
A New Boosting Algorithm Using Input-Dependent Regularizer

Rong Jin rong+@cs.cmu.edu
Yan Liu yanliu@cs.cmu.edu
Luo Si lsi@cs.cmu.edu
Jaime Carbonell jgc@cs.cmu.edu
Alexander G. Hauptmann alex+@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-8213, USA

Abstract

AdaBoost has proved to be an effective
method to improve the performance of base
classifiers both theoretically and empirically.
However, previous studies have shown that
AdaBoost might suffer from the overfitting
problem, especially for noisy data. In ad-
dition, most current work on boosting as-
sumes that the combination weights are fixed
constants and therefore does not take par-
ticular input patterns into consideration. In
this paper, we present a new boosting algo-
rithm, “WeightBoost”, which tries to solve
these two problems by introducing an input-
dependent regularization factor to the com-
bination weight. Similarly to AdaBoost, we
derive a learning procedure for WeightBoost,
which is guaranteed to minimize training er-
rors. Empirical studies on eight different UCI
data sets and one text categorization data
set show that WeightBoost almost always
achieves a considerably better classification
accuracy than AdaBoost. Furthermore, ex-
periments on data with artificially controlled
noise indicate that the WeightBoost is more
robust to noise than AdaBoost.

1. Introduction

As a generally effective algorithm to create a “strong”
classifier out of a weak classifier, boosting has gained
popularity recently. Boosting works by repeatedly
running the weak classifier on various training exam-
ples sampled from the original training pool, and com-
bining the base classifiers produced by the week learner
into a single composite classifier. AdaBoost has been
theoretically proved and empirically shown to be an ef-
fective method to improve the classification accuracy.
Through the particular weight updating procedure,

AdaBoost is able to focus on those data points that
have been misclassified in previous training iterations
and therefore minimizes the training errors.

Since AdaBoost is a greedy algorithm and intention-
ally focuses on the minimization of training errors,
there have been many studies on the issues of over-
fitting for AdaBoost (Quinlan, 1996; Grove & Schuur-
mans, 1998; Ratsch et al., 1998). The general conclu-
sion from early studies appears to be that in practice
AdaBoost seldom overfits the training data; namely,
even though the AdaBoost algorithm greedily mini-
mizes the training errors via gradient decent, the test-
ing error usually goes down accordingly. Recent stud-
ies have implied that this phenomena might be related
to the fact that the greedy search procedure used in
AdaBoost is able to implicitly maximize the classifi-
cation margin (Onoda et al., 1998; Friedman et al.,
1998). However, other studies (Opitz & Macline, 1999;
Jiang, 2000; Ratsch et al., 2000; Grove & Schuur-
mans, 1998; Dietterich, 2000) have shown that Ad-
aBoost might have the problem of overfitting, partic-
ularly when the data are noisy.

In fact, noise in the data can be introduced by two
factors, either the mislabelled data or the limitation
of the hypothesis space of the base classifier. When
noise level is high, there could be some data pat-
terns that are difficult for the classifiers to capture.
Therefore, the boosting algorithm is forced to focus
on those noisy data patterns and thereby distort the
optimal decision boundary. As a result, the decision
boundary will only be suitable for those difficult data
patterns and not necessarily general enough for other
data. The overfitting problem can also be analyzed
from the viewpoint of generalized error bound (Ratsch
et al., 2000). As discussed in (Ratsch et al., 2000), the
margin maximized by AdaBoost is actually a “hard
margin”, namely the smallest margin of those noisy
data patterns. As a consequence, the margin of the

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

other data points may decrease significantly when we
maximize the “hard margin” and thus force the gen-
eralized error bound (Schapire, 1999) to increase.

In order to deal with the overfitting problems in Ad-
aboost, several strategies have been proposed, such as
smoothing (Schapire & Singer, 1998), Gentle Boost
(J. Friedman & Tibshirani, 1998), BrownBoost (Fre-
und, 2001), Weight Decay (Ratsch et al., 1998) and
regularized AdaBoost (Ratsch et al., 2000). The main
ideas of these methods can be summarized into two
groups: one is changing the cost function such as in-
troducing regularization factors into the cost function;
the other is introducing a soft margin. The problem
of overfitting for AdaBoost may be related to the ex-
ponential cost function, which makes the weights of
the noisy data grow exponentially and leads to the
overemphasis of those data patterns. The solution
to this issue can be, either to introduce a different
cost function, such as a logistic regression function
in (Friedman et al., 1998), or to regularize the ex-
ponential cost function with a penalty term such as
the weight decay method used in (Ratsch et al., 1998),
or to introduce a different weighting function, such as
BrownBoost (Freund, 2001). A more general solution
is to replace the “hard margin” in AdaBoost with a
“soft margin”. Similar to the strategy used in support
vector machine (SVM) algorithm (Cortes & Vapnik,
1995), the boosting algorithm with a soft margin is
able to allow a larger margin at the expenses of some
misclassification errors. This idea leads to works such
as the regularized boosting algorithms using both lin-
ear programming and quadratic programming (Ratsch
et al., 1999).

