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Statistical inference 101

To estimate unknown parameter θ ∈ Rp:

yi = x>i θ + εi , i = 1, . . . , n

classical setting: p fixed small, n→∞, lots of results.

modern setting:

p ∼ 107, n ∼ 103 p ∼ 1010, n ∼ 108
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High-dimensional challenge

More unknown parameters than observations, ill-defined.
I structure: effective number of unknown parameters is moderate.

F θ is sparse: nnz(θ) small, but do not know which is which.
F θ as a matrix is low-rank, but do not know the column/row spaces.

Extremely large scale, takes forever to run.
I first order grad alg: scales (sub)linearly with problem size.

Ideally, want algorithm to exploit structure for faster convergence.
I open the blackbox.

I contributions of this thesis lie in.
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Regularized loss minimization

Generic form for many ML problems:

min
w∈Rp

`(w) + f (w), where

` is the loss/-likelihood function, usually smooth;

f is the regularizer, usually nondifferentiable;
I structure inducing

Special interest:

sparsity (structure);

computational efficiency.
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The LASSO (Tibshirani’96)

min
w∈Rp

‖Aw − b‖2

︸ ︷︷ ︸
`(w)

+λ‖w‖1︸ ︷︷ ︸
f (w)

.

Multiple benefits

interpretability;

complexity control;

storage saving;

perfect recovery;

etc.

Computationally?

convex quadratic program

but P 6= E !

especially when p is large.
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Nonsmooth optimization

Generic subgradient descent:

w t+1 = w t − η[∇`(w t) + ∂f (w t)]

guaranteed convergence, O(1/ε2);

dense iterates;
w∗

weak regularizing effect;

and slow, very slow... Naum Zuselevich Shor
(1937–2006)

Second order methods (e.g. IPM) do not scale.
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Moreau envelope and proximal map

Definition (Moreau’65)

Mη
f (y) = min

w
1

2η‖w − y‖2 + f (w)

Pηf (y) = argmin
w

1
2η‖w − y‖2 + f (w)
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Jean Jacques Moreau, 1923–2014
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Some properties of the proximal map

For f (w) = ιC (w) :=

{
0, w ∈ C

∞, otherwise
,

I Pη
f (·) is the usual Euclidean projection onto C ;

I Mη
f (·) is the (squared) distance function;

I Both well-defined as long as C is closed.

For f convex (and closed),
I Pη

f (·) is a nonexpansion: ‖Pη
f (x)− Pη

f (y)‖ ≤ ‖x − y‖;
I Mη

f (·) is continuously differentiable;
I η ↓ 0 =⇒ Mη

f ↑ f .

For general f (that decreases not too fast),
I Pη

f (·) is a nonempty compact set;
I Mη

f (·) is continuous;
I Still η ↓ 0 =⇒ Mη

f ↑ f .

Y-L. Yu Fast gradient algs for structured sparsity June 05, 2015 10 / 60



Proximal gradient (Fukushima & Mine’81)

min
w∈Rm

`(w) + f (w), where ` ∈ C1.

1 y t = w t − η∇`(w t); (forward)

2 w t+1 = Pηf (y t). (backward)

For f = ‖ · ‖1, obtain the shrinkage operator

[Pη‖·‖1
(y)]i = sign(yi )(|yi | − η)+.

much faster, O(1/ε), can be accelerated;

generalization of projected gradient: f = ιC ;

reveals the sparsity-inducing property.

Refs: Combettes & Wajs’05; Beck & Teboulle’09; Duchi & Singer’09; Nesterov’13; etc.
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The good old days
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Modern significance & rediscovery

Donoho & Johnstone (90s), wavelet shrinkage;

Starck, Donoho, and Candès (2003), astronomical image
representation;

Figueiredo & Nowak (2003), image restoration;

Daubechies, Defrise, and De Mol (2004), inverse problem.

Many many more...
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However...

Step 2: Pηf (y) = argmin
w

1
2η ‖y −w‖2 + f (w)
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Structured sparsity: group

Group level sparse regularizer

f (w) =
∑

i

‖w‖gi .

