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Abstract

Learning with limited supervision presents a major challenge to machine learning systems in practice. For-
tunately, various types of extra information exist in real-world problems, characterizing the properties of the
model space, the feature space and the label space, respectively. With the goal of supervision reduction, this
thesis studies the representation, discovery and incorporation of extra information in learning.

Extra information about the model space can be encoded as compression operations and used to regular-
ize models in terms of compressibility. This leads to learning compressible models. Examples of model
compressibility include local smoothness, compacted energy in frequency domains, and parameter correla-
tion. When multiple related tasks are learned together, such a compact representation can be automatically
inferred as a matrix-variate normal distribution with sparse inverse covariances on the parameter matrix,
which simultaneously captures both task relations and feature structures.

Extra information about the feature space can usually be conveyed by certain feature reduction. We propose
the projection penalty to encode any feature reduction without the risk of discarding useful information: a
reduction of the feature space can be viewed as a restrictionof the model search to certain model subspace,
and instead of directly imposing such a restriction, we can search in the full model space but penalize the
projection distance to the model subspace. In multi-view learning, the projection penalty framework pro-
vides an opportunity to simultaneously address both overfitting and underfitting.

Extra information about the label space can be extracted andexploited to improve multi-label predictions.
To achieve this goal, we present error-correcting output codes (ECOCs) for multi-label classification: label
dependency is represented by the most predictable directions in the label space and extracted by canonical
correlation analysis (CCA) and its variants; the output code is designed to include these most predictable di-
rections in the label space to correct prediction errors. Decoding of such codes can be efficiently performed
by mean-field approximation and significantly improves the accuracy of multi-label predictions.

Effective collection of supervision signals is an indispensable part of supervision reduction. In this the-
sis, we consider active learning for multiple prediction tasks when their outputs are coupled by constraints.
A cross-task value of information criteria is designed, which encodes output constraints to measure not only
the uncertain of the prediction for each task but also the inconsistency of predictions across tasks. A specif-
ic example of this criteria leads to the cross entropy between the predictive distributions of coupled tasks,
which generalizes the notion of entropy used in single-taskuncertainty sampling.

Keywords: Learning with Limited Supervision, Regularization, Compression, Matrix-Variate Normal
Distributions, Dimension Reduction, Error-Correcting Output Codes, Canonical Correlation Analysis
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1 Introduction

1.1 Motivations

Learning an unknown function from a set of training examplesand generalizing well on unseen samples is
the central goal of machine learning. In many real-world applications, direct supervision is limited due to
the cost of obtaining high-quality labeled examples. This presents a major challenge to modern machine
learning systems. Fortunately, training examples is far from the only source of information: various types
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of extra information exist, revealing properties of the model space, the feature space, and the label space. In
this thesis, we study learning with limited supervision by encoding extra information.

Extra information about models, when available, can be used as an inductive bias for learning. A well-
studied example is model sparsity, i.e., the number of nonzero model coefficients is small. In addition to
model sparsity, various types of information about models are available in real-world problems, and encod-
ing such information is important for learning with limitedsupervision. We first study learning compressible
models, where domain knowledge about the model is encoded asa compression operation in regularization.
For text-related problems, we propose to learn the structure of the model space from seemingly irrelevant
unlabeled text. We then consider learning multiple tasks, where a compact representation of multiple models
can be automatically inferred as a matrix-normal distribution on the matrix of model coefficients.

Extra information about featurescan usually be characterized by certain feature reduction,e.g., a subset
of selected features, a clustering of low-level features, or a general feature subspace (or manifold). Directly
performing a feature reduction, however, may discard useful information and lead to potential loss of pre-
dictive power. We propose the projection penalty frameworkto encode information from a feature reduction
without the risk of information loss: a reduction of the feature space can be viewed as a restriction of the
model search to certain model subspace, and instead of directly imposing such a restriction, we can search
in the full model space but penalize the projection distanceto the model subspace.

Extra information about labelsis valuable for multi-label prediction. Indeed, a fundamental assumption
of multi-label learning is the existence of certain dependency among labels. Otherwise, it is sufficient
to solve a set of independent single-label learning problems. We consider the key issue of representing,
extracting and encoding the label dependency in order to improve multi-label learning. We propose multi-
label error-correcting output codes (multi-label ECOCs).Label dependency is represented and extracted as
the most predictable directions in the label space using canonical correlation analysis (CCA) and its variants;
an output code is then designed to encode these predictable directions to correct prediction errors.

Active learning with extra informationfocuses on the effective collection of supervision signalsin the
presence of extra information. We consider an active learning scenario when multiple prediction tasks are
coupled in the sense that their outputs need to satisfy certain logical constraints. Such a coupled learning
paradigm is common when we build prediction models to classify objects into a taxonomy, e.g., reading the
web and assigning extracted facts into an ontology. In this case, the active learning strategy should consider
not only the uncertain of the prediction for each task but also the inconsistency of predictions across tasks.

1.2 Organization

The thesis will be organized to address the following questions:

• Part I: how to effectively encode extra information about themodelspace into learning? (Section 3& 4& 5)

• Part II: how to effectively encode extra information about thefeaturespace into learning? (Section 6& 7)

• Part III: how to effectively encode extra information aboutthe label space into learning? (Section 8& 9)

• Part IV: how to effectivelycollect supervision signalsin the presence of extra information? (Section 10)

Also, Section 2 reviews related work and Part V provides summary and timeline for the proposed research.
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2 Survey

2.1 Regularization

Regularization is a principled way to control model complexity in learning and has been the focus of s-
tatistics and machine learning for decades (Hastie et al., 2001). Classical examples include ridge regres-
sion (Tikhonov & Arsenin, 1977) in statistics and support vector machines (Boser et al., 1992; Cortes &
Vapnik, 1995) in machine learning, which correspond to minimizing either squared loss or hinge loss with
ℓ2 regularization. Meanwhile,ℓ1 regularization has become very popular for learning in high-dimensional
spaces since the introduction of lasso (Tibshirani, 1996).A fundamental assumption ofℓ1 regularization is
the sparsity of model parameters. Sparse models automatically select relevant features and have the advan-
tage of being easy to interpret and good generalization ability in high-dimensional problems.