However, there is another problem with AdaBoost that
has been overlooked in previous studies. The Ad-
aBoost algorithm employs a linear combination strat-
egy, that is, combining different base classifiers with
a set of constants. As illustrated in previous studies,
one advantage of the ensemble approach over a sin-
gle model is that, an ensemble approach allows each
sub-model to cover a different aspect of the data set.
By combining them together, we are able to explain
the whole data set thoroughly. Therefore, in order to
take full strength of each submodel, a good combi-
nation strategy should be able to examine the input
pattern and invoke the sub-models that are only ap-
propriate for the input pattern. For example, in the
Hierarchical Mixture Expert model (Jordan & Jacobs,
1994), the sub-models are organized into a tree struc-
ture, with leaf nodes acting as experts and internal
nodes as “gates”. Those internal nodes examine the
patterns of the input data and route them to the most
appropriate leaf nodes for classification. Therefore,

for linear combination models, it seems more desir-
able to have those weighting factors dependent on the
input patterns, namely given larger values if the associ-
ated submodel is appropriate for the input pattern and
smaller value otherwise. Unfortunately, previous work
on additive models for boosting almost all assumes the
combination weights as fixed constants, and therefore
is not able to take the input patterns into account.

In order to solve the two problems pointed out above,
i.e. overfitting and constant combination weights for
all input examples, we propose a new boosting algo-
rithm that combines the base classifiers using a set
of input-dependent weighting factors. This new ap-
proach is able to alleviate the second problem because
by those input-dependent weight factors, we are able
to force each submodel to focus on what it is good at.
Meanwhile, we can show that those input-dependent
factors can also alleviate the overfitting problem sub-
stantially. The reason is summarized as follows: in the
common practice of boosting, a set of “weak” classi-
fiers are combined with fixed constants. Therefore, for
noisy data patterns, the error will accumulate through
the sum and the weights of distribution will grow expo-
nentially. In our work, we intentionally set the weight-
ing factors of “weak classifiers” to be inverse to the
previously accumulated weights, therefore we are able
to significantly discount the weights of noisy data and
alleviate the problem of overfitting.

The rest of the paper is arranged as follows: in Sec-
tion 2 we discuss the related work on other boosting
algorithms. The full description of our algorithm is
presented in Section 3. The empirical study of our
new algorithm versus the AdaBoost algorithm is de-
scribed in Section 4. Finally, we draw conclusions and
discuss future work.

2. Related Work

Since the AdaBoost algorithm is a greedy algorithm
and intentionally focuses on minimizing the training
errors, there have been many studies on the issue of
overfitting for AdaBoost algorithm. However, most
of the modification algorithms are unsuccessful either
due to the high computational cost or lack of strong
empirical results of improvement. One of the most
successful algorithms is the Weight Decay method.

The basic idea of Weight Decay method can be de-
scribed as follows: in analogy to weight decay in neural
network, Ratsch et al. define ζt

i = (
∑t

t=1 αtht(xi))
2
,

where the inner sum ζt
i is the cumulative weight of the

pattern in the previous iterations. Similar to the Sup-
port Vector Machines(Vapnik, 1995), they add ζt

i into

the cost function as the “slack variables”. The new
cost function becomes:

εt =
1
N

(
N∑

i=1

esign(−H(xi)yi)−Cζt
i),

where C is a constant. Using this error function, we
can control the tradeoff between the weights of training
examples, that is, it will not change much for easy clas-
sifiable data points, but will change a lot for difficult
patterns. Weight Decay method has proved to achieve
some improvement over the AdaBoost algorithm.

