
Detection and Tracking of Boundary of Unmarked Roads

Young-Woo Seo
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213 USA

Email: young-woo.seo@ri.cmu.edu

Ragunathan (Raj) Rajkumar
Dept of Electrical Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213 USA
Email: raj@ece.cmu.edu

Abstract— This paper presents a new method of detecting
and tracking the boundaries of drivable regions in road without
road-markings. As unmarked roads connect residential places
to public roads, the capability of autonomously driving on such
a roadway is important to truly realize self-driving cars in daily
driving scenarios. To detect the left and right boundaries of
drivable regions, our method first examines the image region
at the front of ego-vehicle and then uses the appearance
information of that region to identify the boundary of the
drivable region from input images. Due to variation in the
image acquisition condition, the image features necessary for
boundary detection may not be present. When this happens,
a boundary detection algorithm working frame-by-frame basis
would fail to successfully detect the boundaries. To effectively
handle these cases, our method tracks, using a Bayes filter, the
detected boundaries over frames. Experiments using real-world
videos show promising results.

I. INTRODUCTION

This study aims at developing a computer vision algorithm
that detects and tracks the boundaries of drivable regions
appearing on input images. The roads we are particularly
interested in are paved roads, but no road-markings (e.g.,
lane-markings, stop-lines, etc.) are painted, like ones con-
necting public roads to residential areas. Figure 1 shows
four examples of such roads. To make self-driving cars truly
useful, they should be capable of driving on such roads to
demonstrate autonomous driving maneuvers from a house,
through public roads, to a destination. This work reports the
progress of our effort that develops the perception part of
such a driving capability – detecting and tracking of drivable
regions’ boundaries.

We assume that, in a given image, the appearance (e.g.,
color and texture) of drivable regions would be, with a minor
variation, homogeneous. To understand the characteristics
of the drivable regions’ appearance, we analyze the image
sub-region at the front of ego-vehicle. The blue rectangles
in Figure 1 show examples of such a sampling area. The
idea of analyzing the image region around ego-vehicle to
understand the characteristics of drivable regions has been
exploited in many outdoor navigation work [1], [2], [3], [4],
[5], [6]. However, the actual methods of identifying road-
drivable regions are different from one another, e.g.) utilizing
lidar scans to define close-range drivable regions [2], using a
stereo camera to define road plane [3], and using the results
of vanishing point detection to guide the sampling region [4].
They are all similar to each other in that they analyzed the
color in multi-channels (e.g., Hue-Saturation-Intensity) of the
sampling area to extract color patterns of drivable regions.
By contrast, our method does not learn the color model of

Fig. 1: Sample images of road without road-markings and
the outputs of the proposed algorithm. A self-driving car
should be capable of driving on roads like the ones appearing
on these images. To do so, it is necessary to identify
the boundaries of drivable regions. Red lines represent the
outputs of our boundary detection algorithm and green lines
depict the outputs of our boundary tracking algorithm.

drivable regions because 1) analyzing images in multiple
color channels requires more resources (e.g., computational
time and memory space) and 2) learning the color model
is often unreliable in terms of the performance of a color
classification. Instead our method transforms an input image
into a bird-eye view image and uses an intensity thresholding
to identify the boundary of drivable regions. Alon et al. also
used an inverse perspective image to identify the left and
right boundaries of off-roads [7].

The performance of image-based algorithms is sensitive
to the variation of the relevant image features’ presence.
For example, if the values of image features such as color
or intensity, are drastically changed due to the changes
in an image acquisition process, frame-by-frame detection
algorithms would fail to provide the outputs consistent over
frames. To avoid such inconsistent outputs, we develop a
Bayes filter to track the detected boundaries. To this end, we
use Dickmanns and Mysliwetz’s seminal work, the clothoid
model of road shape [8] to model the detected boundary and
develop an unscented Kalman filter (UKF) [9] to implement
to track the detected boundaries.



Most work of the drivable region boundary tracking begins
with a boundary detection. For the boundary tracking, they
used the results of boundary detection as measurements. The
majority of boundary tracking work employed the particle fil-
ter [10], [11], [12], [13], [14]. To the best of our knowledge,
the clothoid (or Euler spiral) is the most widely used model
for delineating road geometric shape. Some works including
ours used the clothoid to model road shape and approximated
actual shapes using cubic polynomials. Using this clothoid
model, some works aimed at tracking the boundaries of rural
roads [10] and unpaved roads [11], but most of them targeted
to track the boundaries of paved roads with road-markings
[12], [13], [14].

