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Abstract We consider approximation schemes for the maximum constraint satis-
faction problems and the maximum assignment problems. Though they are NP-
Hard in general, if the instance is “dense” or “locally dense”, then they are known
to have approximation schemes that run in polynomial time or quasi-polynomial
time. In this paper, we give a unified method of showing these approximation
schemes based on the Sherali-Adams linear programming relaxation hierarchy. We
also use our linear programming-based framework to show new algorithmic results
on the optimization version of the hypergraph isomorphism problem.
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1 Introduction

In the maximum constraint satisfaction problem (Max-CSP), given a variable set
V over the domain D and a set of constraints C over the variables in V , we want to
find an assignment α : V → D that maximizes the fraction of constraints satisfied
by α. Max-CSP includes many fundamental problems such as Max-Cut and Max-SAT.

In general, Max-CSP is NP-Hard, and it is even NP-Hard to approximate within a
constant factor [4]. However, de la Vega [19] showed that there is a polynomial-time
approximation scheme for Max-Cut if the input graph is dense, i.e., it has Ω(n2)
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edges. Here, a polynomial-time approximation scheme (PTAS) is an algorithm that,
given ε > 0 as a parameter, gives a (1−ε)-approximation to the optimal value, and
runs in polynomial time for any constant ε. Max-k-CSP is a subproblem of Max-

CSP, in which each constraint involves at most k variables, where k is a constant.
Arora et al. [3] and Frieze and Kannan [9] showed PTASs for dense Max-k-CSP, i.e.,
the input instance has Ω(nk) constraints. Now it is known that we can compute
(1 − ε)-approximation to the optimal value in time that depends only on k and
ε [1].

There are two directions to generalize PTASs for dense Max-k-CSP. The first
one is to generalize the notion of the density condition. We say that an instance of
Max-2-CSP is metric if the weights of the constraints form a metric. Max-Cut [21]
and Max-Bisection [18] admit PTASs if the instance is metric. The notion of local

density is introduced to generalize the notion of metric to constraints over more
than two variables. If the instance is locally dense, Max-k-CSP admits PTASs [20].

The second direction is to handle the maximum assignment problems (Max-AP).
In this problem, given a variable set V and a set of constraints, we want to find a
permutation π of V to maximize the fraction of satisfied constraints. Max-AP in-
cludes many fundamental problems such as Maximum Acyclic Subgraph, Betweenness,
Maximum Graph Isomorphism, Densest k-Subgraph, and Quadratic Assignment Problem.
Max-k-AP is a special case of Max-AP, in which each constraint involves at most
k variables (see Section 2 for the precise definition). We say that an instance of
Max-k-AP is dense if it has Ω(nk) constraints. Arora et al. [2] showed a quasi-
polynomial-time approximation scheme for dense Max-k-AP and PTASs for many
special cases.

As we have seen, Max-CSP and Max-k-AP admit PTASs (or quasi-PTASs) in the
dense case and the locally dense case. However, the techniques to obtain them vary
a lot. For example, [3] is based on the idea of exhaustively trying all assignments for
a small number of variables and then solving the rest using the partial assignment.
On the other hand, [9] used a variant of Szemerédi’s regularity lemma [17]. To deal
with the metric case, [21] used the method of copying important variables, and
[20] considered a variant of singular value decomposition of tensors to deal with
the locally dense case.

1.1 Linear Programming (LP) relaxation and LP relaxation hierarchies

LP relaxations are a standard tool to design approximation algorithms. In this
well-known algorithmic framework, we typically model the given problem as an
integer program, solve an LP relaxation, and use the optimal fractional solution
to construct a feasible integral solution for the original problem (which is called a
rounding procedure). We usually analyze the algorithm by comparing the value of
the rounded solution to the value of the optimal fractional solution (which is an
upper bound on the value of the optimal integral solution). In this way, the best
approximation guarantee we can hope for, is the maximum gap (over all instance)
between the values of optimal integral solution and the optimal fractional solution,
which is usually referred to as the integrality gap of the relaxation.

In order to make the integrality gap smaller, we can strengthen the LP re-
laxation by additional constraints. People have proposed systematic ways to add
additional constraints, such as Lovász-Schrijver LP relaxation hierarchy [11] and
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Sherali-Adams LP relaxation hierarchy [16]. These LP relaxation hierarchies con-
tain a sequence of LP relaxations, where each LP relaxation is obtained by strength-
ening the previous one in the sequence. The `-th LP relaxation in the sequence
is usually called the `-round relaxation, and typically can be solved in nO(`) time
(where n is the number of variables in the original integer programming). The
relaxation usually becomes as strong as the integer programming when ` becomes
n; but it also takes exponential time to solve it.