3. Description of Algorithm

3.1. Brief Review of AdaBoost Algorithm

In order to introduce our new boosting algorithm, we
will first visit the proof of AdaBoost briefly, which has
direct impact on the derivation of the new algorithm.
The particular derivation that we shown basically fol-
lows the paper by Friedman et al (Friedman et al.,
1998).

In Adaboost, we construct a new classifier H(x) by the
linear combination of the base classifier h(x), i.e.

H(x) =
T∑

t=1

αtht(x) = HT−1(x) + αT hT (x) (1)

where αt is the linear combination coefficients for the
tth basic classifier ht(x), and HT−1(x) is defined as∑T−1

t=1 αtht(x).

In order to obtain the optimal base classifiers
{hT (x)} and linear combination coefficients {αT },
we need to minimize the training error. For bi-
nary classification problems, assume that the value
of class label takes either 1 or -1, and the train-
ing error for the classifier H(x) can be written as
err =

∑N
i=1 sign(−H(xi)yi)/N . For the simplic-

ity of computation, people usually use the exponen-
tial cost function as the objective function, namely∑N

i=1 e−H(xi)yi/N . Apparently, the exponential cost
function upper bounds the training error err.

To minimize the exponential cost function, we use the
inductive form for H(x) in eq1 and rewrite the upper
bound function for the training error as:

err ≤ 1
N

N∑

i=1

e−HT (xi)yi

=
1
N

N∑

i=1

{e−HT−1(xi)yieαT I(hT (xi), yi)

+e−HT−1(xi)yie−αT I(−hT (xi), yi)},

where function I is defined as:

I(x1, x2) = { 1 if x1 = x2

0 if x1 6= x2
.

By setting the derivative of the equation above with
respect to αT to be zero, we have the expression as
follows:

αT =
1
2

ln(
∑N

i=1 e−HT−1(xi)yiI(hT (xi), yi)∑N
i=1 e−HT−1(xi)yiI(−hT (xi), yi)

)

Meanwhile, to minimize eq1, the classifier hT (x) needs
to be optimized with respect to the following data dis-
tribution:

WT
i =

e−HT−1(xi)yi

∑N
j=1 e−HT−1(xj)yj

. (2)

With the expression of data distribution WT
i , the lin-

ear combination coefficient αT can be rewritten as

αT =
1
2

ln(
∑N

i=1 WT
i I(hT (xi), yi)∑N

i=1 WT
i I(−hT (xi), yi)

) =
1
2

ln(
1− εT

εT
)

(3)
where εT stands for the weighted error rate under the
weight distribution W t for the base classifier hT (x) in
iteration T.

In summary, the minimization of training error is ac-
complished through this stepwise optimization. In
each iteration, we train a new base classifier according
to the data distribution in eq2, and combine it with
previous classifiers using the weight described in eq3.

3.2. New Boosting Algorithm: WeightBoost

The overfitting problem of AdaBoost can be implied
by the weight updating function in eq2. For each it-
eration, the weight for the ith data point is propor-
tional to the function e−HT−1(xi)yi . As we can see,
HT−1(x) is a linear combination of all the base clas-
sifiers obtained from iteration 1 to iteration T − 1. If
there are some noisy data patterns that are difficult to
be classified correctly by the base classifier, the value
of −HT−1(xi)yi for those data points will accumulate
linearly and thus the corresponding weights can grow
exponentially. Therefore, the particular sampling pro-
cedure within the AdaBoost algorithm will overem-
phasize the noisy training data points and may lead
to a complex decision boundary that is not well gener-
alized. In this subsection, we present a new boost-
ing algorithm, which combine base classifiers using
input-dependent weighting factors instead of fixed co-
efficients. We will first discuss a special form of this
idea since it is a more intuitive way to solve overfitting
problems and then develop a more general form.

Since the overfitting problem is caused by the accu-
mulation of errors within the function HT−1(x), one
way to avoid this is to modify the expression form for
HT−1(x). Instead of multiplying each base classifier
with a simple constant αt, we can make the combina-
tion coefficients to be input dependent, i.e.

HT (x) =
T∑

t=1

αte
−|βHt−1(x)|ht(x). (4)

Compared with eq1, the above expression replaces the
weighting constant αt with αte

−|βHt−1(x)|. More inter-
estingly, it can be shown easily that, under the condi-
tion that the weighting coefficients αt is bounded by
some fixed constant αmax, the value of HT (x) in eq
4 will increase at most by the logarithmic degree with
respect to the number of iteration T . More specifically,
we have HT (x) bounded by the following expression:

HT (x) ≤ 1
β

ln(βαmaxeβαmax(T − 1) + eβH1(x))

(detailed proof can be found in our later paper).
Therefore, the weight of each data pattern will grow
at most polynomial with the number of iterations and
as a result, the problem of overemphasizing noisy data
patterns in AdaBoost can be alleviated substantially.

