments. However, we can get
a rough idea of the limits by providing the location of the
true segment boundaries.

Two simple strategies have been used: the max rule,
i.e. assigning the labelj with the maximum score
maxi,j Sj(xi) to all residues within the segment, and the
sum rule, i.e. assigning the labelj with the maximum sum
of scoresmaxj[

∑
i Sj(xi)] to all the residues within the

segment. Since no method can predict the segment with
perfect accuracy, these results can be seen as an upper
bound by using PSI-BLAST profiles. From the results,
we can see that even given the true segment assignments,
we are still far from reaching an accuracy of 90% using
current PSI-BLAST profile features. Ideal solution would
be to incorporate other informative non-local features, by
which the graphical models can gain more improvements.

Table 6.Results of combination given the location of each structure segment
on CB513 dataset by seven-fold cross-validation

Combination Method Q3(%) QE (%) Qpre
E (%) CE

Baseline 76.7 62.7 77.2 0.62
Sum Rule 85.9 73.5 91.1 0.77
Max Rule 83.2 69.0 89.4 0.73
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CONCLUSIONS
In this paper, we analyzed current secondary structure
prediction methods and identified the combination prob-
lem for sequences: how to combine the predicted scores
or labels from a single or multiple systems with the
consideration of neighbors and long-distance interac-
tions. We studied previous work that uses window-based
combination methods and proposed to use powerful
graphical chain models to improve the combination. Our
experiments show that graphical models are consistently
better than the window-based methods. In particular,
CRFs improve the predictions for both helices and sheets,
while sheets benefitted the most.

Our goal is to evaluate different combination methods
and provide a deeper understanding of how to effectively
improve secondary structure prediction. Although our dis-
cussion is focused on combining predictions from a sin-
gle secondary structure prediction system, all the methods
discussed can be applied to combine results from differ-
ent systems and include other physico-chemical features.
Since each part in a secondary structure prediction system
is not independent (Figure 1), our future work would be to
consider all parts as a whole and build a hybrid system.
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