Recently, designing informative regularization has been one of the main approaches for multi-task learn-
ing (Argyriou et al., 2006), transfer learning (Raina et al., 2006) and semi-supervised learning (Belkin et al.,
2006). The key idea is to encode information from related tasks, source domains and unlabeled data into the
penalty. Also, additional structure assumptions on modelscan be imposed viaℓ1 regularization. Fused lasso
(Tibshirani et al., 2005) includes anℓ1 penalty on the differences of successive model coefficientsand leads
to piecewise constant estimations. Group lasso (Yuan et al., 2006) adds further restrictions on the standard
sparsity: model coefficients in the same group tend to be set to zero together. Structured sparsity (Huang
et al., 2009) generalizes the group lasso to allow other structured assumptions on the sparsity pattern.

The proposed work in Part I and Part II is based on the framework of regularization, where we encode
extra information about the model space and the feature space into regularization penalties.

2.2 Compressed Sensing

Compressive sampling (Candes, 2006) or compressed sensing(Donoho, 2006) was recently developed for
signal acquisition, and has received considerable attention (Baraniuk et al., 2008). According to this theo-
ry, one can successfully acquire a signal, e.g., an image, from many fewer measurements than required by
Nyquist-Shannon sampling theory. The key assumption is that signals like natural images are compressible,
i.e., nearly sparse in a compression domain. Under this assumption,ℓ1 regularized reconstruction algorithms
can reconstruct a signal from only a few linear measurements, where the key is to minimize the measurement
errors plus a penalty (or constraint) on theℓ1 norm of the reconstructed signal in a predefined compression
domain. The use of a compression for image reconstruction motivates our formulation of learning com-
pressible models (Section 3), which encodes information about the model space as compression operations.

2.3 Multi-Task Learning

Multi-task learning has been an active research area for more than a decade (Baxter, 1995; Thrun &
O’Sullivan, 1996; Caruana, 1997). For joint learning of multiple tasks, connections need to be established to
couple related tasks. One direction is to find the feature structure shared by tasks. Along this direction, re-
searchers propose to infer the feature structure by performing covariance estimation (Argyriou et al., 2006;
Argyriou et al., 2007), principal components (Ando & Zhang,2005; Chen et al., 2009) and independent
components (Zhang et al., 2006) on the model parameters, to select a common subset of features (Brown
& Vannucci, 1998; Obozinski et al., 2009), as well as to use shared hidden nodes in neural networks (Bax-
ter, 1995; Caruana, 1997). On the other hand, assuming all tasks are equally similar is risky. Researchers
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recently began to directly infer the relatedness of tasks. These efforts include using mixtures of Gaussian-
s (Bakker & Heskes, 2003) or Dirichlet processes (Xue et al.,2007) to model task groups, encouraging
clustering of tasks via a convex regularization penalty (Jacob et al., 2008), identifying “outlier” tasks by
robust t-processes (Yu et al., 2007b), and inferring a task similarity matrix (Bonilla et al., 2008; Yu et al.,
2007a; Zhang & Yeung, 2010). In Section 5, we propose a matrix-variate normal penalty with sparse inverse
convariances to systematically select and encode both feature structures and task relations.

2.4 Error-Correcting Output Codes

Error-correcting output codes (ECOCs) offer a general framework to decompose a multiclass classification
problem into a number of binary classification problems (Dietterich & Bakiri, 1994). Via ECOCs, a mul-
ticlass problem can be solved using binary classifiers. Moreimportantly, the binary problems provide a
redundant representation of the multiclass problem. As a result, prediction errors can be corrected using
such redundancy, as studied in channel coding and error-correcting codes (Cover & Thomas, 1991).

Theencodingof ECOCs decomposes the multiclass problem into a set of binary problems, and defines
the codewordas the outcomes of the binary problems. Popular ECOC decomposition strategies include
one-versus-all (Dietterich & Bakiri, 1994), one-versus-one (Hastie & Tibshirani, 1997), random partition-
s (Allwein et al., 2001), and partitions obtained by problem-dependent heuristic search (Crammer & Singer,
2002; Pujol et al., 2006). On the other hand, thedecodingof ECOCs decides the class of an example given
the prediction on its codeword. This is achieved by examining all theq candidate classes (for aq-class prob-
lem) and choosing the class that minimizes a distance function (Dietterich & Bakiri, 1994), minimizes a
loss function (Allwein et al., 2001), maximizes a probability function (Hastie & Tibshirani, 1997; Passerini
et al., 2004) or optimizes certain other criteria (Escaleraet al., 2010) w.r.t. the predicted codeword.

In Part III of this thesis, we present error-correcting output codes formulti-labelclassification.

2.5 Canonical Correlation Analysis

Since the introduction of canonical correlation analysis by Hotelling (Hotelling, 1935; Hotelling, 1936),
CCA has become a fundamental tool to analyze the relations between twosetsof variables. CCA extracts
projection directions for both sets of variables such that their correlation in the projected space is maximized.
A recent overview of CCA with application to learning problems is given in (Hardoon et al., 2004). Several
variants of CCA have been recently proposed: sparse CCA (Witten et al., 2009; Hardoon & Shawe-Taylor,
2009) enforces the sparsity of projection vectors and leadsto interpretable models; kernel CCA (Fyfe & Lai,
2001; Hardoon et al., 2004) handles nonlinear associationsbetween variables; a nonparametric Bayesian
extension of CCA, sparse infinite CCA (Rai & Daume, 2009), shows good predictive power. In Part III of
this thesis, we will use CCA as the building block of our multi-label error-correcting output codes.

