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Abstract

Learning with limited supervision presents a major cha&eio machine learning systems in practice. For-
tunately, various types of extra information exist in realrld problems, characterizing the properties of the
model space, the feature space and the label space, rgspedtvith the goal of supervision reduction, this
thesis studies the representation, discovery and incatiparof extra information in learning.

Extra information about the model space can be encoded agression operations and used to regular-
ize models in terms of compressibility. This leads to leagntompressible models. Examples of model
compressibility include local smoothness, compactedggnierfrequency domains, and parameter correla-
tion. When multiple related tasks are learned togetheh sutompact representation can be automatically
inferred as a matrix-variate normal distribution with sginverse covariances on the parameter matrix,
which simultaneously captures both task relations andifeatructures.

Extra information about the feature space can usually besy@ual by certain feature reduction. We propose
the projection penalty to encode any feature reductionowithhe risk of discarding useful information: a
reduction of the feature space can be viewed as a restriotitre model search to certain model subspace,
and instead of directly imposing such a restriction, we earch in the full model space but penalize the
projection distance to the model subspace. In multi-vieavrigng, the projection penalty framework pro-
vides an opportunity to simultaneously address both otiagiand underfitting.

Extra information about the label space can be extracteceaplbited to improve multi-label predictions.
To achieve this goal, we present error-correcting outpdesdECOCS) for multi-label classification: label
dependency is represented by the most predictable dinsciiothe label space and extracted by canonical
correlation analysis (CCA) and its variants; the outputeciscdesigned to include these most predictable di-
rections in the label space to correct prediction errorcddimg of such codes can be efficiently performed
by mean-field approximation and significantly improves tbeusacy of multi-label predictions.

Effective collection of supervision signals is an indisgainle part of supervision reduction. In this the-
sis, we consider active learning for multiple predictioskiawhen their outputs are coupled by constraints.
A cross-task value of information criteria is designed, ahhéncodes output constraints to measure not only
the uncertain of the prediction for each task but also thenarstency of predictions across tasks. A specif-
ic example of this criteria leads to the cross entropy betwthe predictive distributions of coupled tasks,
which generalizes the notion of entropy used in single-tastertainty sampling.

Keywords: Learning with Limited Supervision, Regularization, Comgsion, Matrix-Variate Normal
Distributions, Dimension Reduction, Error-Correctingt@ut Codes, Canonical Correlation Analysis



CONTENTS 3

Contents

1 Introduction 3

2 Survey 5

| Learning with Extra I nformation about Models 7

3 Learning Compressible Models (Completed) 7

4 Learning the Semantic Word Correlation from Irrelevant Te xt (Completed) 8
5 Multi-task Learning with A Sparse Matrix-Normal Penalty ( Completed) 9
Il Learning with Extra | nformation about Features 11

6 Projection Penalties: Dimensionality Reduction withoutLoss (Completed) 12
7 Projection Penalties for Multi-View Learning 14

[l Learning with Extra I nformation about Labels 14

8 Multi-Label ECOCs with Canonical Correlation Analysis 14

9 Optimal Code Design: Unifying CCA and Partial Least Squares 17
IV Active Learning with Extra I nformation 17

10 Multi-Task Active Learning with Output Constraints 17

V  Summary and Schedule 19

1 Introduction

1.1 Motivations

Learning an unknown function from a set of training examgled generalizing well on unseen samples is
the central goal of machine learning. In many real-worldli@pfions, direct supervision is limited due to
the cost of obtaining high-quality labeled examples. Thispnts a major challenge to modern machine
learning systems. Fortunately, training examples is famfthe only source of information: various types
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of extra information exist, revealing properties of the mlagpace, the feature space, and the label space. In
this thesis, we study learning with limited supervision Ipog@ding extra information.

Extra information about modelsvhen available, can be used as an inductive bias for legrdirwell-
studied example is model sparsity, i.e., the number of nonzedel coefficients is small. In addition to
model sparsity, various types of information about modedsa@ailable in real-world problems, and encod-
ing such information is important for learning with limitedpervision. We first study learning compressible
models, where domain knowledge about the model is encodad@®pression operation in regularization.
For text-related problems, we propose to learn the streaifithe model space from seemingly irrelevant
unlabeled text. We then consider learning multiple taskene a compact representation of multiple models
can be automatically inferred as a matrix-normal distidsubn the matrix of model coefficients.

Extra information about featuresan usually be characterized by certain feature reduatign, a subset
of selected features, a clustering of low-level features, general feature subspace (or manifold). Directly
performing a feature reduction, however, may discard useformation and lead to potential loss of pre-
dictive power. We propose the projection penalty framevtoréncode information from a feature reduction
without the risk of information loss: a reduction of the feature gpean be viewed as a restriction of the
model search to certain model subspace, and instead oflgir®posing such a restriction, we can search
in the full model space but penalize the projection distandae model subspace.

Extra information about labels valuable for multi-label prediction. Indeed, a fundata¢assumption
of multi-label learning is the existence of certain depemmgeamong labels. Otherwise, it is sufficient
to solve a set of independent single-label learning problelVe consider the key issue of representing,
extracting and encoding the label dependency in order toawgpmulti-label learning. We propose multi-
label error-correcting output codes (multi-label ECOQs)bel dependency is represented and extracted as
the most predictable directions in the label space usingriaal correlation analysis (CCA) and its variants;
an output code is then designed to encode these prediciadttiahs to correct prediction errors.

