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ABSTRACT

Motivation: Protein secondary structure prediction is
an important step towards understanding how proteins
fold in three dimensions. Recent analysis by information
theory indicates that the correlation between neighboring
secondary structures are much stronger than that of
neighboring amino acids (Crooks & Brenner, 2004). In
this paper, we focus on the combination problem for
sequences, i.e. combining the scores or assignments from
single or multiple prediction systems under the constraint
of a whole sequence, as a target for improvement in
protein secondary structure prediction.

Results: We apply several graphical chain models to
solve the combination problem and show that they are
consistently more effective than the traditional window-
based methods. In particular, conditional random fields
(CRFs) improve moderately the predictions for helices and
more importantly, for beta sheets, which are the major
bottleneck for protein secondary structure prediction.
Contact: yanliu@cs.cmu.edu

INTRODUCTION

be used to predict the labels of secondary structures.
Divergent profiles of multiple sequence alignments and
a large variety of informative features have been used
(Rost & Sander, 1993; Jones, 1999). Next, a sequence-to-
structure mapping process ( [B] in Figure 1) outputs the
predicted scores for each structure type using the features
from [A] as input. Complex machine learning algorithms
have been applied, including neural networks (Rost &
Sander, 1993), recurrent neural networks (Pollatel.,
2002), Support Vector Machines (SVMs) (Hua & Sun,
2001) and Hidden Markov Models (HMMs) (Bystrodt

al., 2000). Then, the output scores from [B] are converted
to secondary structure labels. This involves considering
the influence of neighboring structures by structure-to-
structure mapping [C] and removing physically unlikely
conformations by a Jury system [D], also referred as
“filters” or “smoothers”. Some systems separate [C] and
[D] for explicit evaluation, while others keep them in
one unit (Rost & Sander, 1993; King & Sternberg,
1996). Finally, a consensus is formed by combining
predicted scores or labels from multiple independent
systems into a single labeled sequence. Several methods

Protein secondary structure prediction involves the projechave been applied to consensus formation, such as a
tion of primary sequences onto a string of secondary struccomplex combination of neural networks (Cuff & Barton,
ture assignments, such as helix, sheet or coil. It is widely2000), multivariate linear regression (Guermeatral,
believed that secondary structures can contribute valuabf999), decision trees (Selbigt al, 1999) and cascaded

information to discerning how proteins fold in three di-
mensions.

Protein secondary structure prediction has been exten-

sively studied for decades (Cuff & Barton, 1999; Rost,
2001). Recent improvements have been accomplished n
only by incorporating evolutionary information, but also

by combining the results of multiple independent predic-

tion methods into a consensus prediction (Rost, 2001).
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The architecture of a typical consensus prediction

system is outlined in Figure 1. First, profile generation
( [A] in Figure 1), or feature extraction, converts the

Fig. 1. The architecture of current secondary structure predictions
(adapted from (Rost & Sander, 1993))

primary protein sequences to a set of features that can
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multiple classifiers (Ouali & King, 2000). the correlations between labels, to include long-distance
While profile generation [A] and sequence-to-structureinteraction and to model the protein sequence as a whole.

mapping [B] have been studied extensively, the structure-

to-structure mapping and jury system [C, D] have not beeMATERIALS AND METHODS

explored in detail although they are commonly used ine formulate our combination problem as follows: given
various systems. Recent analysis by information theory protein sequenc® = 5. ..z, the raw output by
also indicates that the correlation between neighboring secondary structure prediction system is either a label
secondary structures are much stronger than that @(equenceL — I,0y...ly, or aN x 3 score matrix S
neighboring amino acids (Crooks & Brenner, 2004). Fro”\/\/here&j — S, (x;) is the score of residue; for class,

a machine learning perspective, both the jury systemy oy — {H,E,C}andi € {1,2,...,N}. Taking the

[C, D] and the consensus [E] can be formulated as thgredicted labeld. or score matrixS, we try to predict the
combination problem for sequencegven the predicted (e |abelY; Y. .. Yy.

scores or labels, how should we combine them into \ithout loss of generality, we assume that (1) the
the final labels, taking into account the dependencies Giredicted scores are non-negative and normalized; (2) for
neighbors and constraints of a single protein sequence? gne residuer;, the higher the scoré,;, the larger the