For Pf , when groups are

non-overlapping: decouple;

tree structured: decompose;

arbitrary?

w1 w2 w3 w4

w1w2 w2w3 w3w4

w1w3 w2w4

w1w4

Refs: Bakin’99; Yuan & Lin’06; Zhao et al.’09; etc.
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Structured sparsity: graph

Neighborhood sparse regularizer

f (w) =
∑

{i ,j}∈E

|wi − wj |.

For Pf , when graph is

a chain: DP;

arbitrary?

vector valued?

Refs: Tibshirani et al.’05; Kim et al.’09; Kim & Xing’09; Hoefling’10; etc.
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Structured sparsity: matrix

Matrix completion:

min
X∈Rm×n

∑

(i ,j)∈O

(Xij − Zij)
2

︸ ︷︷ ︸
`(X )

+λ‖X‖tr︸ ︷︷ ︸
f (X )

.

Can apply PG:

Pηλ‖·‖tr(Y ) =
∑

k

(σk−λη)+ukv>k .

Require full SVD in each step.

Refs: Candès & Recht’09; Cai et al.’10; Pong et al.’10; Toh & Yun’10; Ma et al.’11; etc.
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Learned so far

Proximal gradient is simple, efficient, and structure-friendly.
I easily parallelizable, can randomize, can block-wise.

But backward step (proximal map) not always easy/cheap.
I decompose;
I approximate;
I bypass proximal gradient;

Constant theme: exploit the structure of your problem!
I statistically;
I and computationally.
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How to decompose?

Typical structured sparse regularizers:

f (w) =
∑

i

fi (w);

I Also applies to ERM, each i is a sample.

Key observation: each Pfi
is easy to compute.

Can we compute Pf = P∑
i fi

efficiently?

Theorem (Folklore)

Pf +g = (P−1
2f + P−1

2g )−1 ◦ (2Id).

Not directly useful;

Can numerically reduce to Pf and Pg (Combettes et al.’11);

But a two-loop routine can be as slow as subgradient (Villa et al.’13).
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Two previous results

‖w‖TV =

p∑

i=1

|wi − wi+1| .

Theorem (Friedman et al.’07)

P‖·‖1+‖·‖TV
= P‖·‖1

◦ P‖·‖TV
.

Theorem (Jenatton et al.’11)

P∑k
i=1 ‖·‖gi

= P‖·‖g1
◦ · · · ◦ P‖·‖gk

.

Generalization

Pf +g
?
= Pf ◦ Pg

?
= Pg ◦ Pf .

But, is it even sensible?
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Good news and bad news

Theorem

On the real line, ∃h such that Ph = Pf ◦ Pg .

Example (But not so in general...)

Consider R2, and let f = ι{x1=x2}, g = ι{x2=0}.

x1

x2

f = ι{x1=x2}

g = ι{x2=0}
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Nevertheless

Can ask the decomposition to hold for many but not all cases.

Setting the subdifferential to 0:

Pf +g (z)− z + ∂(f + g)(Pf +g (z)) 3 0

Pg (z)− z + ∂g(Pg (z)) 3 0

Pf (Pg (z))− Pg (z) + ∂f (Pf (Pg (z))) 3 0.

Adding the last two equations we obtain

Pf (Pg (z))− z + ∂g(Pg (z)) + ∂f (Pf (Pg (z))) 3 0.

Theorem (Y’13a)

A sufficient condition for Pf +g (z) = Pf

(
Pg (z)

)
is

∀ y ∈ dom g , ∂g(Pf (y)) ⊇ ∂g(y).
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The rest is easy

Find f and g that clinch our sufficient condition.
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Result I: Start with “trivialities”

Theorem (Y’13a)

Fix f ∈ Γ0. Pf +g = Pf ◦ Pg for all g ∈ Γ0 if and only if

dim(H) ≥ 2; f ≡ c or f = ι{w} + c for some c ∈ R and w ∈ H;

dim(H) = 1 and f = ιC + c for some closed and convex set C and
c ∈ R.

Asymmetry.