Active learning with extra informatiofocuses on the effective collection of supervision sigmalthe
presence of extra information. We consider an active lagrscenario when multiple prediction tasks are
coupled in the sense that their outputs need to satisfyieddgical constraints. Such a coupled learning
paradigm is common when we build prediction models to dasdijects into a taxonomy, e.g., reading the
web and assigning extracted facts into an ontology. In théecthe active learning strategy should consider
not only the uncertain of the prediction for each task bub &t inconsistency of predictions across tasks.

1.2 Organization

The thesis will be organized to address the following qoesti

e Partl: how to effectively encode extra information aboetrttodelspace into learning? (Sectiord34 & 5)

e Partll: how to effectively encode extra information abdéfeaturespace into learning? (Sectiork67)

e Part lll: how to effectively encode extra information abthutlabel space into learning? (Sectiorf89)

e Part IV: how to effectivelycollect supervision signais the presence of extra information? (Section 10)

Also, Section 2 reviews related work and Part V provides samyrand timeline for the proposed research.
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2 Survey

2.1 Regularization

Regularization is a principled way to control model comjilein learning and has been the focus of s-
tatistics and machine learning for decades (Hastie et @012 Classical examples include ridge regres-
sion (Tikhonov & Arsenin, 1977) in statistics and supporttee machines (Boser et al., 1992; Cortes &
Vapnik, 1995) in machine learning, which correspond to miming either squared loss or hinge loss with
£2 regularization. Meanwhile/1 regularization has become very popular for learning in fdghensional
spaces since the introduction of lasso (Tibshirani, 198&undamental assumption éi regularization is
the sparsity of model parameters. Sparse models autothasetect relevant features and have the advan-
tage of being easy to interpret and good generalizationtyalilhigh-dimensional problems.

Recently, designing informative regularization has besnaf the main approaches for multi-task learn-
ing (Argyriou et al., 2006), transfer learning (Raina et 2006) and semi-supervised learning (Belkin et al.,
2006). The key idea is to encode information from relatellsasource domains and unlabeled data into the
penalty. Also, additional structure assumptions on mocketsbe imposed Vviél regularization. Fused lasso
(Tibshirani et al., 2005) includes &m penalty on the differences of successive model coefficemisleads
to piecewise constant estimations. Group lasso (Yuan,&2@06) adds further restrictions on the standard
sparsity: model coefficients in the same group tend to beosetro together. Structured sparsity (Huang
et al., 2009) generalizes the group lasso to allow othectsired assumptions on the sparsity pattern.

The proposed work in Part | and Part Il is based on the framewbregularization, where we encode
extra information about the model space and the featureedpaxregularization penalties.

2.2 Compressed Sensing

Compressive sampling (Candes, 2006) or compressed sexngho, 2006) was recently developed for
signal acquisition, and has received considerable atteiiBaraniuk et al., 2008). According to this theo-
ry, one can successfully acquire a signal, e.g., an imagey many fewer measurements than required by
Nyquist-Shannon sampling theory. The key assumption issijaals like natural images are compressible,
i.e., nearly sparse in a compression domain. Under thisrgstsan, /1 regularized reconstruction algorithms
can reconstruct a signal from only a few linear measuremeitsre the key is to minimize the measurement
errors plus a penalty (or constraint) on tHenorm of the reconstructed signal in a predefined compression
domain. The use of a compression for image reconstructiotivates our formulation of learning com-
pressible models (Section 3), which encodes informatiautthhe model space as compression operations.

2.3 Multi-Task Learning

Multi-task learning has been an active research area foertwmn a decade (Baxter, 1995; Thrun &
O’Sullivan, 1996; Caruana, 1997). For joint learning of tipl tasks, connections need to be established to
couple related tasks. One direction is to find the featuresire shared by tasks. Along this direction, re-
searchers propose to infer the feature structure by peirigroovariance estimation (Argyriou et al., 2006;
Argyriou et al., 2007), principal components (Ando & Zha2§05; Chen et al., 2009) and independent
components (Zhang et al., 2006) on the model parameterg)dot& common subset of features (Brown
& Vannucci, 1998; Obozinski et al., 2009), as well as to usaesth hidden nodes in neural networks (Bax-
ter, 1995; Caruana, 1997). On the other hand, assumingskl &re equally similar is risky. Researchers
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recently began to directly infer the relatedness of taskses€ efforts include using mixtures of Gaussian-
s (Bakker & Heskes, 2003) or Dirichlet processes (Xue et24lQ7) to model task groups, encouraging
clustering of tasks via a convex regularization penaltgdbaet al., 2008), identifying “outlier” tasks by
robust t-processes (Yu et al., 2007b), and inferring a tamKagity matrix (Bonilla et al., 2008; Yu et al.,
2007a; Zhang & Yeung, 2010). In Section 5, we propose a muadtisate normal penalty with sparse inverse
convariances to systematically select and encode bothréestructures and task relations.

2.4 Error-Correcting Output Codes

Error-correcting output codes (ECOCSs) offer a general &aork to decompose a multiclass classification
problem into a number of binary classification problems {@ich & Bakiri, 1994). Via ECOCs, a mul-
ticlass problem can be solved using binary classifiers. Muoortantly, the binary problems provide a
redundant representation of the multiclass problem. Assaltreprediction errors can be corrected using
such redundancy, as studied in channel coding and errogetiorg codes (Cover & Thomas, 1991).

