cmds2/run_CnnFeat.sh  --  Generating Convolution Layer Activation and Save to Kaldi Feature Format
----------------------------------------------------------------------------------------------------------------------

Kaldi currently has no components for convolution layers. Thus, we are unable to do decoding with CNN. A workaround for this issue is to generate convolution layer activation with PDNN and save the outputs into Kaldi feature format. Refer to Kaldi+PDNN for more details.

This command loads a well-trained CNN model, generates convolution layer activation and save the activation to Kaldi feature format.


argument
meaning
default value
--in-scp-file             
path to the .scp file for network input features
required                    
--cnn-param-file CNN parameter file which has been trained by cmds/run_CNN.py
required
--cnn-cfg-file
CNN config file
required
--out-ark-file path to the (Kaldi-formatted) .ark file to store the network activation required