Theorem (Y’13a)

Fix g ∈ Γ0. Pf +g = Pf ◦ Pg for all f ∈ Γ0 if and only if g is a continuous
affine function.
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Result II: Positive homogeneity and “roundness”

Theorem (Y’13a)

Let f ∈ Γ0. The following are equivalent (provided dim(H) ≥ 2):

i). f = h(‖·‖) for some increasing function h : R+ → R ∪ {∞};
ii). x ⊥ y =⇒ f (x + y) ≥ f (y);

iii). For all z ∈ H, Pf (z) = λz · z for some λz ∈ [0, 1];

iv). 0 ∈ dom f and Pf +κ = Pf ◦ Pκ for all p.h. functions κ ∈ Γ0.

Include and generalize many results;

Connects to the representer theorem in kernel methods (YCSS’13).
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More implications

Example (Elastic net, Zou & Hastie’05)

Pλ‖·‖2
2+κ = Pλ‖·‖2

2
◦ Pκ = 1

λ+1 Pκ double shrinkage

Example (Jenatton et al.’11)

Tree-structured (laminar system)

P∑
i ‖·‖gi

= P‖·‖g1
◦ · · · ◦ P‖·‖gk

.
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Characterizing the ball

0

C
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Result III: Comonotonicity and Choquet integral

Initially case by case for many polyhedral regularizers.

Theorem (Y’13a)

Let f be permutation invariant and g be the
Choquet integral of some submodular set function.

Pf +g = Pf ◦ Pg .

Example (Friedman et al.’07)

P‖·‖1+‖·‖TV
= P‖·‖1

◦ P‖·‖TV
.

‖ · ‖1: permutation invariant;

‖ · ‖TV: Choquet integral of something.

Gustave Choquet
(1915–2006)

“Always consider a problem under the minimum structure in which it makes sense.”
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Summary

Posed the question: Pf +g
?
= Pf ◦ Pg

?
= Pg ◦ Pf ;

Presented a sufficient condition: ∂g(Pf (y)) ⊇ ∂g(y);

“Trivial” case;

Positive homogeneity and “roundness”;

Comonotonicity and Choquet integral;

Immediately useful if plugged into PG;

What if the sufficient condition fails?
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More generally

Recall: typical structured sparse regularizers: f̄ =
∑

i αi fi

Pηfi easy to compute;

fi Lipschitz continuous.

Example (Overlapping group lasso, Zhao et al.’09)

fi (w) = ‖w‖gi where gi is a group (subset) of variables.

When the groups overlap arbitrarily, Pη
f̄

cannot be easily computed;

Each fi is 1-Lipschitz continuous w.r.t. ‖ · ‖;
The proximal map Pηfi is simply a re-scaling:

[Pηfi (w)]j =

{
wj , j 6∈ gi

(1− η/‖w‖gi )+wj , j ∈ gi
.
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Example cont’

Example (Graph-guided fused lasso, Kim & Xing’09)

Given some graph, we let fij(w) = |wi − wj | for every edge {i , j}.
For a general graph, the proximal map of the regularizer
f̄ =

∑
{i ,j}∈E αij fij can not be easily computed;

Each fij is 1-Lipschitz continuous w.r.t. the Euclidean norm;

The proximal map Pηfij is easy to compute:

[Pηfij (w)]s =

{
ws , s 6∈ {i , j}
ws − sign(wi − wj) min{η, |wi − wj |/2}, s ∈ {i , j}

.

Other examples abound.
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Smoothing (Nesterov’05)

Mη
f (y) = min

w
1

2η‖w − y‖2 + f (w)

Pηf (y) = argmin
w

1
2η‖w − y‖2 + f (w)
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Proposition (Nesterov’05)

If f is L-Lipschitz continuous, then 0 ≤ f −Mη
f ≤ ηL2/2.
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In retrospect

Suppose want: min
w∈C

`(w).

Same for large λ > 0: min
w
`(w) + λ · dist(w ,C )

dist(w ,C ) := minz∈C ‖w − z‖, nonsmooth but Lipschitz continuous.

Can smooth dist and apply gradient descent.

But nobody does that, overkill.