It is known that o(n)-round Lovász-Schrijver LP relaxation and no(1)-round
Sherali-Adams LP relaxation do not help to reduce the integrality gap for Max-Cut

[15,7]. For some other CSPs, the integrality gap remains even after strengthening
the linear-round LP relaxation hierarchies with the power of semidefinite con-
straints (a.k.a. the Lasserre hierarchy) [14]. On the other hand, it is known that
LP hierarchies do help for some CSPs when the instance is dense. [22] showed that
the integrality gap of the Oε(1)-round Sherali-Adams LP relaxation drops to an
arbitrarily small constant ε for dense Max-Cut instances.

LP relaxation and its hierarchies have found many connections to other known
algorithmic frameworks, and to be a unified approach to solve several classes of
problems. A few examples are listed as follows. Assuming the Unique Games Con-
jecture, a canonical LP relaxation (also referred to as the Basic LP) is shown to
provide optimal approximation guarantee for CSPs with strict constraints [10]. It
is known to the authors that constant-round Sherali-Adams LP relaxation decides
the satisfiability of bounded-width CSPs; Atserias and Maneva [5] recently showed
that the Sherali-Adams LP relaxation hierarchy for graph isomorphism interleaves
with the levels of pebble-game equivalence with counting (i.e. higher-dimensional
Weisfeiler-Lehman color refinement algorithm).

1.2 Our results

In this paper, we present the Sherali-Adams LP relaxation hierarchy as a unified
approach to dense and locally dense problems – we show that a small number
of rounds of the Sherali-Adams LP relaxation gives an approximation scheme to
dense Max-k-CSP and all their variants studied in the previous works.

Our first main theorem deals with dense and locally dense Max-k-CSP.

Theorem 1 (Informal version of Theorem 5) For any ε > 0, O( 1
ε2 )-round Sherali-

Adams LP relaxation gives (1− ε)-approximation to dense or locally dense Max-k-CSP.

Then, we turn to dense and locally dense Max-k-CSP with global cardinality
constraints. For explanatory purposes, we only consider bisection constraint, i.e., the
domain is {0, 1} and the number of variables that are assigned to 0 should be equal
to the number of variables that are assigned to 1. We show that

Theorem 2 (Informal version of Theorem 8) For any ε > 0, O( 1
ε2 )-round Sherali-

Adams LP relaxation gives (1 − ε)-approximation to dense or locally dense bisection

Max-k-CSP.

Finally, we consider the dense Max-k-AP problems, and show that

Theorem 3 (Informal version of Theorem 6) For any ε > 0, O( logn
ε2 )-round

Sherali-Adams LP relaxation gives (1 − ε)-approximation to dense or locally dense

Max-k-AP problems with n variables.
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In all the precise theorem statements, we actually show additive approxima-
tion guarantee (i.e. the value of the rounded solution being at least the fractional
optimal value minus a constant error) instead of multiplicative approximation
guarantee. However, since we define the problems in a way that the optimal solu-
tion is Ω(1) (see Section 2 for the precise definition of the problems), an additive
approximation scheme implies a multiplicative approximation scheme.

1.2.1 New algorithmic guarantees

Let us define the problem Maximum k-Hypergraph Isomorphism as follows. Given
two weighted k-uniform hypergraph G = (V, ω′) and H = (V, ω′′), where ω′, ω′′ :
V k → [0, 1] are the weight functions over all possible hyperedges. The goal is to
find a permutation π over V so that

∑
e∈V k ω

′(e)ω′′(π(e)) is maximized (where
π(e) is the edge obtained by applying π on each incident vertex of e). It is easy
to see Theorem 3 implies that O( logn

ε2 )-round Sherali-Adams LP relaxation gives
(1 − ε)-approximation to Maximum k-Hypergraph Isomorphism when both G and H

are dense.
We are able to apply our analysis framework for the Sherali-Adams LP re-

laxation to another special case of Maximum k-Hypergraph Isomorphism, getting the
following new algorithmic guarantee.