2.6 Active Learning

Active learning selects unlabeled samples for labeling in order to maximally reduce the generalization error
of the classifier using limited labeling efforts. Since the generalization error is difficult to measure directly,
many other criteria have been proposed for sample selectionin active learning (Settles, 2009), e.g., un-
certainty sampling (Lewis & Catlett, 1994), query-by-committee (Seung et al., 1992; Freund et al., 1997),
version space reduction (Tong & Koller, 2002), expected error reduction (Roy & McCallum, 2001).
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Recently there has been interest in active learning for multiple prediction tasks. Co-testing (Muslea
et al., 2006) is a multi-view active learning strategy, in which examples receiving different predictions from
multiple views are selected. In (Reichart et al., 2008), multi-task active learning is performed by iteratively
selecting samples from each task or aggregating the selection scores from all tasks. In (Qi et al., 2008), it is
proposed to estimate the correlation of labels and predict ajoint label distribution to guide active learning.
In structured prediction, active learning can query eitheran entire structured instance or subcomponents of
an instance (Roth & Small, 2006). In Part IV of this thesis, westudy active learning with multiple tasks
coupled by output constraints. Co-testing is a special caseof this setting: tasks are to predict the same label
from different views, and task outputs are coupled byagreementconstraints (i.e., predictions should agree).

Part I

Learning with Extra Information about Models
In Part I, we focus on encoding extra information about the model space into learning. In Section 3, we
propose learning compressible models (Zhang et al., 2010),where domain knowledge about the model s-
pace can be encoded as a compression operation in model regularization. In Section 4, we study a case
where the correlation structure of the model space can be learned from large amounts of irrelevant unlabeled
text (Zhang et al., 2008). In Section 5, we consider learningmultiple related tasks: a compact representa-
tion of multiple models can be automatically inferred as a matrix-normal distribution with sparse inverse
covariances (Zhang & Schneider, 2010a) and used to couple and regularize multiple tasks.

3 Learning Compressible Models (Completed)

We considerlearning compressible modelsto encode domain knowledge about the model space as a com-
pression operation and then regularize the learning process in terms of model compressibility:

min
w∈Rp,b

LD(w, b) + λ||Pw||1 (1)

wherew is thep-dimensional parameter vector,b is the intercept term, andLD is an empirical loss defined
w.r.t. the training setD. A key part of (1) is the compression operationP that encodes extra information
about the model space: the modelw is compressed before being penalized by theℓ1 penalty, and thusw
tends to follow the compression pattern encoded inP (i.e., sparse in the compressed domain). We restrict our
attention to the case whereP is ap × p matrix, representing a linear and invertible compression operation.
In this case, optimization of (1) can be performed efficiently (Zhang et al., 2010).

3.1 Model Compression: Local Smoothness

Many useful functions have compact representations: constant functions, linear functions, piecewise linear
functions, quadratic functions, and so on. A key quality of these functions issmoothness, which is a property
of theirderivatives: a constant function has zero first-order derivatives, a (piecewise) linear function has zero
second-order derivatives (at most locations), a quadraticfunction has zero third-order derivatives, etc. In this
part, we define compression operations related to the local smoothness of model coefficients.
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Order-1 smoothnessassumes that model coefficients do not change very often along a natural order,
which has been studied in fused lasso (Tibshirani et al., 2005) and total variation minimization (Rudin
et al., 1992). This corresponds tosparse first-order derivativesand leads to (piecewise) constant estimation.
Order-1 smoothness can be imposed by plugging into (1) a compressionP that calculates the first-order
derivatives at successive locations ofw (Zhang et al., 2010).Order-2 smoothnessassumessparse second-
order derivativesand leads to (piecewise) linear estimation. The compression P for order-2 and other
higher-order smoothnesscan be defined recursively based on the order-1 smoothness compression (Zhang
et al., 2010).Hybrid smoothnesshappens when model coefficients have several groups, and each group has
its own natural order and smoothness property. In this case,P can be defined as ablock diagonalmatrix.

3.2 Model Compression: Energy Compaction

The energy of many real-world signals is concentrated in a few frequencies, i.e., compacted in the frequency
domain. This is a foundation of both image (Wallace, 1992; Christopoulos et al., 2000) and audio (Spanias,
1994) compression. As a result, a model needs to operate onlyon a few (relevant) frequencies to accurately
classify these signals (e.g., images), i.e., a good model also has compacted energy in the frequency domain.
In this sense, a frequency domain transform can be used in learning compressible models, e.g., the discrete
cosine transform (DCT) used in the JPEG standard (Wallace, 1992). The2D DCT is a linear operation
onm × n images and thus can be rewritten as a linear operation onp × 1 vectors, wherep = mn is the
dimension of the linear modelw for classifying images. Plugging this operation as the compressionP in (1)
will lead to a model estimation that has compacted energy in the frequency domain.

3.3 Experimental Results

In our experiments (Zhang et al., 2010), we study brain-computer interface and handwritten digit recogni-
tion, where local smoothness and energy compaction are appropriate model assumptions, respectively. In
brain-computer interface, we classify Electroencephalography (EEG) brain signals. An EEG signal contains
several EEG channels, and each channel is a time series. In this sense, we assumechannel-wise smoothness:
model coefficients are smooth (along time) within each channel. We use a diagonal block compression ma-
trix, as discussed in Section 3.1, where each block is an order-1 smoothness compression for a channel. The
resulting compressible logistic regression reduces the classification error of sparse logistic regression from
30.0% to 20.92%. In digit recognition experiments, we learn to recognize handwritten digits. We assume
energy compaction in the frequency domain for the model and use 2D DCT as the model compression.
The learned model has sparse coefficients in the frequency domain, gives better recognition rates, and more
interestingly, shows meaningful patterns in the original pixel domain about the digits being recognized.