As pointed out before, another problem with Ad-
aBoost algorithm is that, by combining the base classi-
fiers with fixed constants, the opinion of each classifier
will always be weighted with the same number no mat-
ter what input patterns are. According to AdaBoost,
each base classifier ht(x) is trained intentionally on the
data patterns that are either misclassified or weakly
classified by previous classifiers Ht−1(x). Therefore,
every base classifier ht(x) should be appropriate only
for a subset of input patterns. However, in the predic-
tion phase, the opinion of the base classifier ht(x) will
always be weighted by the same number αt no matter
what the test examples are. On the contrary, in the
new form of HT (x) in eq 4, the introduction of the
“instance dependent factor” e−|βHt−1(x)| in the com-
bination coefficients offers us a way to make tradeoff
between the opinion of the base classifier ht(x) and
that of the previously built meta-classifier Ht−1(x).
The value of Ht−1(x) indicates its confidence on clas-
sifying the instance x, so the factor e−|βHt−1(x)| can
be interpreted as to consider the opinion of ht(x) se-
riously only when previous classifiers Ht−1(x) is not
confident about its decision. In this way, the intro-
duction of “input-dependent factor” makes the base
classifier ht(x) to be consistent between the training
phase and the prediction phase, namely ht(x) is used
for prediction on the particular type of input patterns
that it has been trained on.

The factor β within the “input-dependent factor”
e−|βHT−1(x)| is used to control to what extent the opin-
ion of HT−1(x) should be considered seriously. When
β is set to be zero, the combination coefficient goes
back to the simple form αt and the combination form
(in eq4) simply becomes eq1. In this sense, AdaBoost
can be treated as a special case of eq4. When β goes to
infinity, the effect of the base classifier ht(x) is almost
ignored and only the opinion of HT−1(x) is dominant.

Next, we need to obtain a learning procedure that is
able to minimize the exponential cost function with the
new combination form for HT (x). Following similar
procedures for deriving AdaBoost algorithm as we did
in previous subsection, we can get:

HT (x) =
T−1∑

i=1

αte
−|βHt−1(x)|ht(x) + αT e−|βHT−1(x)|hT (x)

= HT−1(x) + αT e−|βHT−1(x)|hT (x)

With this new inductive form for HT (x), we will have
the upper bound function for the training error as

err ≤ 1
N

N∑

i=1

e−HT (xi)yi

=
1
N

N∑

i=1

e−HT−1(xi)yie−αT e−|βHT−1(xi)|hT (xi)yi

=
1
N

N∑

i=1

{e−HT−1(xi)yie−αT e−|βHT−1(xi)|
I(hT (xi), yi)

+e−HT−1(xi)yieαT e−|βHT−1(xi)|
I(−hT (xi), yi)}.

(5)

Since e−|βHT−1(x)| is between 0 and 1, we can have
exp(αT e−|βHT−1(x)|) up bounded by the following ex-
pression:

exp(αT e−|βHT−1(x)|) ≤ 1 + (eαT − 1)e−|βHT−1(x)|.

Similarly,

exp(−αT e−|βHT−1(x)|) ≤ 1 + (e−αT − 1)e−|βHT−1(x)|.

Then, eq5 can be rewritten as:

err ≤ 1
N

N∑

i=1

{e−HT−1(xi)yie−αT e−|βHT−1(xi)|
I(hT (xi), yi)

+e−HT−1(xi)yieαT e−|βHT−1(xi)|
I(−hT (xi), yi)}

≤ 1
N

N∑

i=1

{e−HT−1(xi)yie−αT e−|βHT−1(xi)|I(hT (xi), yi)

+e−HT−1(xi)yieαT e−|βHT−1(xi)|I(−hT (xi), yi)}

+
1
N

N∑

i=1

e−HT−1(xi)yi(1− e−|βHT−1(xi)|).

(6)

Similar to the derivation stated in previous subsection,
we set the derivative of eq6 with respect to αT to be
zero, which leads to the expression form for αT as:

αT =
1
2

ln(
∑N

i=1 e−HT−1(xi)yie−|βHT−1(xi)|I(hT (xi), yi)∑N
i=1 e−HT−1(xi)yie−|βHT−1(xi)|I(−hT (xi), yi)

).