Theencodingof ECOCs decomposes the multiclass problem into a set offbprablems, and defines
the codewordas the outcomes of the binary problems. Popular ECOC decgitiggnstrategies include
one-versus-all (Dietterich & Bakiri, 1994), one-versusgedHastie & Tibshirani, 1997), random partition-
s (Allwein et al., 2001), and partitions obtained by probldependent heuristic search (Crammer & Singer,
2002; Pujol et al., 2006). On the other hand, deeodingof ECOCs decides the class of an example given
the prediction on its codeword. This is achieved by exangimiththeq candidate classes (forgaclass prob-
lem) and choosing the class that minimizes a distance fam¢Dietterich & Bakiri, 1994), minimizes a
loss function (Allwein et al., 2001), maximizes a probdpifunction (Hastie & Tibshirani, 1997; Passerini
et al., 2004) or optimizes certain other criteria (Escadtral., 2010) w.r.t. the predicted codeword.

In Part 1l of this thesis, we present error-correcting atitpodes fomulti-label classification.

2.5 Canonical Correlation Analysis

Since the introduction of canonical correlation analysisHotelling (Hotelling, 1935; Hotelling, 1936),
CCA has become a fundamental tool to analyze the relatioivgelka twosetsof variables. CCA extracts
projection directions for both sets of variables such theirtcorrelation in the projected space is maximized.
A recent overview of CCA with application to learning praflg is given in (Hardoon et al., 2004). Several
variants of CCA have been recently proposed: sparse CCAdh\t al., 2009; Hardoon & Shawe-Taylor,
2009) enforces the sparsity of projection vectors and leangerpretable models; kernel CCA (Fyfe & Lai,
2001; Hardoon et al., 2004) handles nonlinear associabenhseen variables; a nonparametric Bayesian
extension of CCA, sparse infinite CCA (Rai & Daume, 2009) vahgood predictive power. In Part Il of
this thesis, we will use CCA as the building block of our nHdfbel error-correcting output codes.

2.6 Active Learning

Active learning selects unlabeled samples for labelingdeoto maximally reduce the generalization error
of the classifier using limited labeling efforts. Since tlengralization error is difficult to measure directly,

many other criteria have been proposed for sample selertiactive learning (Settles, 2009), e.g., un-
certainty sampling (Lewis & Catlett, 1994), query-by-coitiee (Seung et al., 1992; Freund et al., 1997),
version space reduction (Tong & Koller, 2002), expectedraeduction (Roy & McCallum, 2001).



Recently there has been interest in active learning foriplelprediction tasks. Co-testing (Muslea
et al., 2006) is a multi-view active learning strategy, iniethexamples receiving different predictions from
multiple views are selected. In (Reichart et al., 2008),triakk active learning is performed by iteratively
selecting samples from each task or aggregating the smiestbres from all tasks. In (Qi et al., 2008), it is
proposed to estimate the correlation of labels and predmnalabel distribution to guide active learning.
In structured prediction, active learning can query eitireentire structured instance or subcomponents of
an instance (Roth & Small, 2006). In Part IV of this thesis, stidy active learning with multiple tasks
coupled by output constraints. Co-testing is a special oatgs setting: tasks are to predict the same label
from different views, and task outputs are coupledagyeementonstraints (i.e., predictions should agree).

Part |
Learning with Extra I nformation about Models

In Part I, we focus on encoding extra information about theleh@pace into learning. In Section 3, we
propose learning compressible models (Zhang et al., 20dtBre domain knowledge about the model s-
pace can be encoded as a compression operation in modednegtibn. In Section 4, we study a case
where the correlation structure of the model space can bedddrom large amounts of irrelevant unlabeled
text (Zhang et al., 2008). In Section 5, we consider learmudfiple related tasks: a compact representa-
tion of multiple models can be automatically inferred as drixaormal distribution with sparse inverse
covariances (Zhang & Schneider, 2010a) and used to couglesgunlarize multiple tasks.

3 Learning Compressible Models (Completed)

We considelearning compressible modeis encode domain knowledge about the model space as a com-
pression operation and then regularize the learning psdoderms of model compressibility:

Join Lp(w, b) + Al[Pwl]y @
wherew is thep-dimensional parameter vectéris the intercept term, anflp is an empirical loss defined
w.r.t. the training seD. A key part of (1) is the compression operatiBrthat encodes extra information
about the model space: the mogelis compressed before being penalized by dh@enalty, and thusv
tends to follow the compression pattern encodeH {ine., sparse in the compressed domain). We restrict our
attention to the case whekeis ap x p matrix, representing a linear and invertible compressioeration.

In this case, optimization of (1) can be performed efficiefflhang et al., 2010).

3.1 Model Compression: Local Smoothness

Many useful functions have compact representations: aoh$tnctions, linear functions, piecewise linear
functions, quadratic functions, and so on. A key qualityhefse functions ismoothnessvhich is a property
of theirderivatives a constant function has zero first-order derivatives, ecgwise) linear function has zero
second-order derivatives (at most locations), a quadiatiction has zero third-order derivatives, etc. In this
part, we define compression operations related to the lotabthness of model coefficients.
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Order-1 smoothnesassumes that model coefficients do not change very ofterg alamatural order,
which has been studied in fused lasso (Tibshirani et al.5P@0dd total variation minimization (Rudin
et al., 1992). This correspondsdparse first-order derivativesnd leads to (piecewise) constant estimation.
Order-1 smoothness can be imposed by plugging into (1) a @swijenP that calculates the first-order
derivatives at successive locationswf(Zhang et al., 2010)Order-2 smoothnesassumesparse second-
order derivativesand leads to (piecewise) linear estimation. The comprasBidor order-2 and other
higher-order smoothnessan be defined recursively based on the order-1 smoothnegzression (Zhang
et al., 2010) Hybrid smoothneskappens when model coefficients have several groups, ahdyeaap has
its own natural order and smoothness property. In this dsan be defined asldock diagonalmatrix.