Theorem 4 (Informal version of Theorem 7) For any ε > 0, O( logn
ε2 )-round

Sherali-Adams LP relaxation gives (1−ε) approximation to the Maximum k-Hypergraph

Isomorphism problem when one of the two graphs is locally dense and the other graph

is dense, where n is the number of vertices in the hypergraphs. Therefore, this special

case of the problem admits a (1− ε)-approximation algorithm in time nO( logn

ε2
).

1.3 Proof overview

The first step of our algorithms is to condition on a set of random variables in
a solution to the Sherali-Adams LP relaxation. In the `-round Sherali-Adams LP

relaxation (or the SA relaxation for short), for each set of variables S of size at
most `, we have a probability distribution µS over assignments on S. First we
solve (k + `)-round SA relaxation, where ` is a parameter depending on the error
parameter ε. Then, we randomly sample a set of variables u1, . . . , u` and assign
values to them by sampling values from µ{u1}, . . . ,µ{u`}, respectively. By this

conditioning, we obtain a solution to k-round Sherali-Adams relaxation µ′ with
the same LP value in expectation. An important fact here is that variables become
almost independent in the sense that, if we sample a k-tuple (v1, . . . , vk) according
to a dense (or locally dense) distribution (this distribution corresponds to the
weights of the constraints in k-CSP and k-AP instances), the distribution µ{v1,...,vk}
and the product distribution µ{v1} × · · · × µ{vk} are close in expectation.

The second step of our algorithms is to round the solution to the SA relaxation
where the variables are almost independent. For dense (or locally dense) k-CSP
and bisection k-CSP, the rounding algorithm just samples a value from µ{v} and
assigning it to v for each variable v. It is relatively easy to show that the expected
value of the sampled solution is close to the LP value, and therefore gives a (1−ε)-
approximation.
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For k-AP problems, however, such independent sampling method does not work
– there might be more than one variables assigned to the same value and we do not
get a permutation when this happens. Instead, we view the marginal probability
distributions on single variables, µ{u}(w), as a doubly stochastic matrix. We view
this doubly stochastic matrix as a probability distribution of permutations. We
iteratively choose two permutations in the support of the distribution and merge
them into a new permutation, until there is only one permutation left in the
support – which is the output of our rounding algorithm. The operation of merging
two permutations is interestingly similar to the merging operation used in [2],
although the purposes are different. See Section 4.2 for more details.

1.4 Comparison to previous works

We first compare the running time of our SA relaxation-based algorithms with

the previously known counterparts. For Max-k-CSP, the running time nO(1/ε2) of
our method matches the one of the method by [3]. For Max-k-AP the running time

nO(logn/ε2) of our method matches the one of the method by [2]. [2] improved the

running time to nO(1/ε2) for various problems by reducing them to CSPs. We can
use the same techniques to obtain the same running time for these problems.

The number of rounds (O( 1
ε2 )) in Theorem 1 improves the corresponding theo-

rem in [22] which showed that Õ( 1
ε4 )-round SA relaxation gives (1−ε)-approximation

to dense Max-Cut.

The idea of conditioning variables of a solution to LP/SDP hierarchies is used
in [13,6] to solve variants of Max-2-CSP. Let G = (V,E) be the underlying graph of
an instance of Max-2-CSP. Barak et al. [6] showed that (i) the covariance between u
and v over V 2 gets close to zero by conditioning, and (ii) the covariance between u

and v over E gets close to the covariance between u and v over V 2 by conditioning
if G is expander-like. Combining these two results, they show a PTAS for Max-2-
CSP when G is expander-like. This method can be also applied to dense graphs,
but it is not clear how to generalize it to metric graphs and k-CSP.

Raghavendra and Tan [13] used mutual information instead of covariance to
measure correlation between two variables and simplified the proof. They noticed
that conditioning is useful to deal with global constraints such as cardinality con-
straints since after conditioning we can sample variables independently and the
resulting solution will not break global constraints much. With this idea, they
gave a 0.85-approximation algorithm for Max-Bisection. Though our method and
analysis are similar to theirs, we use the independence for obtaining PTASs for
the dense and locally dense case as well as supporting global constraints. Also,
to handle constraints of larger arities, we use total correlation instead of mutual
information to measure correlation among variables.