4 Learning the Semantic Word Correlation from Irrelevant Te xt (Complet-
ed)

Certain structure of the model space can be inferred from unlabeled data. For text-related learning problems,
the large amount of unlabeled text from the Web is a valuable source of information. However, the Web is an
uncontrolled environment and thus unlabeled text in the Webmay not be relevant to a specific learning task.
This violates the assumption of many semi-supervised learning methods. In this section we show that, for
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text-related learning problems, the correlation structure of the model space can be learned from seemingly
irrelevant unlabeled text and then used to improve learningof any specific task (Zhang et al., 2008).

4.1 Learning the Semantic Correlation of Words

We first identify the semantic correlation of words1 as a structure of the model space that can be transferred
from unlabeled text. Consider a document classification problem, where we have only one positive example
containing two words{gasoline, truck} and one negative example containing two words{vote, election}.
Most people will agree that a new document with words{gallon, vehicle} should be classified as positive,
althoughgallon andvehiclehave never been observed in the training set. The key reason is thatgallon is
the unit ofgasoline, and truck is a type ofvehicle. Since the classifier should have positive weights on
gasolineand truck (as they appear in the only positive example),gallon andvehicleare likely to receive
positive weights, too. Formally, thesemantic correlation of wordscorresponds to a correlation structure of
the model coefficients and provides a strong inductive bias in the model space. Also, this is an intrinsic
structure of the language and thus will not change dramatically even in irrelevant unlabeled text.

We propose to infer the semantic word correlation from seemingly irrelevant unlabeled text and incor-
porate it into learning of any specific task (Zhang et al., 2008). We first extract a large number of latent
topics from unlabeled text, by repeatedly applying bootstrapping and topic modeling. We then infer the
word correlation from the word composition of the extractedtopics. The resulting correlation structure is
used inℓ2-regularization for learning any specific task (as the correlation in the Gaussian prior):

argmin
w,b

n
∑

i=1

L(yi,w
Txi + b) + λwTΣ−1

s w (2)

wherew is the vector of model coefficients,b is the intercept term,L is the empirical loss defined on the
training examples{xi, yi}

n
i=1, andΣs is the semantic correlation of all words (in the problem domain).

4.2 Experimental Results

In our empirical study (Zhang et al., 2008), we construct190 text classification tasks from a real-world
benchmark. For each task, the majority of the unlabeled textare from irrelevant tasks, and thus most semi-
supervised learning techniques are ineffective. Surprisingly, however,most of the 190 tasks are significantly
improved by encoding the semantic word correlation inferred from irrelevant unlabeled text.

5 Multi-task Learning with A Sparse Matrix-Normal Penalty ( Completed)

In this section, we propose a matrix-variate normal penaltywith sparse inverse covariances to encode the
model space and couple multiple tasks (Zhang & Schneider, 2010a). Recent methods on discovering com-
mon feature structures among tasks (Argyriou et al., 2006) and directly inferring task similarity (Jacob et al.,
2008) are variants of the special cases of our formulation. Learning multiple (parametric) models can be
viewed as estimating a parameter matrix, whose rows and columns correspond to tasks and features. Matrix-
variate normal distributions are powerful tools for characterizing the structure of a matrix. We follow the
matrix normal density and design a penalty that decomposes the full covariance of matrix elements into the

1We consider the bag-of-word feature space for simplicity. The proposed method can also be applied to n-gram feature space.
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Kronecker product of row covariance and column covariance,which characterize task relations and feature
representations, respectively. We then perform sparse covariance selection (viaℓ1 penalties) on the inverse
of task and feature covariances in order to automatically select meaningful task and feature structures.

5.1 Matrix-Variate Normal Distributions

The matrix-variate normal distribution is one of the most widely studied matrix distributions (Dawid, 1981;
Gupta & Nagar, 1999). Consider anm × p matrix W. SinceW hasmp elements, the covariance for the
elements ofW is of sizemp ×mp, which is prohibitively large. To utilize the structure ofW as a matrix,
matrix normal distributions assume that the full covariance of W can be decomposed as the Kronecker
productΣ⊗Ω, whereΩ is anm×m covariance matrix ofm rows andΣ is anp×p covariance matrix ofp
columns. As a result,W follows a matrix normal distribution with the log-density (Gupta & Nagar, 1999):

log P (W) ∝
p

2
log(|Ω|)−

m

2
log(|Σ|)−

1

2
tr{Ω−1(W −M)Σ−1(W −M)T } (3)

whereM is them× p expectation matrix, and| | andtr are determinant and trace of a square matrix.
Consider a set ofn samples{Wi}

n
i=1 where eachWi is anm× p matrix generated by a matrix-variate

normal distribution as eq. (3). The maximum likelihood estimation (MLE) of meanM is (Dutilleul, 1999):

M̂ =
1

n

n
∑

i=1

Wi (4)

The MLE estimators ofΩ andΣ are solutions to the following fixed-point equations:

{ Ω̂ = 1
np

∑n
i=1(Wi − M̂)Σ̂−1(Wi − M̂)T

Σ̂ = 1
nm

∑n
i=1(Wi − M̂)T Ω̂−1(Wi − M̂)

(5)

It is efficient to updateΩ andΣ as (5) until convergence, i.e., the “flip-flop” algorithm (Dutilleul, 1999).