3.2 Model Compression: Energy Compaction

The energy of many real-world signals is concentrated inveifequencies, i.e., compacted in the frequency
domain. This is a foundation of both image (Wallace, 199%isEtpoulos et al., 2000) and audio (Spanias,
1994) compression. As a result, a model needs to operateaordyfew (relevant) frequencies to accurately
classify these signals (e.g., images), i.e., a good modell&s compacted energy in the frequency domain.
In this sense, a frequency domain transform can be usedrimngacompressible models, e.g., the discrete
cosine transform (DCT) used in the JPEG standard (Walla@@2)1 The2D DCT is a linear operation
onm x n images and thus can be rewritten as a linear operation »r vectors, where = mn is the
dimension of the linear modet for classifying images. Plugging this operation as the casgionP in (1)

will lead to a model estimation that has compacted energlyarfrequency domain.

3.3 Experimental Results

In our experiments (Zhang et al., 2010), we study brain-agepinterface and handwritten digit recogni-
tion, where local smoothness and energy compaction ar@pygie model assumptions, respectively. In
brain-computer interface, we classify Electroencephalplgy (EEG) brain signals. An EEG signal contains
several EEG channels, and each channel is a time seriess Befise, we assunchannel-wise smoothness
model coefficients are smooth (along time) within each ckanie use a diagonal block compression ma-
trix, as discussed in Section 3.1, where each block is arm-drdenoothness compression for a channel. The
resulting compressible logistic regression reduces thesification error of sparse logistic regression from
30.0% to 20.92%. In digit recognition experiments, we learn to recognizadweritten digits. We assume
energy compaction in the frequency domain for the model a®sd2D DCT as the model compression.
The learned model has sparse coefficients in the frequenoyido gives better recognition rates, and more
interestingly, shows meaningful patterns in the origirigepdomain about the digits being recognized.

4 Learning the Semantic Word Correlation from Irrelevant Te xt (Complet-
ed)

Certain structure of the model space can be inferred frombahbd data. For text-related learning problems,
the large amount of unlabeled text from the Web is a valuadlece of information. However, the Web is an
uncontrolled environment and thus unlabeled text in the Yivaip not be relevant to a specific learning task.
This violates the assumption of many semi-supervised ilegnmethods. In this section we show that, for
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text-related learning problems, the correlation striectfrthe model space can be learned from seemingly
irrelevant unlabeled text and then used to improve learafrany specific task (Zhang et al., 2008).

4.1 Learning the Semantic Correlation of Words

We first identify the semantic correlation of wotdss a structure of the model space that can be transferred
from unlabeled text. Consider a document classificatioblpro, where we have only one positive example
containing two wordg gasoline, truck and one negative example containing two wofdste, election.

Most people will agree that a new document with wofdallon, vehiclé should be classified as positive,
althoughgallon andvehiclehave never been observed in the training set. The key reagbatgallon is

the unit ofgasoling andtruck is a type ofvehicle Since the classifier should have positive weights on
gasolineandtruck (as they appear in the only positive examplggllon andvehicleare likely to receive
positive weights, too. Formally, treemantic correlation of wordsorresponds to a correlation structure of
the model coefficients and provides a strong inductive biathée model space. Also, this is an intrinsic
structure of the language and thus will not change dranibtiegen in irrelevant unlabeled text.

We propose to infer the semantic word correlation from sagiyiirrelevant unlabeled text and incor-
porate it into learning of any specific task (Zhang et al.,800Ne first extract a large number of latent
topics from unlabeled text, by repeatedly applying boatgting and topic modeling. We then infer the
word correlation from the word composition of the extractegics. The resulting correlation structure is
used inf2-regularization for learning any specific task (as the dati@n in the Gaussian prior):

argmin Z Ly, wix; +b) + 2wl 3w (2

wb Ty

wherew is the vector of model coefficients,is the intercept terml is the empirical loss defined on the
training example$x;, y; }1- ,, andX; is the semantic correlation of all words (in the problem dha

4.2 Experimental Results

In our empirical study (Zhang et al., 2008), we constru@d text classification tasks from a real-world
benchmark. For each task, the majority of the unlabeledaexfrom irrelevant tasks, and thus most semi-
supervised learning techniques are ineffective. Surgigi howevermost of the 190 tasks are significantly
improved by encoding the semantic word correlation infeéfrem irrelevant unlabeled text

5 Multi-task Learning with A Sparse Matrix-Normal Penalty ( Completed)

In this section, we propose a matrix-variate normal penaltii sparse inverse covariances to encode the
model space and couple multiple tasks (Zhang & Schneid@&0 Recent methods on discovering com-
mon feature structures among tasks (Argyriou et al., 2006 )d@rectly inferring task similarity (Jacob et al.,
2008) are variants of the special cases of our formulatiogarhing multiple (parametric) models can be
viewed as estimating a parameter matrix, whose rows andnc@wworrespond to tasks and features. Matrix-
variate normal distributions are powerful tools for chégaeing the structure of a matrix. We follow the
matrix normal density and design a penalty that decompdsefull covariance of matrix elements into the

1We consider the bag-of-word feature space for simplicitye proposed method can also be applied to n-gram feature.spac
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Kronecker product of row covariance and column covariamtech characterize task relations and feature
representations, respectively. We then perform sparsarieovce selection (viél penalties) on the inverse
of task and feature covariances in order to automaticalgcseneaningful task and feature structures.