Coja-Oghlan et al. [8] showed that, even if the instance is sparse, if it satisfies
a certain pseudo-random condition, then Max-k-CSP admits PTASs. If k = 2, this
results can be seen as a special case of [13] because the pseudo-random condition
would imply that the underlying graph is expander-like. Their result is incompa-
rable to ours because it is not clear how the pseudo-random condition and the
locally dense condition.
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1.5 Organization

In Section 2, we introduce definitions and notions used in this paper. In Section 3,
we show an algorithm that obtains an almost independent solution to the Sherali-
Adams LP relaxation. Section 4 is devoted to show how to round the obtained
solution to the Sherali-Adams LP relaxation. We combine the two steps together
in Section 5. Sections 6 and 7 are devoted to prove auxiliary lemmas. We consider
CSPs with global cardinality constraints in Section 8.

2 Preliminaries

For an integer a ≥ 1, [a] denotes the set {1, . . . , a}. For a set Y and 0 ≤ k ≤ |Y |,
(Yk ) denotes the family of sets X ⊆ Y with |X| = k. We usually use V to denote the
set of variables in a problem, and use n = |V | to denote the number of variables.
For an event A, 1[A] denotes the corresponding indicator function.

Probability theoretic notions: We recall several notions from probability theory. For
a probability distribution µ on Ω, supp(µ) denotes the support of µ, i.e., supp(µ) =
{i ∈ Ω | µ(i) > 0}. For a set S, i ∼ S means that we sample i uniformly at random
from S.

Let µ1 and µ2 be two probability distributions on a finite set Ω. Then, the
L1 distance between them is defined as ‖µ1 − µ2‖1 =

∑
i∈Ω ‖µ1(i) − µ2(i)‖

. The Kullback-Leibler divergence between them is defined as dKL(µ1‖µ2) =∑
i∈Ω µ1(i) log µ1(i)

µ2(i)
. and the Kullback-Leibler divergence dKL(µ1‖µ2) are defined

as follows. We provide the following fact without proof.

Lemma 1 Let µ1 and µ2 be two probability distributions on a finite set Ω. Then,

‖µ1 − µ2‖1 ≤
√

2dKL(µ1‖µ2).

Information theoretic notions: We now recall some definitions from information
theory. For a random variable x, µx denotes the corresponding probability distri-
bution. That is, for any i, we have µx(i) = Pr[x = i].

Let x be a random variable on a finite set Ω. The entropy of x is defined as
H(x) = −

∑
i∈Ω Pr[x = i] log Pr[x = i].

Let x and y be jointly distributed variables on a finite set Ω. The entropy

of x conditioned on y is defined as H(x | y) = E
i∼µy

[H(x | y = i)]. The mutual

information of x and y is defined as I(x;y) = dKL(µ(x,y)‖µx × µy).
Let x1, . . . ,xk (k ≥ 2) be jointly distributed variables on a finite set Ω. The

mutual information of x1, . . . ,xk is defined as I(x1; . . . ;xk) = I(x1; . . . ;xk−1) −
I(x1; . . . ;xk−1 | xk), where I(x1; . . . ;xk−1 | xk) = Ei∼µxk

[I(x1; . . . ;xk−1 | xk =

i)]. The total correlation of x1, . . . ,xk is defined as C(x1, . . . ,xk) = dKL(µ(x1,...,xk)‖µx1
×

· · · × µxk).
We give two well-known facts in information theory below.

Lemma 2 Let x and y be two jointly distributed variables on a finite set Ω. Then

I(x;y) = H(x)−H(x | y).
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Let x1, . . . ,xk be jointly distributed variables on a finite set Ω. Then

I(x1; . . . ;xk) =
∑

(i1,...,it)⊆[k],t≥1

(−1)t−1H(xi1 , . . . ,xit).

Lemma 3 Let x1, . . . ,xk be jointly distributed variables on a finite set Ω. Then

C(x1, . . . ,xk) =
∑

(i1,...,it)⊆[k],t≥2

I(xi1 ; . . . ;xit).

Constraint satisfaction problems: Let D be a nonempty finite domain and k ≥ 2 be
an integer. An instance I = (V, ω, P ) of k-CSP consists of a set V of variables, a scope

distribution ω over V k, and a set of payoff functions P = {PS : DS → [0, 1] | S ∈ V k}.
An assignment for an instance I = (V, ω, P ) is a mapping α : V → D. The value of
the assignment, denoted val(I, α) ∈ [0, 1], is defined as val(I, α) = Pr

S∼ω
[PS(α|S)],

where α|S is the projection of α to S. We define the optimum value of the instance
I to be opt(I) = maxα{val(I, α)}.