In what follows, we detail how our method detects the
boundaries of roads paved, but no road-markings painted
in Section II-A. And then we describe how our method,
using an unscented Kalman filter (UKF), tracks the detected
boundaries over frames in Section II-B. Section III discusses
the finding of the experimental results and Section IV sum-
marizes the findings.

II. IDENTIFICATION OF DRIVABLE REGION BOUNDARIES
OF ROADS WITHOUT ROAD-PAINTING

This section details how our method 1) detects the left
and right boundaries of roads with no-road-paintings and 2)
tracks the detected boundaries over frames.

To detect the boundaries of drivable regions, we first con-
vert an input image into a bird-eye view image (or an inverse
perspective image). We do this to reduce the computational
cost for image processing1 and to remove any distortion
caused by perspective image acquisition. From an inverse
perspective image, our method analyzes the image region
at the front of our vehicle to understand the characteristics
of drivable regions’ appearance. In particular, we determine
two intensity threshold values to identify the drivable region.
Given the results of such a simple, but effective image
analysis, we identify multiple of road-boundary points from
the left and right side of ego-vehicle. The detected boundary
points are then used as measurements for the boundary
tracker. We use the clothoid model to model the boundary of
drivable regions and develop an UKF to track the detected
boundaries.

A. Detection of Drivable Region Boundaries

To detect the boundary of road, we first transform an
input image into an inverse perspective image [15] and then
analyze a rectangular image region at the front of ego-
vehicle to understand the characteristics of drivable regions’
appearance. The red rectangle at Figure 2 (b) shows an
example of such a sample image region. This red rectangle
corresponds to the blue rectangle at Figure 2 (a). We do
such a sampling because we assume that drivable regions
appearing on an input image have similar appearance (e.g.,
intensity). Figure 2 (b) shows an example of an inverse
perspective image that converts the input image shown at
Figure 2 (a). This happens through the transformation, PG =

1The dimension of an inverse perspective image (i.e., 627×711) is smaller
than that of the original image (i.e., 2448×2048).

Fig. 3: Examples of the boundary points. (a) The red
circles represents the detected boundary points on an inverse
perspective image. (b) The boundary points detected from
an inverse perspective image are projected onto an input,
perspective image.

TGI PI , where PG is a point of an inverse perspective image,
TGI is the inverse perspective transformation matrix, PI is a
point on the input image.

Using pixels in the sample region, we analyze the intensity
of drivable regions and compute the statistics (i.e., mean,
µI and standard deviation, σI ) of intensity to choose two
intensity thresholds: µI − 3σI and µI + 3σI . We assume
that the intensity of drivable regions follows a Gaussian
distribution, x ∼ N(µ, σ) and choose all the pixels within
3σ (intensity values similar to 99% of the sampling area).
We apply such an intensity thresholding to the input image
and perform a connected-component analysis to the results
of the thresholding, to identify a drivable region. Figure 2
(c) shows the results of these steps. As the thresholding is
not a fine-tuned technique, the results of the thresholding
is not optimal in that this method does not return a convex
polygon of drivable region. However, as shown in Figure 2
(c), executing grouping based on pixels’ connectivity results
in most of the pixels belonging to the drivable region into
the same pixel group. This technique is fairly simple, but
works effectively in that the pixel group with the largest
pixels always corresponds to the drivable region of an input
image. Figure 2 (c), for instance, shows that our thresholding
method returned a pixel group in light blue color at the
right front of our vehicle. Although this pixel group has
a couple of elliptical holes in it, the edges of the pixel
blob correspond to the boundary of drivable regions. Once
we find a pixel group corresponding to the drivable region
(i.e., the pixel group with largest number of pixels), we scan
through the pixel group, investigate the n number of rows,
and pick two end of points of each investigating row as
the left and the right boundary points. This results in 2n
boundary points, B =

{
bLj ,b

R
j

}
j=1,...,n

, where bL,Rj ∈ R2

is a two-dimensional vector containing the pixel coordinates,
bLj
(
bRj
)

= [xLj , y
L
j ]T

(
[xRj , y

R
j ]T

)
. Figure 3 (a) shows the

examples of these detected boundary points in an inverse
perspective image and its perspective image (b).