5.2 Learning with a Matrix Normal Penalty

Consider a multi-task learning problem withm tasks andp features. Models are represented by anm × p
matrix W, where each row corresponds to a task. The matrix normal density (3) provides a structure to
couple multiple tasks inW: 1) we set the expectationM = 0 to prefer simple models; 2) them ×m row
covarianceΩ describes thetask similarity; 3) thep × p column covariance matrixΣ represents afeature
structureshared by tasks. This yields the following total lossL w.r.t. W, Ω andΣ:

L =
m
∑

t=1

nt
∑

i=1

L(y
(t)
i ,x

(t)
i ,W(t, :)) + λ [p log |Ω|+m log |Σ|+ tr{Ω−1WΣ−1WT }] (6)

whereλ controls the strength of the matrix-normal penalty,L() is a convex empirical loss,(y(t)i ,x
(t)
i ) is the

ith training example of thetth task, andW(t, :) is thetth row, i.e., the parameter vector of thetth task.
We minimize (6) by alternating optimization. WhenΩ andΣ are fixed, we solveW by minimizing:

m
∑

t=1

nt
∑

i=1

L(y
(t)
i ,x

(t)
i ,W(t, :)) + λ tr{Ω−1WΣ−1WT } (7)
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which is a convex function w.r.t.W. WhenW in (6) is fixed, we can inferΩ andΣ by minimizing:

p log |Ω|+m log |Σ|+ tr{Ω−1WΣ−1WT } (8)

which is solved as the MLE estimation ofΩ andΣ in a matrix normal as (5), given one observationW.
Several recent multi-task learning formulations (Argyriou et al., 2006; Jacob et al., 2008; Hariharan

et al., 2010; Zhang & Yeung, 2010) are variants of the specialcases of (6). They either learn a feature
structureΣ (but ignore the task structure) or include a task relationΩ (but ignore the feature representation).

5.3 Sparse Covariance Selection in the Matrix-Normal Penalty

Covariance selection enforces zero entries in the Gaussianinverse covariance and thus discovers conditional
independence between variables (Dempster, 1972; Banerjeeet al., 2008; Friedman et al., 2007). Use of the
matrix-normal density in (6) enables us to perform covariance selection to select task and feature structures.
WhenΩ in (6) has a sparse inverse, task pairs corresponding to zeroentries inΩ−1 are not explicitly
coupled. Similarly, a zero entry inΣ−1 indicates no direct interaction between two correspondingfeatures.

Formally, we rewrite (6) to include two additionalℓ1 penalties on the inverse ofΩ andΣ:

L =

m
∑

t=1

nt
∑

i=1

L(y
(t)
i ,x

(t)
i ,W(t, :)) + λ[p log |Ω|+m log |Σ|+ tr{Ω−1WΣ−1WT }] + λΩ||Ω

−1||1 + λΣ||Σ
−1||1 (9)

where|| ||1 is theℓ1-norm of a matrix, andλΩ andλΣ control the strength of twoℓ1 penalties. Due to the
additional penalties, optimizingΩ andΣ givenW becomes a new problem:

min
Ω,Σ

p log |Ω|+m log |Σ|+ tr{Ω−1WΣ−1WT }+
λΩ

λ
||Ω−1||1 +

λΣ

λ
||Σ−1||1 (10)

To solve (10), as in the flip-flop algorithm (5), we iteratively optimizeΩ andΣ until convergence:

{

Ω̂ = argminΩ p log |Ω|+ tr{Ω−1(WΣ−1WT )}+ λΩ

λ
||Ω−1||1

Σ̂ = argminΣ m log |Σ|+ tr{Σ−1(WT Ω̂−1W)}+ λΣ

λ
||Σ−1||1

(11)

Note that both equations in (11) areℓ1 regularized covariance selection problems, for which efficient opti-
mization has been intensively studied (Banerjee et al., 2008; Friedman et al., 2007).

5.4 Experimental Results

In our experiments (Zhang & Schneider, 2010a), we study a landmine detection problem and a face recog-
nition problem, where multiple tasks correspond to detecting landmines at different landmine fields and
classifying faces between different subjects, respectively. We compare to recent multi-task learning meth-
ods that either infer the feature structure (Argyriou et al., 2006) or the task relation (Jacob et al., 2008).
Experiments are conducted with varied amounts of training samples and paired T-tests (over 30 random run-
s) are provided. Experimental results show that the sparse matrix-normal regularization provides a flexible
framework to couple multiple tasks and outperform the competitors with statistical significance.
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Figure 1: The idea of projection penalties (linear cases)

Part II

Learning with Extra Information about Features
In Part II, we focus on encoding extra information about the feature space into learning. Extra information
about feature structures can usually be conveyed by a dimensionality reduction, e.g., a subset of important
features, a clustering of low-level features, a general feature subspace or manifold. Directly performing a
feature reduction, however, can potentially lead to loss ofinformation and predictive power. In Section 6,
we propose the projection penalty framework that effectively encodes an arbitrary feature reduction into
learning but avoids the risk of information loss. In Section7, we consider multi-view learning, where
projection penalties offers an opportunity to simultaneously address both overfitting and underfitting.

6 Projection Penalties: Dimensionality Reduction withoutLoss (Complet-
ed)

In this section, we propose the projection penalty (Zhang & Schneider, 2010c): reducing the feature space
can be viewed as restricting the model search to certain model subspace; instead of directly imposing such a
restriction, we can search in the full model space but penalize the projection distance to the model subspace.
In this sense, information from the feature reduction is used to guidethe model search rather than to com-
pletely restrict the model search to the reduced model subspace. As a result, projection penalties encode a
feature reduction into learning while alleviate the risk ofinformation loss.