Let I = (V, ω, P ) be an instance of CSP. A solution to the `-round Sherali-
Adams relaxation consists of a probability distribution µS over DS for each set
S ⊆ V of size at most `. The objective function is the probability that α is in PS ,
where S is sampled from ω and α is sampled from µS . Strictly speaking, we sample
a tuple (v1, . . . , vk) from ω, but we regard it as the set {v1, . . . , vk} when we use it
as a subscript of µ. In other words, µS and µT are the same distribution for two
tuples S and T if they are the same as sets. Also, for every pair of sets S and T

with |S ∪ T | ≤ `, the corresponding probability distributions µS and µT must be
consistent on S ∩ T . Formally, the `-round Sherali-Adams relaxation for a k-CSP
instance I = (V, ω, P ) (` ≥ k) is written as follows.

maximize E
S∼ω

E
α∼µS

[PS(α)]

subject to Pr
α∼µS

[α|S∩T = β] = Pr
α∼µT

[α|S∩T = β] ∀S, T ⊆ V, |S ∪ T | ≤ `, β ∈ DS∩T .

It is not hard to see that the relaxation above can be written as a linear program-
ming (see, e.g., [12] for details). We define xv as the random variable sampled from
the distribution µ{v}. We use valLP(I,µ) to denote the objective value of the LP
solution µ. The same definition applies to the following subsections.

Assignment problems: The assignment problem differs from CSP in that we want
to maximize the objective function over the set of permutations. Similarly to CSP,
for an integer k ≥ 2, an instance of the degree-k assignment problem is given as
I = (V, ω), where V is the set of variables, ω is a distribution over V k × V k. The
scope distribution of I is the marginal distribution of ω on the first k elements. An
assignment for an instance I = (V, ω) is a permutation π of V . The value of the
assignment π, denoted val(I, π), is defined as

val(I, π) = nk Pr
(U,W )∼ω

[∀i ∈ [k] : π(ui) = wi] ,

where U = (u1, u2, . . . , uk) and W = (w1, w2, . . . , wk). We define the optimum value
of I to be opt(I) = maxπ{val(I, π)}.
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Though the definition of val(I, π) may look non-standard, it is just the objec-
tive function used in [2] with a normalization factor that is multiplied to make the
optimum Ω(1) when ω is dense.

The `-round Sherali-Adams relaxation of an k-AP instance I = (V, ω) (` ≥ k)
is as follows.

maximize E
(U,W )∼ω

Pr
α∼µU

[∀i ∈ [k] : α(ui) = wi]

subject to Pr
β∼µS

[β|S∩T = α] = Pr
β∼µT

[β|S∩T = α] ∀S, T ⊆ V, |S ∪ T | ≤ `, α ∈ V S∩T∑
α∈V S

∑
u∈V \S

µS∪{u}(α ∪ {u→ w}) =
∑
α∈V S

µS(α) ∀w ∈ V, S ⊆ V, |S| < `.

The difference from the Sherali-Adams relaxation for CSP is that we have extra
constraints in the last line whose intended meaning is that each value i can be
taken by at most one variable.

Density condition: We now introduce the notion of dense and locally dense distri-
butions.

Let ω be a probability distribution over a finite set Ω. For ∆ ∈ (0, 1], we say ω

is ∆-dense if for every a ∈ Ω, it holds that ∆ · ω(a) ≤ 1
|Ω| .

Let ω be a probability distribution over V k. Let di(v) = Pr
S∼ω

[Si = vi] be the

probability that the i-th coordinate is v under ω. For ∆ ∈ (0, 1], we say ω is
∆-locally dense if for every (v1, . . . , vk) ∈ V k, it holds that

∆ · ω(v1, . . . , vk) ≤ 1

|V |k−1

∑
1≤i≤k

di(vi).

Since di(v) =
∑

S∈V k:Si=v
ω(S), the RHS of the locally dense condition is equal

to
∑

1≤i≤k
E

S∼V k
[ω(S) | Si = vi]. Thus the locally dense condition says that no tuple

(v1, . . . , vk) is “wild” in that ω(v1, . . . , vk) is at most constant times the sum over
i of the average probability mass of S with Si = vi.