Note that the combination problem for sequences i$ropability that the residue; belongs to class.
distinct from another closely-related task: given the

predicted scores or labels from different systems for ondraditional Window-based Combination

residue, how can we combine them into the optimal la\nindow-Based Method for Label Combinatioffhe
bels? This task is a classical problem for machine learningtandard method for converting scores to predicted
known as an ensemble approach and many ensembi@condary structure labels is to assign the class with the
methods have been used for consensus formation. Thfighest score. After that, many systems employ rule-based
difference between our task and the ensemble problefethods to improve upon the first-pass assignment, i.e.
is that ensemble treats each residue as independent agé |abel combination for instance: Rost and Sander
does not consider the extra information from neighboringmanually define heuristic rules to remove helices with
structures or constraints of a single sequence. Thereforg |ength less than 3 and strands of length one (Rost &
our combination problem is more general and difficultsander, 1993; Salamov & Solovyev, 1995): King and
than a classical ensemble problem. Sternberg applied a decision tree algorithm to learn the
Previous methods for Jury and consensus use windowyles automatically with ten-fold cross-validation (King
based approaches, i.e. taking predicted scores or labegsSternberg, 1996).
from a sliding window and treating it as a classification predefined heuristic rules, without considering the prop-
problem (Rost & Sander, 1993; King & Sternberg, 1996;erties of the data, have not improved the accuracy consis-
Sollich & Krogh, 1996; Selbigt al, 1999; Cuff & Barton,  tently (Rost & Sander, 1993). In contrast, rules extracted
2000) (as shown in Figure 2). However, the window-basegutomatically by supervised classifiers not only can gener-
methods cannot capture long-distance interactions, whichte the rules to filter out physically unrealistic predictions,
are a hallmark of protein tertiary structures and knownput also can reduce the inductive biases from the particu-
to influence the formulation and stability of secondaryl|ar learning algorithm that the system used for prediction,
structures. Therefore we propose to use graphical chaisuch as neural networks and SVMs (Wolpert, 1992).
models for the combination since they are able to consider The window-based label combination works as follows:
given the labels predicted by a systéty . . . [, and the

Input Sequence: .. RCGEQGSNMECPNNLCCSQY GY CGMGGDY . window sizew, letd = (w — 1)/2 be the half of the

Predicted Labels:.  ..CCEHHHCCECCHHHCEECCCCCEECCHHHH.. window size. The input features for residue are the
predicted labels within the window, i.e. (I;_4,1; 4.1,
. yliva—1,lirq) (@null label is assigned if the label does
not exist). Then a rule-based classifier, such as decision

Window-Based Szl Sy tree or CART (Rost & Sander, 1993), can be applied. The
Method (MEMMs, CRFs) window sizew is a parameter with which we can tune
® ® the trade-off between including useful information and

CCEHHHCCECCHHHH lCCEHHHCCECCHHHCEECCCCCEECCHHHHl eXCIUdmg noisy” more remote features.

Window-Based Method for Score Combinatioim
Fig. 2. Comparison of combination methods for protein secondarycurrent s_ecqndary structure predlctlon systerseore
structure predictions combinationis used widely. Window-based score com-

bination works similar to label combination except:




(1) the input features for residue; are scores instead bination. To the best of our knowledge, this approach has
of labels, i.e. (Sg(x;_q),Se(xi_q),Sc(zi_4),..., not been studied in previous protein secondary structure
S (xiva), Se(xiva), Sc(xiva)); (2) powerful classi- prediction literature and is the primary focus of our paper.

fiers, such as neural networks akeNearest-Neighbor, i .
are used instead of rule-based classifiers. Maximum Entropy Markov ModelsAs shown in Figure

Empirically, score combination has demonstrated moré:B, Maximum Entropy Markov Models (MEMMSs) re-

improvement in accuracy than label combination since th@@ce the generative joint probability>(x, v;|y; 1)) pa-
score S, (z,) indicates the confidence of the prediction rameterization in HMMs with the conditional probabilities
J (]

that residuer; belong to clasg and thus contains more £ (¥:|¢i-1,X) based on an exponential model(McCallum
information than a single label (Rost & Sander, 1993:€tal, 2000):