6.1 Linear Cases

The idea of projection penalties in linear cases is shown in Fig. 1. A linear feature reductionP is and × p
matrix that projects data fromRp toRd, wherep andd are the dimension of the original and reduced feature
space. This feature reduction is equivalent to a restriction of the model spaceM→MP , and we propose to
learn the modelw in the full spaceM but penalize the projection distance to the model subspaceMP .
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Given a feature reductionP , learning models in the reduced feature space can be formulated as:

argmin
v∈Rd,b

n
∑

i=1

L(yi,v
T (Pxi) + b) (12)

where{xi ∈ R
p, yi}

n
i=1 aren training examples in the original feature space,P is and× p linear reduction,

(v ∈ Rd, b) is the model in the reduced space, andL is the empirical loss. This can be rewritten as:

argmin
v∈Rd,b

n
∑

i=1

L(yi, (P
Tv)Txi + b) (13)

Note thatP Tv ∈ Rp has onlyd degrees of freedom asv ∈ Rd. Definew = P Tv, eq. (13) is equivalent to:

argmin
w∈MP ,b

n
∑

i=1

L(yi,w
Txi + b) (14)

whereMP is a model subspace inRp defined as:

MP = {w ∈ Rp | w = P Tv, ∃v ∈ Rd} (15)

In (14) we see that performing a linear feature reductionP is equivalent to restricting the model search to
a model subspaceMP as defined in (15). The risk of such a restriction is that, althoughP highlights the
relevant part of the feature space, the optimal model does not necessarily belong to the model subspaceMP .
Thus, we propose to search models in the full model space and penalize the projection distance toMP . This
leads tothe formulation of projection penalties for linear featurereduction:

argmin
w∈Rp,b

n
∑

i=1

L(yi,w
Txi + b) + min

wP∈MP

λJ(w −wP ) (16)

whereλ is a regularization parameter,J is a penalty function such as theℓ2 or ℓ1 norm, andwP is the
projectionof w ontoMP under the penalty measureJ . Optimization of the projection penalty formula (16)
is detailed in (Zhang & Schneider, 2010c), which depends on the choice of empirical lossL and penaltyJ .

6.2 Kernel-Based and Other Nonlinear Cases

The usefulness of projection penalties is limited if we can only encode a linear feature reduction in learning
linear models. Therefore, we extend projection penalties to kernel-based and other nonlinear cases.

The kernel-based projection penalty shares the same idea with the linear case, as shown in Fig 1 and
eq. (16), but both the feature reductionP and the modelw are defined in a reproducing kernel Hilbert space
(RKHS). In this case, the feature reductionP maps the data to an RKHS and performs a linear reduction
from this RKHS to a low-dimensional subspace. Our goal is to encode the information of this reduction
to learn a modelw in the RKHS. To attain this goal, we develop the representer theorem and the dual
optimization for kernel-based projection penalties (Zhang & Schneider, 2010c).

In (Zhang & Schneider, 2010c) we also study projection penalties for a given nonlinear feature reduction
that is not linear in either the original or any kernel feature space. An example of such a nonlinear feature
reduction is a fully generative topic model like latent Dirichlet allocation.
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6.3 Experimental Results

In the empirical study (Zhang & Schneider, 2010c), we apply projection penalties to various dimension re-
duction techniques in different applications, including:1) principal component analysis and partial least
squares in housing price forecasting; 2) kernel PCA, generalized discriminant analysis and Orthogonal
Laplacianfaces in face recognition; 3) latent Dirichlet allocation in text classification. Prediction is always
improved by using the projection penalty instead of directly performing the reduction. This indicates that the
projection penalty is a more effective and reliable way to encode the information from a feature reduction.

7 Projection Penalties for Multi-View Learning

In the presence of multiple views, researchers are confronted with a dilemma. To addressoverfitting, we
should emphasize the consistency of multiple views in orderto restrict and regularizethe model space.
To handleunderfitting, on the other hand, we should try to combine the information from multiple views
in order to furtherexpandthe feature and model space. As a result, we consider a multi-view projection
penalty framework to address both overfitting and underfitting, based on the following observations:

• The projection penalty is an effective way to find a trade-offbetween a high-dimensional rich feature
space and a low-dimensional restricted feature space.

• Recent research has shown that canonical correlation analysis (CCA) can potentially find a low-dimensional
feature space that preserves the information from multipleviews (Foster et al., 2008).

• We can learn in a jointly augmented feature space (constructed from multiple views) and apply the pro-
jection penalty to the shared low-dimensional feature space (extracted by CCA).

Part III

Learning with Extra Information about Labels
In Part III, we focus on encoding extra information about thelabel space into learning. In Section 8, we
propose error-correcting output codes (ECOCs) for multi-label classification (Zhang & Schneider, 2010b),
where predictable directions in the label space are extracted by canonical correlation analysis (CCA) and
included into the output code for error correction. In Section 9, we analyze the link between CCA and Partial
Least Squares and propose a new procedure to generate more effective output codes.

8 Multi-Label ECOCs with Canonical Correlation Analysis

Error-correcting output codes (ECOCs) are traditionally designed to decompose a multiclass classification
problem into a set of binary problems (Dietterich & Bakiri, 1994). As a result, the multiclass problem can
be solved using only binary classifiers, and the binary problems also provide a redundant representation to
correct prediction errors. Unlike classes, labels in multi-label classification are no longer mutually exclusive.
In a q-label problem, the cardinality of the output spaceY = {0, 1}q is 2q instead ofq in a q-class problem.
This change of output space in multi-label classification presents new challenges to output coding:
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• Validity of the encoding. An ECOC encodes the target problem by decomposing it into a number of
binary decision problems, each differentiating two subsets of classes. In multi-label problems, however,
two subsets of labels can be simultaneously satisfied by certain examples, which makes the binary deci-
sion ill-defined on these examples. Ideally, the encoding should be well-defined for all training examples
and future testing examples.

• Efficiency of the decoding. In multiclass ECOCs, the decoding for each test example is usually per-
formed by searching over allq possible classes and choosing the one that optimizes certain criteria. In
multi-label problems, however, searching over2q label vectors for aq-label problem is inefficient.

• Predictability of the codeword. In ECOCs, codewords need to be predicted by models and thus pre-
dictability of codewords is an important concern for encoding. In multi-label ECOCs, encoding via binary
problems is ill-defined and a new encoding is needed to produce both valid and predictable codewords.