The notion of local density is introduced in [20] to generalize the metric con-
dition. To see this, suppose ω : V 2 → R is a metric. Then, ω is 1-locally dense
since, for any u, v ∈ V , we have 1

n (d1(u) + d2(v)) = 1
n

∑
w(ω(u,w) + ω(w, v)) ≥

1
n

∑
w ω(u, v) ≥ ω(u, v).

It is immediate to verify the following lemma.

Lemma 4 Let ω be a probability distribution over Ω1 × Ω2. If ω is ∆-dense (resp.,

∆-locally dense), then the marginal distribution ω1 of ω on Ω1 is also ∆-dense (resp.,

∆-locally dense).

3 Conditioning operations for Sherali-Adams LP hierarchy

Recall that, a solution to the `-round SA relaxation consists of distributions over
sets of ` variables. In this section, we show that, if the scope distribution is dense
or locally dense, then by conditioning a small number of variables, we can make
variables almost independent in these distributions. Once variables become almost
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independent, we can round variables independently without losing the objective
value much (see Section 4).

Let I be an instance of k-CSP or k-AP with a variable set V . Fix ` and
let µ be a solution to the `-round Sherali-Adams relaxation. For a variable set
S = (v1, . . . , vk), Cµ(xS) denotes the total correlation C(xv1 , . . . ,xvk) under the
probability distribution µS . We use the following notion to measure independence
of variables.

Definition 1 Let I be an instance of k-CSP or k-AP with a scope distribution ω.
A solution µ to the `-round SA relaxation for I with ` ≥ k is κ-independent with

respect to distribution ω′ if

E
S∼ω′

[Cµ(xS)] ≤ κ.

We say that µ is κ-independent if it is κ-independent with respect to ω.

In Section 3.1, we explain how to condition variables. In Sections 3.2 and 3.3,
we show that the conditioning operation outputs κ-independent LP solutions for
the dense case and the locally dense case, respectively.

3.1 Conditioning operations

We first describe the operation of conditioning one variable. Given a solution µ to
the `-round SA relaxation with ` ≥ 2, we sample a vertex u uniformly at random
and then set xu = i, where i is a value sampled from µ{u}. This operation gives

a solution µ′ to the (`−1)-round SA relaxation: For each tuple (v1, . . . , v`−1) of `−1
variables, we define µ′{v1,...,vk−1}(i1, i2, . . . , ik−1) = µ{v1,...,vk−1,u}(i1, i2, . . . , ik−1, i).

It is not hard to check that µ′ is indeed a solution to the (`− 1)-round SA relax-
ation.

Our algorithm is given in Algorithm 1. Given an solution µ to the (` + `′)-
round SA relaxation, it iteratively conditions variables. We will show in subsequent
sections that, if ω is ∆-dense or ∆-locally dense, then Algorithm 1 outputs a κ-

independent LP solution in `′ steps on average, where κ = k4k log |D|
`′ . (If ω is

∆-dense, κ can be slightly smaller.)

Algorithm 1

Input: A feasible solution µ to the (`+`′)-round SA relaxation for a CSP instance I = (V, ω).

Output: An κ-independent solution to the `-round SA relaxation, where κ =
k4k log |D|

`′
Set t = 1.
while the current LP solution is not κ-independent do

Sample a variable ut ∈ V uniformly at random.
Sample a value a from its marginal distribution µ{ut} after the first t − 1 fixings, and
condition the LP solution by setting xut = a.
t = t+ 1.

We mention here the following simple fact.

Lemma 5 Let µ′ be the solution output by Algorithm 1. Then, E valLP(I,µ′) =
valLP(I,µ).
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Proof Notice that the algorithm respects the marginal distributions provided by
the SA relaxation during sampling the values to variables. Thus, the expected
objective value is preserved.

3.2 The dense case

We consider the dense case, that is, ω is a uniform distribution.

Lemma 6 If ω is uniform distribution over V k, there exists t ≤ `′ such that

E
U∼V t

E
S∼V k

[Cµ(xS | xU )] ≤ 3k log |D|
`′

.

Proof We consider the value∑
1≤t≤`′

E
U∼V t

E
S∼V k

[Cµ(xS | xU )].