Salamov & Solovyev, 1995; Jones, 1999; Gebpal,
2004). On the other hand, we can expect that applying
label combination after score combination will hardly
change the final predictions since the information fromwhereZ (y;_1,x) is @ normalizing factor. The exponential
labels has been implicitly encoded in the scores (Rosmodels, derived by maximum entropy, are able to handle
& Sander, 1993). Both window-based label combinatiorarbitrary, non-independent featurgf including long-
and score combination have the disadvantages of onlgistance interactions. The model parametgr i.e. the

1
P(yilyi—1,%) = 2 X

exp (Z Akfk(x7yi7yi—1))7 (1)
k

considering the local information. weight for feature f;, is learned via maximizing the
) o conditional likelihood of the training dafe], P(y,|x:).
Graphical Models for Score Combination Despite the differences between HMMs and MEMMs,

Simple graphical chain models, such as Hidden Markovhere is still an efficient dynamic programming solution to
models (HMMs), have been successfully applied to secthe problem of identifying the most likely state sequence
ondary structure prediction (Bystragf al., 2000; Karplus givenan observation. Compared to HMMs, McCallwn
et al, 1998). HMMs are generative models, which assumel. (2000) redefined; () to be the probability of being in
that the data are generated by a particular model. Thes#atey at time: given the observation sequence up to time
models work by computing the joint distribution of obser- <. Then the recursive step is
vationsx and statey, P(x,y) and make predictions by . )
using Bayes rules to calculaf&(y|x). Two kinds of prob- aipa(y) = Y aey') P(yly, wiva). @
ability distributions are defined in HMMs: (1) the transi- v'ey
tion probabilitiesP (y;|y;—1) and (2) the observation prob- similarly, 3;(y) is redefined to be the probability of
abilities P(x;|y;). By the independence assumptions, i.e.starting from statey at time i given the observation
p(ily:) = p(x;lyi,yi-1), we have the joint probabil- sequence after timieand the recursive step is
structure of HMMs is shown in Figure 3-A). Biy) =D Py i) Bina(y).

Although successfully applied to many sequence data i
problems, HMMs are not appropriate for our combination ]
task. First, it is difficult to include overlapping long-range Given the observatiom,z, ... zy, we can compute (a)
features due to the independence assumption. Secorifié marginal mode of the optimal labélé, ... [y by
generative _models such as HMMs, work_ well only when l; = arg max|a;(y) 3 (y)],
the underlying assumptions are appropriate. On the other yey
hand, discriminative models do not make any assumptiong
and compute the posterior probability directly. Recently,
the ’?“a.Ch".‘e learning community has proposed SEVEIt summation (see (Rabiner, 1989) for detail).
discriminative models for sequence data, such as Maxi-
mum Entropy Markov Models (MEMMs) (McCallurat

al., 2000) and Conditional Random fields (CRFs) (Laf-

ferty et al, 2001). They have been successfully applied G| (GG |G
to many applications, including information retrieval and

computer vision, and achieved significant improvement & & W & 6|6 & &
over HMMs (McCallum , 2003). Compared with window- @ ® ©
based methods, these graphical models are able to take

into c9n5|dera_t|on the. correlations between labels angig_ 3. Graphical structures of simple HMM(A), MEMM(B), and
long-distance information. Therefore we propose to US€ 4in-structured CRF(C)

the discriminative graphical chain models for score com-

r (b) MAP estimate by using Viterbi algorithm as defined
in eq(2) except for using a maximization operation in place




For score combination, we define two kinds of featuresPseudo State Duration Markov Model$ligher-order
one is the score feature Markov Models provide a solution to circumvent the
- Si(@i) if yi=j state independencg assumptions. _Howeve(, the number
[ (@ y) = {0 of new states||2| is an exponential function of the

otherwise. . .

order K. As K grows large, the computational costs will
and the other is the transition feature become intractable. To solve the problem, we devise
trans Plyilyi-1) if yi=Jyia=k a heuristic method which is able to encompass more
F<iis (@i, yi yim) = 0 otherwise, (3 history information with the same computational cost as

. one-order Markov Models, namely pseudo state duration
wherej, k € Y = {H, E,C}. P(y;|yi-1) can be learned  markov Models (PSMEMMS).

from the training data: Our heuristics are based on the observation that the
, # of occurences y'y distribution of the segment length varies for different
Pyly') = structures, as shown in Table 1-(I) (only segments less