By defining the updating functions WT
i as

WT
i =

e−HT−1(xi)yi−|βHT−1(xi)|
∑N

j=1 e−HT−1(xj)yj−|βHT−1(xj)|
, (7)

we will get the exact same expression for αT as in eq3,
i.e.

αT =
1
2

ln(
∑N

i=1 WT
i I(hT (xi), yi)∑N

i=1 WT
i I(−hT (xi), yi)

) =
1
2

ln(
1− εT

εT
),

(8)
where εT stands for the weighted error for the classifier
hT (x) in the Tth training iteration.

In summary, the procedures for WeightBoost algo-
rithm is similar to that of AdaBoost. For each train-
ing iteration, we update the weight of each data point
using eq7, then train a new base classifier with the
weighted training data and finally combine the new
base classifier with the previous ones with the weight
expressed in eq8.

Compared with AdaBoost algorithm, the only differ-
ence is the weight updating function, which is defined
in eq7. In the original AdaBoost algorithm, the weight
for instance xi is proportional to e(−HT−1(xi)yi), and
therefore only instances that are misclassified by the
previously obtained classifier HT−1(xi) will be empha-
sized in the next round of training. As indicated in
eq7, in the new boosting algorithm, the weight for in-
stance xi is proportional to e−HT−1(xj)yj−|βHT−1(xj)|.
With this additional term | βHT−1(xj) | within the
exponential function, not only the data points misclas-
sified by classifier HT−1(x), but also the data points
close to the decision boundary of classifier HT−1 will
be emphasized in the next training round. Therefore,
the modified weight updating function in eq7 is able to
achieve the tradeoff between the goal of minimizing the
training errors and the goal of maximizing the classi-
fication margin. This is similar to the concept of min-
imizing classification risk in Support Vector Machine
(SVM)(Cortes & Vapnik, 1995; Vapnik, 1995) and reg-
ularized boosting algorithm (Ratsch et al., 2000). Fur-
thermore, by adjusting the constant β, we are able to
control the balance between two different goals.

3.3. More General Solution

In eq4, we restrict ourselves to the specific combina-
tion form by using term e−|HT−1(xi)| as the ”input-
dependent regularizer”. In fact, the derivation of the
learning algorithm in previous section is applicable to
any regularization function as long as it is bounded
between 0 and some fixed non-negative constant. Let
f(x) stand for the chosen regularizer. Then HT (x) is
written as:

HT (x) =
T∑

t=1

αtf(x)ht(x). (9)

Assume that the value of function f(x) is between
0 and fmax, by defining α′t = αfmax and g(x) =
f(x)/fmax, we have HT (x) rewritten as:

HT (x) =
T∑

t=1

α′tg(x)ht(x). (10)

Since the function g(x) is bound between 0 and 1,
which is same as e−|βHT (x)|, all the results derived
in previous section will be correct for function g(x).
Thus, for regularization function f(x), the updating
function becomes

WT
i =

e−HT−1(xi)yif(xi)/fmax∑N
j=1 e−HT−1(xj)yj f(xi)/fmax

(11)

and the weighting coefficient αT is

αT =
fmax

2
ln(

1− εT

εT
). (12)

One problem with simply using e−|βHT−1(xj)| as
the ”input-dependent regularizer” is that, the value
of this function may become too small if the
value of | βHT−1(xj) | is large. This may dis-
count the opinion of the base classifier hT (x) too
much. One solution would be replacing the function
e−|βHT−1(xj)| with e−|βHT−1(xj)|/CT . In our experi-
ments, we set CT as the normalization factor, which is∑

i e−|βHT−1(xj)|/0.1N .

3.4. Comparison to the Weight Decay Method

The weight updating function in eq7 is somewhat sim-
ilar to the one obtained via the weight decay method.
However, there are two significant differences between
these two methods:

1) Instead of modifying the objective function, we
modify the combination form by introducing an input-
dependent regularizer for each weighting coefficient.

Therefore, unlike the weight decay method, where the
regularization is achieved by introducing a penalty
term in the objective function, the regularization of
WeightBoost is realized by the input-dependent regu-
larizer.