From Lemma 3, this value can be decomposed as

∑
1≤t≤`′

E
U∼V t

E
S∼V k

 ∑
2≤r≤k

∑
R∈(Sr)

Iµ(xR | xU )


=

∑
2≤r≤k

(
k

r

) ∑
1≤t≤`′

E
U∼V t

E
R∼V r

[Iµ(xR | xU )] ,

where for a set R = (v1, . . . , vr), Iµ(xR) denotes the mutual information IµR(v1; . . . ; vr).
To bound this value, we recall the definition of mutual information. For any

t ≤ `′,

E
U∼V t
R∼V r

[Iµ(xR | xU )] = E
U∼V t
R∼V r−1

[Iµ(xR | xU )]− E
U∼V t+1

R∼V r−1

[Iµ(xR | xU )].

Adding the equalities from t = 0 to `′, we get∑
0≤t≤`′

E
U∼V t
R∼V r

[Iµ(xR | xU )] = E
R∼V r−1

[I(xR)]− E
U∼V `

′+1

R∼V r−1

[Iµ(xR | xU )] ≤ 2r log |D|,

where the last inequality holds from Iµ(xR) ≤ 2|R| log |D| by Lemma 2. Thus, we
have ∑

0≤t≤`′
E

U∼V t
E

S∼V k
[C(xS | xU )] ≤ 3k log |D|,

and the lemma follows.

The following corollary is immediate.

Corollary 1 If ω is a ∆-dense distribution over V k. Then there exists t ≤ `′ such

that

E
U∼V t

E
S∼ω

[Cµ(xS | xU )] ≤ 3k log |D|
∆`′

.
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3.3 The locally dense case

We now consider the case that the scope distribution ω is 1-locally dense.

Lemma 7 If ω is a 1-locally dense distribution over V k, then there exists t ≤ `′ such

that

E
U∼V t

E
S∼ω

[Cµ(xS | xU )] ≤ k4k log k|D|
`′

.

Proof We consider the value∑
1≤t≤`′

E
U∼V t

E
S∼ω

[Cµ(xS | xU )]. (1)

From Lemma 3, this value can be decomposed as

∑
1≤t≤`′

E
U∼V t

E
S∼ω

 ∑
2≤r≤k

∑
R∈(Sr)

Iµ(xR | xU )


=

∑
J⊆[k]:2≤|J|≤k

∑
1≤t≤`′

E
U∼V t

E
R∼ω|J

[Iµ(xR | xU )] ,

where ω|J denotes the marginal distribution of ω on J .
Fix J ⊆ [k] with |J | = r ≥ 2. Let ωi be the marginal distribution of ω on the

i-th coordinate. Let Ωi = ωi × V r−1 and Ω′i = ωi × V r−2. We first analyze I(xR)
under Ωi instead of ω|J .

From the definition, for any i and t ≤ `′,

E
U∼V t
R∼Ωi

I(xR | xU ) = E
U∼V t
R∼Ω′i

I(xR | xU )− E
U∼V t+1

R∼Ω′i

I(xR | xU ).

Adding the equalities from t = 0 to t = `′, we get∑
0≤t≤`′

E
U∼V t
R∼Ωi

I(xR | xU ) = E
R∼Ω′i

I(xR)− E
U∼V `

′+1

R∼Ω′i

H(xR | xU ) ≤ 2r log |D|. (2)

Now we turn to analyze I(xv1 ; · · · ;xvr ) under ω|J .

E
U∼V t
R∼ω|J

I(xR | xU ) = E
U∼V t

∑
R∼V r

ω|J (R)I(xR | xU )

≤ E
U∼V t

∑
(v1,...,vr)∼V r

1

nr−1

∑
1≤i≤r

di(vi)I(xv1 ; · · · ;xvr | xU )

(by local density and Lemma 4)

=
∑

1≤i≤r
E

U∼V t

∑
(v1,...,vr)∼V r

1

nr−1
Pr
S∼ω

[Si = vi]I(xv1 ; · · · ;xvr | xU )

=
∑

1≤i≤r
E

U∼V t

∑
R∼V r

Ωi(R)I(xv1 ; · · · ;xvr | xU )

=
∑

1≤i≤r
E

U∼V t
R∼Ωi

I(xR | xU ).
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Thus from (2),∑
0≤t≤`′

E
U∼V t
R∼ω|J

I(xR | xU ) ≤
∑

1≤i≤r
2r log |D| = r2r log |D|.

It follows that (1) ≤ k4k log |D| and the lemma holds.

The following corollary is immediate.