# of occurences y’ :
4 than 20 residues are shown). From the graph, we can see

We notice that for MEMMs the transition information is ¢ different segment lengths are preferred by different

already encoded implicitly in the Viterbi process. Sincegycyres. For example, around 25% of beta-strands have
MEMMs have the advantage of allowing as many featureg,y one residue, which are in fact beta-bridges; there are
as possible without decreasing the performance, we alsQqq shorB,-helices with 3 or 4 residues.

treat f*"*"* as explicit features in case they might help. 14 incorporate such kind of information, we define
Higher-order Markov Models As shown in Figure £ (yly',N) as the probability that the current stateyis

3-B, MEMMs have first-order Markov assumption, i.e. 9iven the recent history oV consecutivey’. P(y[y’, N)
P(yis1|y:) = P(yis1 |y yi_1). The effectis two fold: on 1S learned from the training data in the following way:

one hand, it simplifies the model and dramatically reduces N

the computational cost; on the other hand, this assumption _ —

is clearly inappropriate for secondary structure prediction, P(yly’,N) = # of occurences Yvy-.-y y.
where the structure dependencies extend over several # of occurences y'y'y’ ...y’

residues and even involve long-distance interaction:sThe distribution  of P

To solve this problem, higher-order Markov Models . .
. . P(E|E,N), P(E|H,N) for N < 20 is plotted in Table

(HOMEMMS) can be applied (Rabiner, 1989). ) s X . .

For simplicity, we only consider second-order Markov 1-(I1, 1) respectively (we assume there is no direct transi-

Models, in which the next state depends upon the twc.1>i0n from H to E, or from E to H). Data sparsity problems

previous states (Figure 4-B). The second-order Marko&mght occur when grows larger. It can be addressed by

Models can be transformed to an equivalent first-orde?mA(I)IOTthh'gg ;Tgeé?i?ﬁ;’:uacg das dl_e?iali?igi:maorgthls?r%ilar as
Markov MOd?' by redefining the stafg as MEMMs except that the transition feature is:
Y; = <y7;,y7;_1> cY xY = Q.

(H|E,N), P(H|H,N) and

P(yilyi-1,N) if yi=jyi1=k

In secondary structure prediction the set of new stat@s is f2 %% (z;, y;, v;_1) = {0 i
otherwsise,

j k
= [HC, HE, HH, EC, EE, EH, CC, CE, CH We notice
that the number of states grows exponentially. where N can be back-traced from the maximization

The_z score featu_re is t_he same as discussed above and mgtories in the dynamic programming process.
transition feature is defined as follows:
P(Gildir) = P((s, i) (Wi, vi—2)) = P(yilyior, yi_s). Conditional Random Fields In addition to Markov as-
4  sumption, MEMMs also suffer from the problem known as
thelabel biasproblem. In short, thé&abel biasmeans that

' the total probability “received” by;_; must be passed on
) ‘ ; b to labelsy; at time: even ifz; is completely incompatible
(=G —~(—~0) with y;_, (see (Laffertyet al, 2001) for full discussion).
é é 65 é é é Conditional Random Fields (CRFs) proposed by Lafferty
et al., are a globally normalized extension to MEMMSs that
®*) ® avoid the label bias problem (Laffergt al., 2001).
CRFs areundirectedgraphical models (also known as
Fig. 4. Graphical structures of MEMM(A) and Second-Order random fieldy and calculate the conditional likelihood

MEMM(B) P(y|x)'directly. .The.graphical structure for chain-form
CRFs is shown in Figure 3-C. By Hammersely-Clifford




Table 1.(1) The distribution of the segment length for different structures; (Il) The transition probability of helices; (l1I) The transition probability of beta-sheet
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theorem (Hammersley & Clifford, 1971) and using models; the effectiveness and computational costs will be
exponential model, the conditional probabili(y|x) is  further discovered in our experiments.

defined as
Table 2. Summary of the Graphical Models

1 N
P(y|x) = —ex i—1,Yiy X)), 5
(yIx) Zo p(;;fk(y 10 X)) ®) 1st-order Label  Flexibility of  Global
Markov Bias Features Optimum

Similar to MEMMs, f,, can be arbitrary features and
the weight),, is learned via maximizing the conditional HMMs + + - -
likelihood of the training data. MEMMs + - + -