B. Tracking of Drivable Region Boundaries

The previous section describes how our boundary de-
tection method works. Our boundary detector analyzes a
rectangular image sub-region at the front of our car on an in-



Fig. 2: (a) A part of an input image (i.e., the yellow rectangle area) is transformed into a bird-eye view image (or an
inverse perspective image) (b) to remove perspective effects and to facilitate image processing. (c) Our algorithm analyzes
the image region at the front of our vehicle and detects drivable-region by applying intensity-thresholding.

Fig. 4: The road-shape model and the measurement model.

verse perspective image and applies an intensity thresholding
to identify drivable image region. A connected-component
grouping is applied to the result image of intensity thresh-
olding and the biggest pixel group is chosen as the drivable
image region. This detection method results in 2n boundary
points, B =

{
bLj ,b

R
j

}
j=1,...,n

. This section details how our
boundary tracker models, using these boundary points, the
left and the right boundaries and track, using a Bayes filter,
these boundaries over time.

We use the clothoid to model roadway’s geometric shape
[8]. A clothoid defines a function of road curvature given
road (longitudinal) length, κ(l) = c0 + c1l =

∫ l
0
κ(τ)dτ ,

where c0 is the initial curvature and c1 is the curvature
derivative. Suppose that the starting point of a clothoid is

(x0, y0), where the curvilinear coordinate, l = 0, then each
coordinate of the curvature function is in fact defined as

x(l) = x0 +

∫ l

0

sin θ(τ)dτ (1)

y(l) = y0 +

∫ l

0

cos θ(τ)dτ (2)

To numerically evaluate these functions, it is required to
approximate them using the Taylor expansions of sin θ and
cos θ. The first-order approximation of the clothoid equations
is as

x =
1

6
c1y

3 +
1

2
c0y

2 + βy + xoffset (3)

where xoffset is the lateral offset between the boundary and
the vehicle (or boundaries of vehicle body), β is the heading
angle with respect to the vehicle’s driving direction, c0 is the
curvature, and c1 is the curvature rate. Figure 4 illustrates
this model. We use this equation to model the boundary of
drivable region appearing on an image and define the state
of our boundary tracker as:

x = [xoffset, β, c0, c1]
T (4)

Algorithm 1 describes the procedure how our method
tracks drivable region boundary. Our tracker takes, as input,
ego-vehicle’s speed and the outputs of the boundary detection
methods described in Section II-A.

We initialize the state and its covariance matrix as

x0 = [100, 0, 0, 0]
T (5)

P0 = diag(
[
102, 0.052, 0.012, 0.0012

]T
) (6)

Our initialization assumes that the boundary is initially
straight and located from 100 pixels, laterally away from
ego-vehicle. We empirically set those values for initializing
P and found that they worked well.

An UKF uses an unscented transformation to model a non-
linear dynamics [9]. This often works better than that of Ex-
tended Kalman filter, which uses a linearization technique to
approximate a non-linear dynamics using Jacobian. Because



Algorithm 1 UKF for tracking the drivable regions’ bound-
aries.
Input: vk, ego-vehicle’s speed and

2n boundary points, B =
{
bLj ,b

R
j

}
j=1,...,n

,

Output: x̂k = [voffset, β, c0, c1]
T , an estimate of the road-

shape
For the left (and the right) boundary, do the following:

1: Given a previous estimate, x̂k−1 and Pk−1, compute
2m+ 1 sigma points and their weights,
(χj , wj)← (x̂k−1,Pk−1, κ)

2: Predict a state and its error covariance,
(x̂−
k ,P

−
k ) = UnscentTransform(f(χi, wi),Q)

3: Predict a measurement and its error covariance,
(ẑk,Pz) = UnscentTransform(h(χi, wi),R)

4: Compute Kalman gain, Kk = PxzP
−1
z , where,

Pxz =
∑2m+1
i=1 wi

{
f(χi)− x̂−

k

}
{h(χi)− ẑk}T

5: for all
{
bLj (bRj )