• Dependency among labels. In multiclass problems, classes are mutually exclusive. This eliminates most
dependency structures among classes except weak negative correlation. In multi-label problems, however,
various dependency structures exist among labels and should be exploited in the output code design.

In this work, we propose an error-correcting output code formulti-label classification. This ECOC provides
valid encoding, efficient decoding, and predictable codewords that exploit the label dependency.

8.1 Canonical Correlation Analysis

Consider a set ofp variablesx ∈ X ⊆ Rp and another set ofq variablesy ∈ Y ⊆ Rq. For a multi-label
problem,x denotes the feature vector andy denotes the label vector. In this case, we haveY = {0, 1}q . In
addition, we have a training set ofn observations:D = (X,Y) = {(x(i),y(i))}ni=1, whereX andY are
of sizen× p andn× q, respectively. Canonical correlation analysis starts with seeking a pair of projection
directionsu ∈ Rp andv ∈ Rq, such that thecorrelationbetweenuTx andvTy is maximized2:

argmax
u∈Rp,v∈Rq

uTXTYv
√

(uTXTXu)(vTYTYv)
(17)

This problem can be solved as a generalized eigenproblem (Hardoon et al., 2004), where the solution pro-
vides multiple pairs of projection vectors(u,v). By solving for the firstd principal eigenvectors, we can
obtaind pairs of projection vectors:{(uj ,vj)}

d
j=1. We denote this process as:

{(uj ,vj)}
d
j=1 ← CCA(X,Y) (18)

8.2 Multi-label ECOCs: Encoding

In our encoding, CCA in (18) plays a key role: thed canonical output variates{vT
j y}

d
j=1 are well known as

the most predictable variates (Hotelling, 1935), which areideal candidates to be included in the codeword

2For simplicity, one can assume that the data have been centralized such that each dimension has zero mean.



8 MULTI-LABEL ECOCS WITH CANONICAL CORRELATION ANALYSIS 16

Figure 2: The factor graph representation of undirected graphical model used for decoding the output.

for correcting prediction errors. For an examplex with the label vectory = {y1, . . . , yq} and canonical
output variates{vT

j y}
d
j=1, the output encoding forx is:

z = (y1, . . . , yq,v
T
1 y, . . . ,v

T
d y)

T (19)

Given the training set(X,Y) = {(x(i),y(i))}ni=1, we will learnq classifiers{p̂1, . . . , p̂q} to predict theq la-
bels{y1, . . . , yq}, andd regression models{m̂1, . . . , m̂q} to predict thed canonical variates{vT

1 y, . . . ,v
T
d y}.

8.3 Multi-label ECOCs: Decoding

For a test examplex, each learned classifier̂pj predicts a Bernoulli distributionφj(yj) for a labelyj:

φj(yj) = p̂j(x)
yj (1− p̂j(x))

(1−yj ), j = 1, 2, . . . , q (20)

and each regression modelm̂k predicts a Gaussian distributionψk(y) for a canonical variatevT
d y:

ψk(y) ∝ exp−
(vT

k y − m̂k(x))
2

2σ̂2k
, k = 1, 2, . . . , d (21)

where the variance term̂σ2k is estimated by cross validation on the training examples.
In the decoding, the predictive distributions (20) and (21)can be represented as a factor graph in Figure 2,

and we have the following joint probability for the label vector y of the test examplex:

log P (y) = − logZ +

q
∑

j=1

log φj(yj) + λ

d
∑

k=1

logψk(y) (22)

whereZ is the partition function, andλ is a hyperparameter to balance two types of potentials. Exact
inference forP (y) in (22) has a time complexity exponential inq, due to the fact that each Gaussian potential
ψk in (21) usually involves all theq labels. We consider a mean-field approximation toP (y) in the form:

Q(y) =

q
∏

j=1

Qj(yj) (23)

Q(y) is in the class of fully factorized distributions where eachQj(yj) is a Bernoulli distribution on label
yj. We minimize the KL divergenceKL(Q||P ) to find the bestQ∗ in the class (Jordan et al., 1999). Notice
that the resulting approximationQ∗(y) =

∏q
j=1Q

∗
j(yj) provides a set of classifiers{Q∗

j (yj)}
q
j=1 on labels.
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9 Optimal Code Design: Unifying CCA and Partial Least Squares

In our multi-label ECOCs, we use the output projections of canonical correlation analysis (CCA) to produce
the output code. Careful examination of the recent variantsof CCA (Witten et al., 2009; Hardoon & Shawe-
Taylor, 2009; Hardoon et al., 2004) and the connection between CCA and Partial Least Squares (Rosipal &
Kramer, 2006) suggests a potentially new procedure to produce more effective codes:

• Neither maximizing thecorrelationbetween projected variables (as in CCA) nor maximizing thecovari-
ancebetween projected variables (as in PLS) explicitly optimizes the predictability of the output code.

• Sparsity can be imposed on the output projections of CCA. This gives a sparse encoding matrix and sparse
factor graph in decoding, which captures localized label dependency and improves decoding efficiency.

• Both CCA and PLS can be viewed by an iterative extraction-and-deflation procedure. For output code
design, a new deflation that is different from both CCA and PLSmay be proposed, which can potentially
produce more output projections (and thus more redundancy in codewords) than the standard CCA.

Part IV

Active Learning with Extra Information
10 Multi-Task Active Learning with Output Constraints

In this section, we consider active learning for multiple prediction tasks when their outputs are coupled by
constraints (Zhang, 2010). A cross-task value of information criterion is proposed, which encodes output
constraints to represent not only the uncertain of the prediction for each task but also the inconsistency of
predictions across tasks. A specific example of this criterion leads to the cross entropy between the predictive
distributions of coupled tasks, which generalizes the notion of entropy in single-task uncertainty sampling.