5.1 Matrix-Variate Normal Distributions

The matrix-variate normal distribution is one of the mosti@ly studied matrix distributions (Dawid, 1981;
Gupta & Nagar, 1999). Consider am x p matrix W. SinceW hasmp elements, the covariance for the
elements oW is of sizemp x mp, which is prohibitively large. To utilize the structure W as a matrix,
matrix normal distributions assume that the full covar@amé W can be decomposed as the Kronecker
productX ® €2, where2 is anm x m covariance matrix ofn rows andX is anp x p covariance matrix op
columns. As a resuliv follows a matrix normal distribution with the log-densit@pta & Nagar, 1999):

log P(W) o Zlog(|2]) — 2 og(|S]) — 5or{Q7 (W ~ M)S~ (W — M)T) ©

whereM is them x p expectation matrix, and| and¢r are determinant and trace of a square matrix.
Consider a set af samples W, }"_; where eactW; is anm x p matrix generated by a matrix-variate
normal distribution as eq. (3). The maximum likelihood mestiion (MLE) of meariM is (Dutilleul, 1999):

R 1 <
=1
The MLE estimators of2 andX are solutions to the following fixed-point equations:

A np

(0 = FTEW NS o
X = LY (W —M)TQ (W, — M)

It is efficient to update2 andX as (5) until convergence, i.e., the “flip-flop” algorithm (eul, 1999).

5.2 Learning with a Matrix Normal Penalty

Consider a multi-task learning problem with tasks ang features. Models are represented bynarx p
matrix W, where each row corresponds to a task. The matrix normaltge83 provides a structure to
couple multiple tasks itW: 1) we set the expectatiaM = 0 to prefer simple models; 2) the x m row
covariancef? describes théask similarity 3) thep x p column covariance matriX: represents &ature
structureshared by tasks. This yields the following total la&sv.r.t. W,  andX::

L= Z ZL(y(t) <0 W(t,:)) + X [plog || + mlog |Z| + tr{Q WX W7} ()

A i A
t=1 i=1

where\ controls the strength of the matrix-normal penalty) is a convex empirical Ios$y§t),x§t)) is the

ith training example of theth task, andW (¢, :) is thetth row, i.e., the parameter vector of ttth task.
We minimize (6) by alternating optimization. Wh&€hand: are fixed, we solv@V by minimizing:

m ng
SN L xP W) + At {Q It WETIWT) ©)
t=1 i=1
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which is a convex function w.r.iW. WhenW in (6) is fixed, we can infef2 andX by minimizing:
plog || +mlog |Z| + tr{Q'WE'WT} (8)

which is solved as the MLE estimation & andX in a matrix normal as (5), given one observat\di
Several recent multi-task learning formulations (Argyriet al., 2006; Jacob et al., 2008; Hariharan

et al., 2010; Zhang & Yeung, 2010) are variants of the spexdaks of (6). They either learn a feature

structureX (but ignore the task structure) or include a task relafiofbut ignore the feature representation).

5.3 Sparse Covariance Selection in the Matrix-Normal Pen&}

Covariance selection enforces zero entries in the Gauigsiarse covariance and thus discovers conditional

independence between variables (Dempster, 1972; Baredrggde 2008; Friedman et al., 2007). Use of the

matrix-normal density in (6) enables us to perform covaréaselection to select task and feature structures.

When © in (6) has a sparse inverse, task pairs corresponding toerdries inQ2~! are not explicitly

coupled. Similarly, a zero entry IR~ indicates no direct interaction between two corresponéiagures.
Formally, we rewrite (6) to include two additionél penalties on the inverse 6f andX::

£=3"3S"LE" <" W(t,) + Alplog [2] + mlog || + tr{Q T WETWT}] + Ao[|Q7 |1 + Asl[Z 7y
t=1 1=1

where|| ||; is the/1-norm of a matrix, and\p and Ay, control the strength of twél penalties. Due to the
additional penalties, optimizin@® andX: given W becomes a new problem:

A A
Iélilel plog || + mlog |X| + tr{ﬂ_1W§]_1WT} + TQ||Q_1||1 + TE||E_1||1 (20)

To solve (10), as in the flip-flop algorithm (5), we iterativ@ptimize 2 andX until convergence:

{ Q = argming plog ||+ tr{Q I (WE'WT)} + 22|07

R 11
Y = argming mlog|E| +tr{E"H(WTQ W)} + 22| By (11)

Note that both equations in (11) afe regularized covariance selection problems, for which iefficopti-
mization has been intensively studied (Banerjee et al.832Bfledman et al., 2007).

5.4 Experimental Results

In our experiments (Zhang & Schneider, 2010a), we study dntéme detection problem and a face recog-
nition problem, where multiple tasks correspond to detgctandmines at different landmine fields and
classifying faces between different subjects, respdgti®e compare to recent multi-task learning meth-
ods that either infer the feature structure (Argyriou et 2006) or the task relation (Jacob et al., 2008).
Experiments are conducted with varied amounts of trainimges and paired T-tests (over 30 random run-
s) are provided. Experimental results show that the spaesgxamormal regularization provides a flexible
framework to couple multiple tasks and outperform the cditgre with statistical significance.

9)
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Feature Space Model Space

Figure 1: The idea of projection penalties (linear cases)

Part Il
Learning with Extra I nformation about Features

In Part I, we focus on encoding extra information about thetdire space into learning. Extra information
about feature structures can usually be conveyed by a diomatisy reduction, e.g., a subset of important
features, a clustering of low-level features, a generdlfeasubspace or manifold. Directly performing a
feature reduction, however, can potentially lead to losmfoirmation and predictive power. In Section 6,
we propose the projection penalty framework that effettiencodes an arbitrary feature reduction into
learning but avoids the risk of information loss. In Sectibnwe consider multi-view learning, where
projection penalties offers an opportunity to simultarspaddress both overfitting and underfitting.