2) Similar to other boosting algorithms, the weight de-
cay method combines different base classifiers with a
set of input independent weights. In WeightBoost al-
gorithm, the weighting coefficients depend on the in-
put patterns, which has the advantage of being able to
direct testing instances to the appropriate base classi-
fiers according to their input patterns.

4. Empirical Validation

As discussed before, there are two problems that
our algorithm tries to solve: overfitting and constant
weight combination. In previous section, we have dis-
cussed how WeightBoost can tackle these two prob-
lems theoretically. Next we will examine empirically
whether our algorithm performs better than others.

Table 1. Description of Data sets

Collection Name Instances Num Attributes Num

Ionosphere 351 341
German 1000 20

Pima Indians Diabetes 768 8
Breast Cancer 268 9

wpbc 198 30
wdbc 569 30

Contraceptive 1473 10
Spambase 4601 58

4.1. Standard Evaluation

In this subsection, we examine the general effective-
ness of WeightBoost algorithm by comparing it with
AdaBoost and the Weight Decay method. Eight data
sets from the UCI repository (Blake & Merz, 1998)
and a benchmark of text categorization evaluation –
the ApteMod version of Reuters-21578 corpus are used
as testbeds. All of UCI data sets are binary classifica-
tion problems and the detailed information is listed in
Table 1. Reuters-21578 corpus consists of a training
set of 7,769 documents and a test set of 3,019 docu-
ments with 90 categories each of which has at least
one occurrence in both sets. The number of categories
per document is 1.3 on average. In order to deal with
the multiple classes, we decompose the multiple-class
classification into a set of binary classification prob-
lems using the standard one-against-all approach.

The base classifier we used in our experiment is deci-
sion tree C4.5(Quinlan, 1993), which is commonly used

for evaluating boosting algorithm in previous stud-
ies(Schapire, 1999; Quinlan, 1996). For all UCI data
sets, we set the maximum training iteration to be 100
as Freund did in their experiments(Freund & Schapire,
1996) and reported the results via averaged 10-fold
cross validation. The parameter β in WeightBoost al-
gorithm is set to be 0.5 for all the data sets.

Table 2. Classification errors for the WeightBoost, Ad-
aBoost and Weight Decay

Collection

Name

C4.5 AdaBoost Weight

Decay

ε-Boost Weight

Boost

Ionosphere 9.1% 6.8% 5.7% 6.8% 6.2%
German 26.9% 26.3% 26.7% 24.7% 24.7%
Pima-

Indians-

Diabetes

25.2% 24.7% 25.1% 23.9% 22.6%

Breast

Cancer

5.4% 4.5% 3.7% 3.2% 3.3%

wpbc 28.8% 26.3% 21.1% 21.1% 19.9%
wdbc 6.1% 3.5% 3.0% 3.7% 3.0%
Contra-

ceptive

31.5% 31% 29.8% 30.4% 27.6%

Spambase 7.2% 5.8% 4.9% 4.5% 4.2%

The error rate of the new boosting algorithm, Ad-
aBoost and Weight Decay method on the eight UCI
collections are listed in Table 2. From the table, we can
see: first, WeightBoost is able to achieve lower classi-
fication errors than AdaBoost on all of the eight data
sets and than Weight Decay on six out of eight. Sec-
ondly, for data sets such as “German”, “Pima-indian-
diabetes” and “Contraceptive”, the classification er-
rors of AdaBoost and Weight Decay are almost iden-
tical to the baseline results while our new boosting al-
gorithm is able to lower the error rate significantly. To
further see if the improvements come from the input
dependent regularizer or simply due to the regular-
ization on the value of H(x), we compare the Weight-
Boost to the ε-Boost, which is introduced by Friedman
(Friedman et al., 1998). In this method, each weak
classifier is given with a small weights and therefore
the value of the combined classifier will usually not
very large. The fourth column of Table 1 shows the
results of ε-Boost. Again, the proposed boosting al-
gorithm outperforms the ε-Boost in seven out of eight
data sets. Based on the above observations, the intro-
duction of input-dependent regularizer does help im-
prove the effectiveness of the boosting algorithm.