}
j=1,...,n

∈ B do
6: x̂k = x̂−

k +Kj(zj − ẑj)
7: Pk = P−

k −KjPjK
T
j

8: end for

of Jacobian, it may cause a divergence problem [16]. At the
step 1, the unscented transformation begins with generating
2m+ 1 sigma points,

χ1 = xk, χi+1 = xk + ui, χi+m+1 = xk − ui, (7)
w1 = κ

m+κ , wi+1 = 1
2(m+κ) , wi+m+1 = 1

2(m+κ) (8)

where m is the dimension of the state, for our case, m = 4,
ui is a row vector from UTU = (m+ κ)Pk, κ = 3−m is
a constant, and

∑2m
i=0 wi = 1.

For the prediction steps 2 and 3, these sigma points
sampled around the current state, x̂k are used to compute
the mean and covariance of the process model, f(x), to
approximate the non-linear process model.

x̂−
k =

2m+1∑
i=1

wif(χi) (9)

P−
k =

2m+1∑
i=1

wi {f(χi)− x̂k} {f(χi)− x̂k}T (10)

where x̂−
k and P−

k are the predicted state and its covariance.
Using such an unscented transformation, our process model,
f(xk) predicts how the shape of a road is changed with an
assumption that the acceleration and yaw rate of ego-vehicle
are constant during each time step, ∆t.

xk+1 = f(xk) + qk = f(χi, wi)i=1,...,2m+1 + qk (11)

=


1 v∆t 1

2 (v∆t)2 1
6 (v∆t)3

0 1 v∆t 1
2 (v∆t)2

0 0 1 v∆t
0 0 0 1

xk + qk

where v is a speed of ego-vehicle and qk is noise of the
process model, qk ∼ N(0,Q).

The measurement model, h(x̂−
k ) = ẑk also uses the un-

scented transformation to predict the expected measurements

at a given state. The measurement model is defined as

ẑk = h(x̂−1
k ; y) + rk = h(χi, wi)i=1,...,2m+1 + rk

=
1

6
c1y

3 +
1

2
c0y

2 + βy + xoffset (12)

where rk is the noise of the measurement model, rk ∼
N(0,R). Figure 4 illustrates the measurement model, where
a crimson, dashed line at the right is a boundary line based
on the expected measurements.

The next step, the step 4 is to compute a Kalman gain
that is used to determine how importantly a measurement
is used to estimate the state. When each boundary point is
used to estimate the state, the last step updates the state as
much as the Kalman gain using the innovation (or residual),
(zk− ẑk), the difference between an actual measurement and
a predicted measurement.

Figure 5 shows a sequence of detection and tracking
outputs where the benefit of tracking is demonstrated. Some
of the detection outputs incorrectly picked up the boundary
locations whereas the tracking outputs correctly delineated
the boundary of drivable regions on roads without road-
paintings.

III. EXPERIMENTS

This section details the settings and results of the experi-
ments we carried out to evaluate performance of the proposed
algorithm. The goal of this work is to develop computer
vision algorithms that accurately detect and reliably track
the boundaries of drivable regions of the roads with no road-
markings. We first detail the experimental setup in Section
III-A and then discuss the experimental results in Section
III-B.

A. Experimental Settings

To collect video data, we drove our robotic vehicle [17]
on multiple routes of sub-urban regions around Pittsburgh.
These video data were obtained under various weather and
illumination conditions. One video was recorded in wither
with snow accumulation in the background, another were ob-
tained in spring, under fairly gentle illumination conditions,
and the last was recorded on an evening in summer.

The vision sensor installed on our vehicle is PointGrey’s
Flea3 Gigabit camera, which can acquire an image frame
of 2448×2048, maximum resolution at 8Hz. For a faster,
real-time processing, we rescaled the original resolution into
half and used a predefined ROI, x1 = 0, x2 = Iwidth−1,
y1 = 1300 and y2 = 1800 for the inverse-perspective
transformation.2

We implemented the proposed algorithms in C++ with
OpenCV libraries. Our implementation of boundary detection
and tracking ran about 10 Hz on a 2.7 GHz Pentium V.
For the UKF, we used the Bayes++ package3 to imple-
ment our boundary tracker and initialized the state and its
error (or covariance) matrix, x0 = [xoffset, β, c0, c1]

T
=

[100, 0, 0, 0]
T and P0 = diag

(
[102, 0.052, 0.012, 0.0012]

)
,

2These y-values are in the original resolution. If the image is scaled to a
half of the original, these y-values are scaled as well.