6 Projection Penalties: Dimensionality Reduction withoutLoss (Complet-
ed)

In this section, we propose the projection penalty (Zhangcrieider, 2010c): reducing the feature space
can be viewed as restricting the model search to certain Insadepace; instead of directly imposing such a
restriction, we can search in the full model space but peadfie projection distance to the model subspace.
In this sense, information from the feature reduction igduseguidethe model search rather than to com-
pletely restrict the model search to the reduced model subspace. As a resjdictppn penalties encode a
feature reduction into learning while alleviate the riskrdbrmation loss.

6.1 Linear Cases

The idea of projection penalties in linear cases is showngnE A linear feature reductio® is and x p
matrix that projects data from? to R%, wherep andd are the dimension of the original and reduced feature
space. This feature reduction is equivalent to a restricifche model spackl — M p, and we propose to
learn the modeWw in the full spaceMl but penalize the projection distance to the model subspége
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Given a feature reductioR, learning models in the reduced feature space can be forealude:

argmin Z L(y;, vT (Px;) + b) (12)
VeRd7b i=1

where{x; € RP,y;}!' , aren training examples in the original feature spalds and x p linear reduction,
(v € R% b) is the model in the reduced space, dnis the empirical loss. This can be rewritten as:

argmin Z L(ys, (PTv)Tx; + b) (13)
veR b i=1

Note thatP”v € RP has onlyd degrees of freedom asc R?. Definew = PTv, eq. (13) is equivalent to:

argmin Z L(y:, whx; +b) (14)
weMp,b i—1

whereM p is a model subspace iR defined as:
Mp={weR’|w=Plv, 3ve RY (15)

In (14) we see that performing a linear feature reducfibis equivalent to restricting the model search to
a model subspac#1p as defined in (15). The risk of such a restriction is that,calth P highlights the
relevant part of the feature space, the optimal model doesauessarily belong to the model subspade .
Thus, we propose to search models in the full model spaceamalipe the projection distanceAd p. This
leads tathe formulation of projection penalties for linear featusgluction

argmin Z L(y;, wlx; + b)+ min AJ(w—wp) (16)

weRP.b i—1 wpEMPp

where )\ is a regularization parametef,is a penalty function such as tlf& or ¢1 norm, andwp is the
projectionof w onto M p under the penalty measue Optimization of the projection penalty formula (16)
is detailed in (Zhang & Schneider, 2010c), which dependserchoice of empirical losé and penalty/.

6.2 Kernel-Based and Other Nonlinear Cases

The usefulness of projection penalties is limited if we caly@ncode a linear feature reduction in learning
linear models. Therefore, we extend projection penaltdsetnel-based and other nonlinear cases.

The kernel-based projection penalty shares the same idbahvei linear case, as shown in Fig 1 and
eg. (16), but both the feature reductiPrand the modew are defined in a reproducing kernel Hilbert space
(RKHS). In this case, the feature reductiBPnmaps the data to an RKHS and performs a linear reduction
from this RKHS to a low-dimensional subspace. Our goal isnoode the information of this reduction
to learn a modelv in the RKHS. To attain this goal, we develop the represeiiteorem and the dual
optimization for kernel-based projection penalties (Zh&Schneider, 2010c).

In (Zhang & Schneider, 2010c) we also study projection gasafor a given nonlinear feature reduction
that is not linear in either the original or any kernel featgpace. An example of such a nonlinear feature
reduction is a fully generative topic model like latent Diriet allocation.
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6.3 Experimental Results

In the empirical study (Zhang & Schneider, 2010c), we appbjgetion penalties to various dimension re-
duction techniques in different applications, includir: principal component analysis and partial least
squares in housing price forecasting; 2) kernel PCA, gdimethdiscriminant analysis and Orthogonal
Laplacianfaces in face recognition; 3) latent Dirichlébedtion in text classification. Prediction is always
improved by using the projection penalty instead of disep#rforming the reduction. This indicates that the
projection penalty is a more effective and reliable way toogle the information from a feature reduction.

7 Projection Penalties for Multi-View Learning

In the presence of multiple views, researchers are corddonith a dilemma. To addreswerfitting we

should emphasize the consistency of multiple views in otdeestrict and regularizethe model space.
To handleunderfitting on the other hand, we should try to combine the informatiemfmultiple views

in order to furtherexpandthe feature and model space. As a result, we consider a welti{projection

penalty framework to address both overfitting and undar§jttbased on the following observations:

e The projection penalty is an effective way to find a tradekmfween a high-dimensional rich feature
space and a low-dimensional restricted feature space.

e Recentresearch has shown that canonical correlationsas@f/CA) can potentially find a low-dimensional
feature space that preserves the information from multige's (Foster et al., 2008).

e We can learn in a jointly augmented feature space (constiticom multiple views) and apply the pro-
jection penalty to the shared low-dimensional feature sgextracted by CCA).

Part Il
Learning with Extra I nformation about Labels

In Part Ill, we focus on encoding extra information about ldlgel space into learning. In Section 8, we
propose error-correcting output codes (ECOCSs) for maliel classification (Zhang & Schneider, 2010b),
where predictable directions in the label space are exiaoy canonical correlation analysis (CCA) and
included into the output code for error correction. In Sat®, we analyze the link between CCA and Partial
Least Squares and propose a new procedure to generate fiect&vefoutput codes.