10.1 Value of Information for Active Learning

We want to learn a classifier̂p: given an examplex from the input spaceX , we can predict the conditional
probability of the labelY : p̂(Y = y|x), ∀y ∈ Y. In pool-based active learning, we choose from a pool of
unlabeled samplesU for labeling. To estimate how useful labeling a samplex ∈ U is for improving the
current model̂p = p̂(Y |x), we measure the value of information (Krause & Guestrin, 2009) for (Y,x):

V OI(Y,x) =
∑

y

p̂(Y = y|x)R(p̂, Y = y,x) (24)

which is the sum of therewardR(p̂, Y = y,x) of each labeling outcomeY = y, weighted by the estimated
probability p̂(Y = y|x) of each outcome. Different reward functions are available,and two examples are:

R(p̂, Y = y,x) = − log2 p̂(Y = y|x) (25)

R(p̂, Y = y,x) = 1− δ(y, argmax
y′

p̂(Y = y′|x)) (26)
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The reward (25) is the Shannon information content of the outcomeY = y given the distribution̂p. An
impossible outcome (witĥp = 0) has an infinite reward, and an already known outcome (withp̂ = 1) has no
reward. The second reward (26) takes the value0 if the labeling outcomey agrees with the model prediction
y′ and takes the value1 otherwise. Incorporating (25) or (26) into the framework (24), we have:

V OI(Y,x) = −
∑

y

p̂(Y = y|x) log2 p̂(Y = y|x) (27)

V OI(Y,x) = 1−max
y

p̂(Y = y|x) (28)

which are entropy-based uncertain sampling and least-confident sampling, respectively (Settles, 2009).

10.2 Cross-Task Value of Information

Consider a set ofT tasks, each with a (categorical) response variableYi, i = 1, 2, . . . , T . Our goal is to
learn a classifier for each task:̂pi = p̂i(Yi|x), i = 1, 2, . . . , T . Each sample in our training setx ∈ U is
associated withT labels. We useUL(x) to denote unknown labels onx: UL(x) = {Yi : Yi is unknown for
x}. In multi-task active learning, we need to measure the valueof information for requesting a labelYi on a
samplex, as follows:

V OI(Yi,x) =
∑

yi

p̂i(Yi = yi|x)R(Yi = yi,x) (29)

whereR(Yi = yi,x) is the reward for a possible labeling outcome(Yi = yi,x) for all tasks. Given a set of
constraintsC among task outputs, labeling outcome for one labelYi can provide information for other tasks.
Therefore, we define the set ofpropagated outcomesas the outcomes that can beinferred from Yi = yi:

Prop
C
(Yi = yi) = {Yj = yj | Yi = yi →C

Yj = yj} (30)

Examples of such inference between task outputs include agreement (in multi-view learning), mutual exclu-
sion, inheritance, etc. For example, ifx is apolitician thenx is also aperson(Yi = 1→ Yj = 1).

Using the notion of propagated outcomes, we rewrite the cross-task value of information (29) as follows:

V OI(Yi,x) =
∑

yi

p̂i(Yi = yi|x)
∑

Yj=yj∈Prop
C

(Yi=yi)

Yj∈UL(x)

R(p̂j, Yj = yj,x) (31)

whereR(p̂j, Yj = yj,x) is the reward of an inferred outcomeYj = yj for the model̂pj, as (25) or (26).
A Case Study. If we plug the reward in (25) into the framework (31), we have:

V OI(Yi,x) =
∑

yi

p̂i(Yi = yi|x)
∑

Yj=yj∈Prop
C

(Yi=yi)

Yj∈UL(x)

− log2 p̂j(Yj = yj|x) (32)

This new criterion in (32) can be viewed as the sum of cross entropy between the model̂pi and other coupled
modelsp̂j . Recall that the cross entropy of two distributionsPi(y) andPj(y) is defined as:

H(Pi, Pj) = −
∑

y

Pi(y) log2 Pj(y) (33)
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H(Pi, Pj) increases with the discrepancy ofPj fromPi, so it captures the inconsistency of two distributions.
Note thatPi andPj in (33) are defined on the same quantityy, but any two predicted distributionŝpi andp̂j
in (32) are defined on different task outputs. In this sense, the constraintsC plays a key role to couple the
predicted distributions of different tasks. As a result, cross-task VOI in (32) is essentially the sum of cross
entropy between the predicted distributionp̂i and other coupled predicted distributionsp̂j . Maximizing (32)
will select the sample-task pair(Yi,x) whose model prediction̂pi is contradicting other models.

10.3 Empirical Study and Future Work

We conduct our empirical study on web information extraction and document classification (Zhang, 2010).
Results on both problems demonstrate the effectiveness of the cross-task value of information in collecting
labeled examples for multiple coupled tasks. In the future work we will study: 1) probabilistic constraints,
e.g.,P (Yj = yj|Yi = yi) = 0.9; 2) class imbalance and active learning; 3) the connection between active
learning and semi-supervised learning, e.g., cross-task value of information for semi-supervised learning.

Part V

Summary and Schedule
We summarize the completed work and provide a timeline for the future work in Table 1.

Table 1: Summary and Schedule.

Research Tasks Status and Schedule

Learning with Extra Information about Models
Learning semantic word correlation from unlabeled text [NIPS 2008]

Learning compressible models [SDM 2010]
Learning multiple tasks with a sparse matrix-normal penalty [NIPS 2010]

Learning with Extra Information about Labels
Multi-label ECOCs using CCA Winter 2011& Spring 2011
Improving multi-label ECOCs Spring 2011& Summer 2011

Active learning with label constraints [AAAI 2010] & Fall 2011
Learning with Extra Information about Features

Projection penalties [ICML 2010]
Multi-view learning with projection penalty Fall 2011

Others
Applications to other problems Fall 2011& Winter 2012

Thesis writing Winter 2012 -
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