Comparing eq(5) with eq(1) in MEMM, the only ﬁgmgmms - - + -
difference between the two is: MEMMs take a local ", S N N i N

normalization Z, while CRFs are global. This enables
CRFs to have convex optimization function so that the

global optimal solutions are guaranteed (Laffeetyal.,

2001). However, it is not straightforward for CRFs to Materials

find the optimum quickly. Very recently, the quasi-Newton | our experiments, we used the CB513 dataset by Cuff
methods are shown to be significantly more efficient tharg, Barton (Cuff & Barton, 1999), which many previous
other methods (McCallum , 2003). S papers reported results on (Hua & Sun, 2001; Kim &

As in MEMMSs, the “forward valuea;(y) is defined  park, 2003; Gueet al, 2004). It consists of 513 non-
as the probability of being in statg at time ¢ given  homologous protein chains which have an SD score,
the observation up to timéand 3;(y) is the probability je. z score for comparison of the native sequences
of starting from state, at time giventhe observation given by (V — 7)/o, of less than 5 (Cuff & Barton,

sequence after time The recursive step is: 1999). The dataset can be downloaded from the web
http://barton.ebi.ac.uk/.

a1 (y) = Z a;(y') eXp(Z MNefi(y %, 04 1)), We followed the DSSP definition for protein secondary

v k structure assignment (Kabsch & Sander, 1983). The

o / . _ definition is based on hydrogen bonding patterns and
ily) = Z eXp(Z At (9% 04 1) B (y)- geometrical constraints. Based on the discussion by Cuff
vey F & Barton (1999), the 8 DSSP labels are reduced to a 3

The forward-backward and Viterbi algorithms can beState model as follows: H & G to Helix (H), E & B to

derived accordingly. The features for score combinatioroN€ets (E), all other states to Cail (C).
are the same as defined for MEMMs. All the combination methods discussed above can be

applied to combine predictions from single or multiple
Summary Table 2 summarizes the properties of thesystems. To provide accurate evaluation, we choose to
graphical models discussed above. We can see that alse outputs from a single system to distinguish the
the models except HMMs have the flexibility of including improvement from considering correlations of labels and
anyfeature and therefore are good for score combinationong-distance interactions with the improvement from the
However, this only indicates the general power of theoverlapping information by different systems.




For protein secondary structure prediction, the statemaximum scoré/’(x;) for residuer;, as shown in Figure
of-art performance is achieved by window-base methods. From the plot, we can see that the probability that the
using the PSI-BLAST profiles (Jones, 1999). In ourdifferencesD are close to 0 is very high. The cases falling
experiments, we apply a linear transformatibnto the into the green areal{(|D| < 0.1) covers around 5% of
PSSM matrix elements according to the total residues, which demonstrates that there is still

room for improvement by score combination.

0 if (v < —5)
L(z)=qLlx)=3+& if (-5<x<5), Comparison of Combination Strategies
L(z) =1 otherwise. To fairly evaluate the effectiveness of different methods,

. : we use the same input, i.e. the score matrix S generated
This is the same transform used by (Kim & Park, 2003)from SVMs with RSF kernels using the PSI-%LAST

In th_e _recent CASP.(C”“C"’.‘I Asseg sment of Strucwreproﬁles. For the window-based combination, we use the

Predictions) competition, which achieved one of the besd . laorith 4 inl 1 for label

results for protein secondary structure prediction. The ecision tree algorithm c '.5 (Quinian, 1993) for labe

window size is set to 13 by cross-validation ' combination and SVMs with RBF kernels for score
y ' combination. The window size is set to 15.

various measures are used 1o e\_/aluate the IDreOIICtlonTable3lists the results of the window-based methads.
accuracy, including overall per-residue accuracy;)

Matthew’s correlation coefficients per structure typee Generally speaking, the window-based score combination im-
(Cy,Ce,Cr) and segment of overlap (SOV) (Rastal., proved the prediction more than the label combination. This
1994:; Zemlaet al, 1999), and the per-residue accuracy confirms our expectation since the scores contain more infor-
for each type of secondary structur€4,Qr,Qc: mation than a single label.

117;_67_ : r ,Qc") (see (Hua & Sun, 2001) for deta”e_d e The label combination resulted in maximum improvement
definition). Seven-fold cross-validation was used, which  for predicting helices rather than other structures. King and
is the same setting as in (Rost & Sander, 1993; Hua & Sternberg reported a similar observation and showed that the
Sun, 2001). extracted rules are most relevant to helices (King & Sternberg,

1996).