8 Multi-Label ECOCs with Canonical Correlation Analysis

Error-correcting output codes (ECOCSs) are traditionattgigned to decompose a multiclass classification
problem into a set of binary problems (Dietterich & Bakir@4). As a result, the multiclass problem can
be solved using only binary classifiers, and the binary mmisl also provide a redundant representation to
correct prediction errors. Unlike classes, labels in rialbel classification are no longer mutually exclusive.
In ag-label problem, the cardinality of the output spd¢e- {0, 1} is 27 instead ofy in a ¢-class problem.
This change of output space in multi-label classificaticgspnts new challenges to output coding:
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¢ Validity of the encoding. An ECOC encodes the target problem by decomposing it intonaber of
binary decision problems, each differentiating two subsétclasses. In multi-label problems, however,
two subsets of labels can be simultaneously satisfied bginezkamples, which makes the binary deci-
sion ill-defined on these examples. Ideally, the encodimgilshbe well-defined for all training examples
and future testing examples.

e Efficiency of the decoding In multiclass ECOCs, the decoding for each test examplesuslly per-
formed by searching over ajl possible classes and choosing the one that optimizesrceritaria. In
multi-label problems, however, searching o2eétabel vectors for g-label problem is inefficient.

e Predictability of the codeword. In ECOCs, codewords need to be predicted by models and tieds p
dictability of codewords is an important concern for enogdiln multi-label ECOCs, encoding via binary
problems is ill-defined and a new encoding is needed to pebath valid and predictable codewords.

e Dependency among labelsin multiclass problems, classes are mutually exclusives &liminates most
dependency structures among classes except weak negatektion. In multi-label problems, however,
various dependency structures exist among labels anddshewdxploited in the output code design.

In this work, we propose an error-correcting output coderfatti-label classification. This ECOC provides
valid encoding, efficient decoding, and predictable coddsthat exploit the label dependency.

8.1 Canonical Correlation Analysis

Consider a set gf variablesx € X C RP and another set af variablesy € ) C R9Y. For a multi-label
problem,x denotes the feature vector apdienotes the label vector. In this case, we hgve {0,1}7. In
addition, we have a training set efobservationsD = (X,Y) = {(x®,y@)}”_,, whereX andY are
of sizen x p andn x ¢, respectively. Canonical correlation analysis startfwéeking a pair of projection
directionsu € RP andv € RY, such that theorrelation betweernu” x andv’y is maximized:

u'XTYv

argmax 17
uERgPNERq VI XTXu)(vIYTYvV) 4

This problem can be solved as a generalized eigenproblemudbia et al., 2004), where the solution pro-
vides multiple pairs of projection vectofs, v). By solving for the firstd principal eigenvectors, we can
obtaind pairs of projection vectorsf(u;, vj)};?zl. We denote this process as:

{(u;,v;)}9_, + CCAX,Y) (18)

8.2 Multi-label ECOCs: Encoding

In our encoding, CCA in (18) plays a key role: tieanonical output variate@r;fy}?:l are well known as
the most predictable variates (Hotelling, 1935), whichideal candidates to be included in the codeword

2For simplicity, one can assume that the data have been beetrauch that each dimension has zero mean.



8 MULTI-LABEL ECOCS WITH CANONICAL CORRELATION ANALYSIS 16

Figure 2: The factor graph representation of undirectedlgcal model used for decoding the output.

for correcting prediction errors. For an examplavith the label vectoly = {y1,...,y,} and canonical
output variate‘dtvfy}?zl, the output encoding fat is:
Z:(917---7yq,VTYa---anTY)T (19)

Given the training setX, Y) = {(x®,y®)}7_,, we will learnq classifiers{j, . . ., p,} to predict they la-
bels{yi,...,y,}, andd regression model&n, ..., 7, } to predict thel canonical variateév?y, ..., vly}.

8.3 Multi-label ECOCs: Decoding
For a test examplg, each learned classifigl predicts a Bernoulli distribution;(y;,) for a labely;:

i(y;) = D) (L —p;(x)" %), j=12,....q (20)
and each regression modg}, predicts a Gaussian distributian,(y) for a canonical variatedTy:
(viy —rg(x))?
267 ’

Yrp(y) o< exp— k=1,2,...,d (21)
where the variance terdy, is estimated by cross validation on the training examples.

In the decoding, the predictive distributions (20) and (@) be represented as a factor graph in Figure 2,
and we have the following joint probability for the label t@cy of the test exampl&:

q d

log P(y) = —log 2+ log ¢;(y;) + A _log v (y) (22)
j=1 k=1

where Z is the partition function, and is a hyperparameter to balance two types of potentials. tExac

inference forP(y) in (22) has a time complexity exponentialjndue to the fact that each Gaussian potential

¥y in (21) usually involves all the labels. We consider a mean-field approximatiodP{y ) in the form:

Qly) =[] Qi) (23)
j=1

Q(y) is in the class of fully factorized distributions where e@gf(y;) is a Bernoulli distribution on label
y;. We minimize the KL divergenc& L(Q||P) to find the best)* in the class (Jordan et al., 1999). Notice

that the resulting approximatia@*(y) = [7_, Q;(y;) provides a set of classifief®) (y;)}7_, on labels.
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9 Optimal Code Design: Unifying CCA and Partial Least Squares

In our multi-label ECOCs, we use the output projections oforacal correlation analysis (CCA) to produce
the output code. Careful examination of the recent variah@®CA (Witten et al., 2009; Hardoon & Shawe-

Taylor, 2009; Hardoon et al., 2004) and the connection bet@&CA and Partial Least Squares (Rosipal &
Kramer, 2006) suggests a potentially new procedure to pedhore effective codes:

e Neither maximizing theorrelation between projected variables (as in CCA) nor maximizingcibnari-
ancebetween projected variables (as in PLS) explicitly optesithe predictability of the output code.

e Sparsity can be imposed on the output projections of CCAs §ivies a sparse encoding matrix and sparse
factor graph in decoding, which captures localized labpktielency and improves decoding efficiency.

e Both CCA and PLS can be viewed by an iterative extraction@eithtion procedure. For output code
design, a new deflation that is different from both CCA and Riz§ be proposed, which can potentially
produce more output projections (and thus more redundancydewords) than the standard CCA.

