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Motivating question

How should we schedule jobs with unknown sizes in complicated systems?
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Goal:
Find the scheduling policy (order of serving jobs)

that minimizes steady-state [E[/V]
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Simpler case: known job sizes

arrival rate A
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 Shortest Remaining Processing Time (SRPT)

e Minimizes E|N]

 Why: decreases the number as fast as possible
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arrival rate A
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 Sampled from a known distribution age size

* Prioritize jobs that are likely to have small remaining size

* |Infer remaining size from age Jr \/
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e Gittins policy Gittins rank

* Optimal if arrivals are Poisson (M/G/1 system)
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Outline for the rest of the talk

suboptimality gaps
G/G/k/setup-Gittins + heavy-traffic opt

e What is our pr\éblem and result? +/

 How does our G/G/k/setup analysis work?

« What is the main obstacle and how do we solve it?
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Work analysis W(t)

Idea: consider W(¢) — pR(t)

= Jjob size
S

W(t) — pR(t) decreases at const rate + noise

Formally, apply Rate Conservation Law to (W(t) — ,OR(I)>2

W(t) o PR(t) % Mean jump 4

“[S] — pE[A] = 0 residual L R(?)

arrival
time

= Interarrival

ﬁ time A
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G/G/k/Setup

Conclusion )

* Problem: scheduling in G/G/k/setup

. . - ,?

Question: Is Gittins good mber i ﬁ-gc.)?l.--, mber in
G/G/k/set G/G/1

e Result: gap < f(a) + f(b) + f(c) PP

. Corollary: heavy-traffic optimal if E[S? log §] < o0 WINE I WINE [

 Key tool: new G/G work-decomposition law work in . work in
o | G/G/k/setup =/ work  G/G/1

* Takeaway: Gittins applicable far beyond M/G/1 decomposition law

Thank you!
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