Can just use projected gradient.

Y-L. Yu Fast gradient algs for structured sparsity June 05, 2015 35 / 60



A “naive” idea (Y’13b)

f̄ =
∑

i

αi fi

⇓ as if have linearity?

Pη
f̄

≈
∑

i

αiP
η
fi

Definition (Proximal Average, Moreau’65; Bauschke et al.’08)

There exists a unique function Aη such that PηAη =
∑

i αiP
η
fi

.
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What mathematicians call a “picture”

Γ0 3 fi Mη
fi
∈ SS1/η

Γ0 3 Aη
∑
i αiM

η
fi
∈ SS1/η

PηAη
∑
i αiP

η
fi

onto

1-1

convex

∇ ∇

Not so easy to compute Aη, but existence is enough.
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The algorithm

Dream Reality

1 z t = w t −µ∇`(w t)

2 w t+1 = Pη
f̄
(z t)

⇓

min
w
`(w) + f̄ (w)

1 z t = w t − µ∇`(w t)

2 w t+1 = PηAη(z t) =
∑

i αiP
η
fi

(z t)

⇓

min
w
`(w) + Aη(w)

When are they close?
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Nonsmooth approximation

How good the proximal average Aη approximates f̄ ?

Proposition (Uniform lower approximation)

Assuming fi is Mi -Lipschitz continuous, and M :=
∑

i αiM
2
i , then

0 ≤ f̄ − Aη ≤ ηM2/2.

Proximal average is a tighter approximation than smoothing:

∑

i

αiM
η
fi
≤ Aη ≤ f̄ .
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An example

Example

Consider f1(x) = |x |, and f2(x) = max{x , 0}.
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The proximal average is smooth iff some fi is;

Essentially we de-smooth Nesterov’s approximation.
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Convergence guarantee

Theorem (Y’13b)

Using a suitable step size, we get an ε-accurate solution in at most
O(
√

max{L0, L2/(2ε)}
√

1/ε) steps.

Improves Nesterov’s complexity O(
√
L0+L2/(2ε)

√
1/ε) by removing

secondary term;

No overhead, same assumption, strict improvement;

Simple update rule.

S-PG: w t+1 =
ηL0

1 + ηL0

[
w t −

1

L0
∇`(w t)

]
+

1

1 + ηL0

∑

i

αiP
η
fi

(w t),

PA-PG: w t+1 =
∑

i

αiP
η
fi

(w t − η∇`(w t)).
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Experiment
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Summary

Linear approximation of the proximal map;

Improved convergence guarantee;

Retain nonsmoothness (to some extent);

How to combine regularizers?
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Conditional gradient (Frank-Wolfe’56)

min
w∈C

`(w)

C : compact convex;

`: smooth convex.

1 y t ∈ argmin
w∈C

〈w ,∇`(w t)〉;

2 w t+1 = (1− η)w t + ηy t .

Gained much recent attention due to

its simplicity;

the greedy nature in step 1.

Refs: Zhang’03; Clarkson’10; Hazan’08; Jaggi-Sulovsky’10; etc.
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An example

min
a,b

a2 + (b + 1)2, s.t. |a| ≤ 1, 2 ≥ b ≥ 0

Can show `(w t)− `(w?) = 4/t + o(1/t).

PG converges in two iterations.

Refs: (Levtin-Polyak’66; Polyak’87; Beck-Teboulle’04) for faster rates.
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The revival of CG: sparsity!

The revived popularity of conditional gradient is due to (Clarkson’10;
Shalev-Shwartz-Srebro-Zhang’10), both focusing on

min
w : ‖w‖1≤1

`(w).

1 y t ← argmin
‖y‖1≤1

〈y ,∇`(w t)〉, card(y t) = 1;

2 w t+1 ← (1− η)w t + ηy t , card(w t+1) ≤ card(w t) + 1.

Explicit control of the sparsity.

Later on, (Hazan’08; Jaggi-Sulovsky’10) generalized the idea to SDPs.
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Generalized conditional gradient

min
w

`(w) + λ · f (w)

composite, with a nonsmooth term;

unconstrained, hence unbounded domain;

first studied by Mine & Fukushima’81 and then Bredies et al.’09;

generalizes CG.