To further demonstrate the effectiveness of Weight-
Boost, we test our method and AdaBoost on Reuters-
21578 corpus, a benchmark in recent text categoriza-
tion evaluations. We pre-processed the documents, in-
cluding down-casing, tokenization, removal of punctu-
ation and stop words, stemming, and the supervised

feature selection using χ2 max criterion, i.e. the max-
imum of χ2 over the 90 categories by cross-validation
and the resulting vocabulary is 2,000. Document vec-
tors based on these feature sets were computed us-
ing the SMART ltc version of TF-IDF term weighting.
This gives term t in document d a weight of:

wd(t) = (1 + log2 n(t, d))× log2(|D|/n(t)), (13)

where n(t) is the number of documents that contain
t. For the evaluation metric, we used a common effec-
tiveness measure, F1, defined to be: F1 = 2rp

r+p , where
p refers to the precision and r represents recall. We
tune the number of training iteration and reported the
best results (the corresponding iteration is 25 and 10
respectively for WeightBoost and AdaBoost).

Table 4.1 shows the results of C4.5, AdaBoost and
WeightBoost on the ten most common categories of
the Reuters corpus in terms of F1 measurement and
improvement over the baseline. It can be seen from
the results that WeightBoost outperforms AdaBoost
in seven out of the ten most common categories. For
some categories, such as “crude” and “wheat”, Weight-
Boost got impressive improvement over the baseline
even though AdaBoost tends to overfit for those cases.

Table 3. Classification Results of AdaBoost and Weight-
Boost on Reuters21578 corpus

C4.5 AdaBoost WeightBoost
Category F1 F1 Impro F1 Impro

Trade .5897 .6634 12.5% .6949 17.8%
Grain .9030 .8814 -2.4% .8966 -0.7%
Crude .8223 .8204 -0.2% .8587 4.4%
Corn .8740 .8926 2.1% .9091 4.0%
Ship .7283 .7853 7.8% .7273 -0.1%

Wheat .8800 .8767 -0.4% .9128 3.7%
Acq .8915 .9344 4.8% .9243 3.7%

Interest .6224 .6747 8.4% .6352 2.1%
Money-fx .6477 .6805 5.1% .7041 8.7%

Earn .9564 .9698 1.4% .9707 1.5%

4.2. Robustness to Noise

In this subsection, we study the robustness of our new
boosting algorithm by introducing noise to the data.
Generally speaking, there are many kinds of noise in
the real application. For our experiments, we choose
the labelling noise as the main focus since it can be
controlled easily. We randomly select part of training
examples and change their label to the opposite ones
while leaving the other examples the same as before.
In this way, we got UCI data sets with 10%, 20% and
30% noise and did the same experiments as the one in
previous subsection.

Fig 1 show the comparison results of AdaBoost and
WeightBoost on the eight UCI data sets with 10%
noise. From the results we can see that AdaBoost algo-
rithm did suffer from overfitting on some of the data
sets, such as “German”, “Breast-cancer” and “Con-
traceptive”, while WeightBoost consistently achieved
improvement on all of the eight data sets. In addition,
our new algorithm demonstrates great robustness to
noise. For example, in “wdpc” data set, WeightBoost
got almost the same results for data with 10% noise
(3.5% in Table 4.1) compared with the results without
noise (3.1% in Table 2). Table 4.1 lists detailed results
with different percentage of noise and we can observe
similar patterns as discussed above.

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

Data Sets

E
rr

or
 R

at
e

C4.5
AdaBoost
WeightBoost

Figure 1. Classification Errors with 10% Noise

5. Conclusion and Future Work

In this paper, we presented a new boosting algorithm
with a different combination form from most previ-
ous works on boosting. By introducing an ”input-
dependent regularizer”, we managed to route the test-
ing examples to the appropriate base classifiers and at
the same time solve overfitting problems . Further-
more, with the parameter β, we are able to balance
the goal of minimizing training errors and the goal
of maximizing margin. The new algorithm is able to
outperform the AdaBoost algorithm on almost eight
different UCI data sets and a text categorization data
set. Furthermore, we demonstrate that the new al-
gorithm is much more robust to the label noise than
AdaBoost.