3http://bayesclasses.sourceforge.net/Bayes++.html



Fig. 5: An example sequence of drivable-regions’ boundary detection and tracking.

where the values of x is in pixels, β is in radian, c0, and
c1 are dimensionless curvature. In addition, the noises of the
process model, Q = diag

(
[102, 0.052, 0.012, 0.0012]

)
and

the measurement model, R =
[
32
]
.

B. Experimental Results

We evaluate resulting boundary delineation in terms of
accuracy of matching between output and ground truth
pixels. To the best of our knowledge, no image data is
available on identifying boundaries of unmarked road that
we could use for comparison. Hence, we had to manually
delineate the image data used for the evaluation.4

To evaluate our results at a pixel-to-pixel level, we utilized
the method from evaluating performance of object boundary
detection [18]. Similar to [18], we regard the extraction
of boundaries as a classification problem of identifying
boundary pixels and of applying the precision-recall metrics
using manually labeled boundaries as ground truth. Precision
is manifested in the fraction of outputs that are true positives;
recall is the fraction of correct outputs over true positives. To
evaluate the performance using these metrics, it is necessary
to solve a correspondence problem that determines which
output pixels are used to detect which true positive pixels.
While resolving such a correspondence problem, we must
carefully consider a localization error that accounts for the
(Euclidean) distance between an output pixel and a ground
truth pixel. Indeed, localization errors are present even in
the ground truth images as well. For resolving the corre-
spondence between output pixels and ground truth pixels, we
utilized the Berkeley Segmentation Engine’s 5 performance
evaluation scripts. These scripts solve, using Goldberg’s CSA
package, the correspondence problem as a minimum cost
bipartite assignment problem. Table I shows the performance
difference between the detection and tracking of drivable
regions’ boundary, where the F-measure is computed by

4Some video clips about the results are available from http://www.
cs.cmu.edu/˜youngwoo/research.html

5The BSE and related information are available at http://www.cs.
berkeley.edu/˜fowlkes/BSE/

f = 2×precision×recall
precision+recall . The performance of our detection

algorithm showed a reasonable performance. As expected,
the tracking indeed improved our system of identifying the
boundaries of unmarked roads 11%.

F-measure Precision Recall
Detection 0.70 0.63 0.78
Tracking 0.83 0.78 0.89

TABLE I: A precision-recall metric comparison.

Figure 6 shows some example outputs of our boundary
detection and tracking algorithms. The first two rows show
some of the correctly tracked boundary outputs and the
last row show some example outputs that boundaries were
incorrectly identified. Because our boundary detector works
based on an intensity-thresholding, it occasionally failed
to correctly pick up the boundary pixels. Despite of the
detector’s failures, the tracker was able to smooth out incon-
sistent outputs from the detector. However, our algorithms
failed to track the boundaries 1) when our vehicle turned at
intersections (e.g., the first image at the last row in Figure 6),
2) when the intensities of ground are highly uneven (e.g., the
images between the second and the fourth at the last row),
and 3) when the curvature of roads is high (e.g., the last
image).

IV. CONCLUSIONS AND FUTURE WORK

This paper presented our methods of detecting and track-
ing the boundaries of drivable regions of road with no
road-markings. To detect the left and right boundaries of
drivable regions, our method examines the image region at
the front of ego-vehicle and uses the analyzed appearance
information of that region to identify the boundary of the
drivable region from input images. Due to variation in the
image acquisition condition, the image features necessary for
boundary detection might not be present. When this happens,
a boundary detection algorithm working based on frame-by-
frame would fail to successfully detect the boundaries. To
prevent this, our method tracks, using an Unscented Kalman



Fig. 6: Example outputs of boundary detection and tracking.

filter, the detected boundaries over frames. Experimental
results using real-world videos show promising results.

Our boundary tracking algorithm failed to track the bound-
ary when ego-vehicle turned at intersection, drove on slanted
road or road with high-curvature road. To improve the
performance our algorithms on these cases, we would like
to incorporate the vehicle motion information from an IMU
and the information about the geometric shape of upcoming
road from a map of road-network, if available.
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