1 y t ∈ argmin
w

〈w ,∇`(w t)〉+ f (w);

2 w t+1 = (1− η)w t + ηy t .

Our interest:

f p.h. (e.g., a norm);

Step 1 undefined.
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Positive homogeneous regularizer

min
w

`(w) + λ · κ(w)

`: smooth convex;

κ: positive homogeneous convex—gauge (not necessarily smooth).

Challenges:

composite, with a nonsmooth term;

unconstrained, hence unbounded domain;

κ expensive to evaluate.

1 Polar operator: y t ∈ argmin
w :κ(w)≤1

〈w ,∇`(w t)〉;

2 line search: st ∈ argmin
s≥0

`((1− η)w t + ηsy t) + ληs;

3 w t+1 = (1− η)w t + ηsty t .
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Convergence guarantee

min
w

`(w) + λ · κ(w)

Theorem (ZYS’12)

If ` and κ have bounded level sets and ` ∈ C 1, then GCG converges at
rate O(1/t), where the constant is independent of λ.

Proof is simple: Line search is as good as knowing κ(w?);

Upper bound

κ((1− η)w t + ηsy t) ≤ (1− η)κ(w t) + ηκ(sy t) ≤ (1− η)κ(w t) + ηs;

Still too slow!
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Local improvement

Assume some procedure (say Local) that can locally solve

min
w
`(w) + λ · κ(w),

or some variation of it.

Combine Local with some Global?

Three conditions:

Local cannot incur big overhead;

cannot ruin Global;

easy to switch between Local and Global.

Refs: Burer-Monteiro’05; Mishra et al.’11; Laue’12
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Case study: matrix completion with trace norm

Global: min
X

∑
(i ,j)∈O

(Xij − Zij)
2 + λ · ‖X‖tr

The only nontrivial step in GCG:

Polar operator: Yt ∈ argmin
‖Y ‖tr≤1

〈Y ,Gt〉, dominating singular vectors.

In contrast, PG requires the full SVD of −Gt .

Local (Srebro’05): min
B,W

∑
(i ,j)∈O

((BW )ij − Zij)
2 + λ/2 · (‖B‖2

F + ‖W ‖2
F ).

Not jointly convex in B and W ;

But smooth in B and W ;

Yt in GCG is rank-1 hence Xt = BW is of rank at most t.
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Case study: experiment
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Summary

Generalized conditional gradient for p.h. regularizer;

O(1/t) convergence rate;

Combined Local with GCG ;

Applied to matrix completion.
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Prox-decomposition and isotonicity

Hölder’s inequality: 〈x , y〉 ≤ ‖x‖r‖y‖s , r ≥ 1, 1/r + 1/s = 1

Ky Fan’s norm ‖x‖k,r := r

√∑k
i=1 |x |r(i).

〈x , y〉 ≤ ‖x‖k,r ·???, i.e., dual norm ‖y‖◦k,r := max
‖x‖k,r≤1

〈x , y〉 = ?

First shown in (Mudholkar et al, 1984).

Theorem (YYX’15)

For any r ≥ 1 and 1/r + 1/s = 1, the dual Ky Fan norm ‖y‖◦k,r = ‖z‖s ,
where z := PK(m) = argmin

w1≥w2≥···≥wk

1
2‖m −w‖2

2 and

mi =

{
|y |(i), i = 1, . . . , k − 1∑p

j=k |y |(j), i = k
.
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Video event detection and recounting (CYYH’15)
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Nonconvex proximal average (YZMX’14)
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Approximate generalized conditional gradient

Pick κ(y t) ≤ 1 such that for some α ∈ (0, 1]

〈y t ,∇`(w t)〉 ≤ α · min
y :κ(y)≤1

〈y ,∇`(w t)〉 .

Theorem (YCZ’14)

Assume ` ≥ 0. Equipped with an α-approximate PO, GCG “converges” to
an α-approximate solution at the rate O(1/t).
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Thank you!
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