RESULTS e The prediction accuracy has increased for both helices and
Score Distribution sheets by score combination.

One of the assumptions for why combination methods |n terms of the graphical models for score combination,
work is that the score contains more information thanye examined the four methods discussed before. To
a single label. If two scoresS;(z;) and Si(z;) for  fajrly compare with window-based methods, only two
residuez; are very close, then combining them with the \inds of features are used for the prediction: the score
information from neighbors might help the final prediction featuresf*c°"* and the transition featurgé *"*, although
adjust to the correct label by overriding the small scorgye pelieve incorporating other features will improve the
difference. From information theory aspect, we try to usepredictions more. For higher-order MEMMs, we choose
combination methods for error-correction. _ the second-order MEMMs as representative. To get the
Therefore we studied the distribution of the dlfferencesoptimumAk in MEMMSs and CRFs, the conjugate gradient
between the maximum scoré/(z;) and the second ga|gorithm was applied (the code can be downloaded from
http://www.cs.toronto.edw/buescher/). Table 4 shows the
o S — results of the four graphical models for score combination:

e Generally speaking, the graphical models for score combination
are consistently better than the window-based approaches,
especially in SOV measure.

For the MEMMSs, the prediction accuracy using Viterbi algo-
1 rithm is better than using marginal mode. Itis interesting to note
that the opposite is true for CRFs.

P(D)
[ ]

e Compared with MEMMs, HOMEMMs and PSMEMMSs were

_ L somewhat improved in SOV measure since these methods

e et ae consider more history information. However, there is little dif-
ference in performance between HOMEMMs and PSMEMMs.

Fig. 5. The distribution of the differences between Max Score and
Second Max Score fThe results for window-based score combination using SVMs are slightly
better than the results reported in (Getaal, 2004) on the same dataset.




Table 3. Results of protein secondary structure prediction on CB513 dataset using window-based combination methods

Combination ~ SOV(%) Q3(%) Qu(%) Qc(%) Qr(%) Q% (%) 77 (%) B%) Cu Cc Cg
Method

None 75.6 76.7 78.0 83.2 62.7 83.6 72.1 77.2 0.71 0.58 0.62
Dtree 75.7 76.7 78.0 83.2 62.8 83.7 72.1 77.1 0.72 058 0.62
SVM 75.7 76.9 81.4 76.7 70.5 82.1 75.2 72.2 0.72 0.58 0.63

Table 4. Results on CB513 dataset using different combination strategies. MENIRF: p refers to different way to compute the labels= 1: marginal
model;p = 2: Viterbi algorithm

Combination ~ SOV(%) Qa(%) Qu(%) Qc(%) Qe Q4 (%) QUK Q¥ Cu Cc Cg
Method

None 75.6 76.7 78.0 83.2 62.7 83.6 72.1 77.2 0.71 0.58 0.62
MEMM ! 75.6 76.7 77.8 83.6 62.1 83.7 71.8 77.8 0.71 058 0.62
MEMM 2 76.0 76.8 78.2 83.4 62.2 83.7 72.0 78.0 0.71 0.58 0.62
HOMEMMSs? 76.1 76.9 78.3 83.4 62.4 83.6 72.1 77.9 0.71 059 0.62
PSMMEMMSs? 76.1 76.9 78.3 83.3 62.2 83.6 72.0 78.0 0.71 058 0.62
CRF 76.2 77.0 78.3 83.4 63.4 83.7 72.1 78.0 0.72 0.58 0.63

This might indicate that higher-order MEMMs will hardly add performance to a certain extent. However, what is the best
more value than second-order MEMMs.

e CRFs perform the best among the four graphical models.

performance we can get by combining the predictions?

iAnswering those questions will involve much deeper anal-

exhibits moderate improvements for predicting helices andYSIS and_more thoroggh eXpe”me_nf[s' However,_we can get
especially sheets. Global optimization and removing label biagt rough idea of the limits by providing the location of the
seem to help since these are the only differences betweelfU€ segment boundaries.

MEMMs and CRFs.

. . . e
Table 5 summarizes our discussion above and prowde&1aX
a qualitative estimation of computational costs as well a3um

the performance for each method.