Part IV
Active Learning with Extra Information

10 Multi-Task Active Learning with Output Constraints

In this section, we consider active learning for multiplegtction tasks when their outputs are coupled by
constraints (Zhang, 2010). A cross-task value of inforamatiriterion is proposed, which encodes output
constraints to represent not only the uncertain of the ptiedi for each task but also the inconsistency of
predictions across tasks. A specific example of this cadteleads to the cross entropy between the predictive
distributions of coupled tasks, which generalizes theomotif entropy in single-task uncertainty sampling.

10.1 Value of Information for Active Learning

We want to learn a classifigr given an example from the input space’, we can predict the conditional
probability of the labely: p(Y = y|x), Vy € Y. In pool-based active learning, we choose from a pool of
unlabeled sampleW for labeling. To estimate how useful labeling a sample U is for improving the
current modep = p(Y|x), we measure the value of information (Krause & Guestrin 9200r (Y, x):

VOI(Y,x) Zp =y|x)R(p,Y = y,x) (24)

which is the sum of theeward R(p, Y = y, x) of each labeling outcomg = y, weighted by the estimated
probability 5(Y = y|x) of each outcome. Different reward functions are availadtel two examples are:

R(pP,Y =y,x) = —logyp(Y = ylx) (25)

R(p,Y =y,x) = 1-0(y,argmaxp(Y =y'[x)) (26)
y/
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The reward (25) is the Shannon information content of theaueY = y given the distributiorp. An
impossible outcome (with = 0) has an infinite reward, and an already known outcome (ith1) has no
reward. The second reward (26) takes the vélifehe labeling outcome agrees with the model prediction
1y’ and takes the valukotherwise. Incorporating (25) or (26) into the framework)(2ve have:

VOI(Y,x) = - Zp = ylx)logy (Y = ylx) (27)
VoI(Y,x) = 1-— maxp( = y|x) (28)
Yy
which are entropy-based uncertain sampling and leastdmmtfsampling, respectively (Settles, 2009).

10.2 Cross-Task Value of Information

Consider a set df" tasks, each with a (categorical) response variablé = 1,2,...,7. Our goal is to
learn a classifier for each task; = p;(Y;|x),i = 1,2,...,T. Each sample in our training sete U is
associated witl" labels. We usé/ L(x) to denote unknown labels on U L(x) = {Y; : Y; is unknown for
x}. In multi-task active learning, we need to measure the vafugformation for requesting a lab&} on a
samplex, as follows:

VOI(Y;,x) = sz Y; = yi|x)R(Y; = yi, %) (29)

whereR(Y; = y;,x) is the reward for a pOSSIb|e labeling outcoMé = y;, x) for all tasks. Given a set of
constraintdC among task outputs, labeling outcome for one lal&lan provide information for other tasks.
Therefore, we define the setpfopagated outcomess the outcomes that can inéerred from Y; = y;:

PTOPC(Y;':yi):{Yj:yj’Y;:yi _>C}/j:yj} (30)

Examples of such inference between task outputs includeeaggnt (in multi-view learning), mutual exclu-
sion, inheritance, etc. For examplexifs apolitician thenx is also aperson(Y; = 1 — Y; = 1).
Using the notion of propagated outcomes, we rewrite thesefask value of information (29) as follows:

VOI(Y;,x) = sz Y; = yilx) > R(p;,Y; = y;,%) (31)

Yj=y;EProps (Yi=y;)
Y, EUL(x)

whereR(p;, Y; = y;,x) is the reward of an inferred outcomé = y; for the modelp;, as (25) or (26).
A Case Study If we plug the reward in (25) into the framework (31), we have

VOI(Y;,x) = sz Y; = yilx) > —logy p;(Y; = y;[x) (32)
Yj=yjEProps (Yi=y;)
Y; €U L(x)

This new criterion in (32) can be viewed as the sum of cros@pyntbetween the modg} and other coupled
modelsp;. Recall that the cross entropy of two distributiaRgy) and P;(y) is defined as:

H(P;, Pj) ZP )log, P;(y) (33)
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H(P;, P;) increases with the discrepancy®ffrom F;, so it captures the inconsistency of two distributions.
Note thatP; and P; in (33) are defined on the same quangjtyout any two predicted distributions andp;

in (32) are defined on different task outputs. In this sertseconstraint€ plays a key role to couple the
predicted distributions of different tasks. As a resulassrtask VOI in (32) is essentially the sum of cross
entropy between the predicted distributigrand other coupled predicted distributighs Maximizing (32)
will select the sample-task pdi¥;, x) whose model predictiop; is contradicting other models.

10.3 Empirical Study and Future Work

We conduct our empirical study on web information extratémd document classification (Zhang, 2010).
Results on both problems demonstrate the effectivenesgeafross-task value of information in collecting
labeled examples for multiple coupled tasks. In the futuoekwve will study: 1) probabilistic constraints,
e.q0.,.P(Y; = y;|Yi = v;) = 0.9; 2) class imbalance and active learning; 3) the connectawéen active
learning and semi-supervised learning, e.g., cross-taske\of information for semi-supervised learning.

Part V
Summary and Schedule

We summarize the completed work and provide a timeline fefftiture work in Table 1.

Table 1. Summary and Schedule.

\ Res