Future work involves in doing experiments with differ-
ent “input-dependent regularizers”. Since the expo-
nential function may drop too rapidly, “slower” func-
tions such as the inverse of polynomials could be better

Table 4. Classification Errors of AdaBoost and WeightBoost on UCI data sets with Introducing Noise (WB = Weight-
Boost)

10% Noise 20% Noise 30% Noise
C4.5 AdaBoost WB C4.5 AdaBoost WB C4.5 AdaBoost WB

Ionosphere 14.50% 12.00% 8.50% 17.70% 16.80 % 11.10% 26.50% 24.20% 19.90%
German 28.30% 30.70% 25.70% 35.10% 32.90% 30.50% 42.80% 40.20% 35.80%
Pima 26.00% 25.00% 24.80% 27.80% 26.00% 24.90% 31.30% 30.00% 26.20%

Breast-cancer 5.90% 5.90% 3.50% 5.90% 5.90% 4.10% 10.30% 10.80% 4.70%
wpbc 27.30% 25.30% 24.20% 35.40% 38.00% 27.30% 31.30% 38.60% 34.10%
wdpc 7.40% 6.70% 3.90% 7.00% 7.00% 5.30% 14.20% 14.20% 7.70%

Contraceptive 31.00% 31.50% 29.30% 33.90% 33.90% 30.30% 36.20% 39.70% 34.50%
Spambase 10.00% 9.60% 5.80% 11.10% 11.10% 7.00% 13.30% 13.30% 8.90%

candidates. Moreover, more investigation is needed to
discover how to automatically determine the value of
β, which plays an important role in balancing the goal
of minimizing the training error and that of maximiz-
ing margin.

Acknowledgement

This work is partial supported by NSF under Agree-
ment No. IRI-9817496, the NSF National Science,
Mathematics, Engineering, and Technology Education
Digital Library Program under grant DUE-0085834,
and by the ARDA under Contract No. MDA908-00-
C-0037. This work is also funded in part by the NSF
under their KDI program, Award No. SBR-9873009.

References

Blake, C., & Merz, C. (1998). UCI repository of machine
learning databases.

Cortes, C., & Vapnik, V. (1995). Support vector networks.
Machine Learning, 20, 273–297.

Dietterich, T. G. (2000). An experimental comparison
of three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization. Machine
Learning, 40, 139–157.

Freund, Y. (2001). An adaptive version of the boost by
majority algorithm. Machine Learning, 43, 293–318.

Freund, Y., & Schapire, R. E. (1996). Experiments with
a new boosting algorithm. International Conference on
Machine Learning (pp. 148–156).

Friedman, J., Hastie, T., & Tibshirani, R. (1998). Additive
logistic regression: a statistical view of boosting. Dept.
of Statistics, Stanford University Technical Report.

Grove, A. J., & Schuurmans, D. (1998). Boosting in the
limit: Maximizing the margin of learned ensembles. Pro-
ceedings of the Fifteenth National ConferenceonArtificial
Intelligence (pp. 692–699).

J. Friedman, T. H., & Tibshirani, R. (1998). Additive lo-
gistic regression: a statistical view of boosting. Technical
Report, Department of Statistics, Stanford University.

Jiang, W. (2000). Does boosting overfit: views from an
exact solution. Technical Report 00-04, Department of
Statistics, Northwestern University.

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mix-
tures of experts and the EM algorithm. Neural Compu-
tation, 6, 181–214.

Onoda, T., Ratsch, G., & Muller, K. (1998). An asymptotic
analysis of adaboost in the binary classification case.
Proceeding of the International Conference on Artificial
Neural Networks.

Opitz, D., & Macline, R. (1999). Popular ensemble meth-
ods: An empirical study. Journal of AI Research (pp.
169–198).

Quinlan, J. R. (1993). C4.5: Programs for machine learn-
ing. Morgan Kaufmann.

Quinlan, J. R. (1996). Bagging, boosting, and c4.5. Pro-
ceedings of the Thirteenth National Conference on Arti-
fitial Intelligence on Machine Learning, 322–330.

Ratsch, G., Onoda, T., & Muller, K. (1999). Regularizing
adaboost. Advances in Neutral Information Processing
Systems 11.

Ratsch, G., Onoda, T., & Muller, K. (2000). Soft margins
for adaboost. Machine Learning, 42, 287–320.

Ratsch, G., Onoda, T., & Muller, K. R. (1998). An im-
provement of adaboost to avoid overfitting. Proc. of the
Int. Conf. on Neural Information Processing (pp. 506–
509).

Schapire, R. E. (1999). Theoretical views of boosting
and applications. Proc. Tenth International Conference
on Algorithmic Learning Theory (pp. 13–25). Springer-
Verlag.

Schapire, R. E., & Singer, Y. (1998). Improved boosting
algorithms using confidence-rated predictions. Compu-
tational Learing Theory (pp. 80–91).

Vapnik, V. (1995). The nature of statistical learning theory.
New York: Springer-Verlag.