Two simple strategies have been used: the max rule,
assigning the labelj with the maximum score

i.; 9;(z;) to all residues within the segment, and the
rule, i.e. assigning the lalgewith the maximum sum

of scoresmax;[) . S;(z;)] to all the residues within the

Table 5. Summary of computational costs and effectiveness for differentS€gMent. Since no method can prediCt the segment with
combination strategies. H/L/M: high/low/medium computational costs; perfect accuracy, these results can be seen as an upper
+/—: improvement/no improvement over the baseline results withouthgund by using PSI-BLAST profiles. From the results,

combination
Train  Test | Helices Sheets Coil Segment
DTree M L + - - —
SVM H H + + - -
MEMMs H L — - - +
HOMEMMs H L - - - +
PSMEMMs H L - - — +
CRFs H L + + - +

Combination Bounds Using PSI-BLAST Profiles

We discussed several combination strategies using graph-
ical models and our experiments demonstrate that those

we can see that even given the true segment assignments,
we are still far from reaching an accuracy of 90% using
current PSI-BLAST profile features. Ideal solution would
be to incorporate other informative non-local features, by
which the graphical models can gain more improvements.

Table 6.Results of combination given the location of each structure segment
on CB513 dataset by seven-fold cross-validation

Combination Method  Q3(%) Q%) QL (%) Cg
Baseline 76.7 62.7 77.2 0.62
Sum Rule 85.9 73.5 91.1 0.77
Max Rule 83.2 69.0 89.4 0.73

methods can improve the secondary structure prediction




CONCLUSIONS Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary

In thi | d ¢ d truct structure: pattern recognition of hydrogen-bonded and geometri-
n IS paper, we analyzed current seconaary structure cal featuresBiopolymers22, 2577-2637.

prediction methods and identified the combination probyarpius K., Barrett,C. and Hughey,R. (1998) Hidden Markov mod-
lem for sequences: how to combine the predicted scores els for detecting remote protein homologiBginformatics, 14,

or labels from a single or multiple systems with the 846-856.

consideration of neighbors and long-distance interackim,H. and Par.k,H. (2003) Protein secondary structure prediction
tions. We studied previous work that uses window-based Pased onanimproved support vector machines appréaotein
combination methods and proposed to use powerfu]l< Eng, 16, 553-560.

hical chai | . h . ing,R.D. and Sternberg,M.J. (1996) Identification and application
graphical chain models to improve the combination. Our of the concepts important for accurate and reliable protein

experiments show that graphical models are consistently secondary structure predictioProtein Sci, 5, 2298-2310.

better than the window-based methods. In particularkrogh,A. and Sollich,P. (1997) Statistical mechanics of ensemble

CRFs improve the predictions for both helices and sheets, learning.Physical Review E55, 811-825.

while sheets benefitted the most. Lafferty,J., Pereira,F. and McCallum,A. (2001) Conditionalrandom
Our goal is to evaluate different combination methods fields: Probaplllstlc models for segmenting and Ia}bel|ngsequence

. . . data.International Conference on MachineLearning.

f"md provide a deeper underStand_mg of how to eﬁeCtIV?IX/IcCaIIum,A., Freitag,D. and Pereira,F. (2000) Maximum entropy

improve secondary structure prediction. Although our dis-  \jarkov models for information extraction and segmentation.

cussion is focused on combining predictions from a sin- |nternational Conference on Machine Learning (ICML'00)

gle secondary structure prediction system, all the methodgcCallum,A. (2003) Efficiently inducing features of conditional

discussed can be applied to combine results from differ- random fieldsNineteenth Conference on Uncertainty in Artifi-

ent systems and include other physico-chemical features, ¢ial Intelligence (UAI'03)

. . I uali,M. and King,R.D. (2000) Cascaded multiple classifiers for
Since each partina secondary structure predlctlon syste% secondary structure predictidrotein Sci, 9, 1162-1176.

is no'F independent (Figure 1), ourfut.ure Work_woulOI be Opollastri,G., Przybylski,D., Rost,B. and Baldi,P. (2002) Improving
consider all parts as a whole and build a hybrid system.  the prediction of protein secondary structure in three and eight
classes using recurrent neural networks and profitesteins,
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Quinlan,J.R. (1993) C4.5: Programs for machine learnvgr-
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