Corollary 2 If ω is a ∆-locally dense distribution over V k, then there exists t ≤ `′

such that

E
U∼V t

E
S∼ω

[Cµ(xS | xU )] ≤ k4k log |D|
∆`′

.

4 Rounding κ-independent solutions

4.1 Constraint satisfaction problems

Lemma 8 Let I = (V, ω, P ) be a k-CSP instance over finite domain D. Let µ be

a κ-independent solution to the k-round Sherali-Adams LP relaxation. There is a

randomized polynomial time algorithm to find an assignment α : V → D such that

val(I, α) ≥ valLP(I,µ)− 3
√
κ.

Proof For each v ∈ V , let α(v) be independently sampled from µ{v}. For each S ∈
V k, by the definition of total correlation, Lemma 1, and the fact that PS(β) ∈ [0, 1]
we have ∣∣∣∣ E

β∼µS
PS(β)−E

α
PS(α|S)

∣∣∣∣ ≤ 2
√
C(xS).

Therefore by κ-independence,∣∣∣∣ E
S∼ω

(
E

β∼µS
PS(β)−E

α
PS(α|S)

)∣∣∣∣ ≤ E
S∼ω

2
√
C(xS) ≤ 2

√
E
S∼ω

C(xS) ≤ 2
√
κ .

We have proved that Eα[val(I, α)] ≥ valLP(I,µ)− 2
√
κ. Therefore we can sample

an α in expected polynomial time such that val(I, α) ≥ valLP(I,µ)− 3
√
κ.

4.2 Assignment problems

Let I = (V, ω) be a ∆-dense k-AP instance. We introduce the following relaxation
H, and let valH(I) be its optimal value.

maximize nk E
(U,W )∼ω

k∏
i=1

xui,wi

subject to xu,w ≥ 0 ∀u,w ∈ V k∑
u∈V

xu,w = 1 ∀w ∈ V∑
w∈V

xu,w = 1 ∀u ∈ V.
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4.2.1 From κ-independence to relaxation H

We first see that we can find a good solution to H using a solution to the Sherali-
Adams LP relaxation of a dense instance I.

Lemma 9 Let I = (V, ω) be a k-AP instance such that ω is ∆-dense. Let µ be a

κ-independent solution (with respect to the uniform distribution rather than ω) to the

k-round Sherali-Adams LP relaxation of I. There is a polynomial-time algorithm, on

input µ, to find a solution to H that certifies that valH(I) ≥ valLP(I,µ)− 2
√
κ/∆.

Proof Let xu,w = µu(w) for all u,w ∈ V . For each S = (u1, u2, . . . , uk) ∈ V k, by
the definition of total correlation and Lemma 1 we have

∑
T=(w1,...,wk)

∣∣∣∣∣µS(T )−
k∏
i=1

xui,wi

∣∣∣∣∣ ≤ 2
√
C(xS). (3)

Therefore,∣∣∣∣∣ E
(S,T )=(u1,...uk,v1,...,vk)∼ω

(
µS(T )−

k∏
i=1

xui,wi

)∣∣∣∣∣
≤ 1

∆
E

(S,T )=(u1,...uk,v1,...,vk)∼V 2k

∣∣∣∣∣µS(T )−
k∏
i=1

xui,wi

∣∣∣∣∣ (by density)

≤ 1

∆nk
E

S∼V k
2
√
C(xS) (by (3))

≤ 2

∆nk

√
E

S∼V k
C(xS) ≤ n−k · 2

√
κ

∆
. (by κ-independence)

The following variant of Lemma 9 is used when dealing with the locally dense
case later.

Lemma 10 Let I = (V, ω) be a k-AP instance such that ω(u1, . . . , uk, w1, . . . , wk) =
ω′(u1, . . . , uk) · ω′′(w1, . . . , wk) where ω′′ is a ∆-dense distribution over V k. Let µ be

a κ-independent solution to the k-round Sherali-Adams LP relaxation of I. There is

a polynomial-time algorithm, on input µ, to find a solution to H that certifies that

valH(I) ≥ valLP(I,µ)− 2
√
κ/∆.

Proof Let xu,w = µu(w) for all u,w ∈ V . Similar to the proof of Lemma 9, we have∣∣∣∣∣ E
(S,T )=(u1,...uk,v1,...,vk)∼ω

(
µS(T )−

k∏
i=1

xui,wi

)∣∣∣∣∣
≤ 1

∆
E

S=(u1,...uk)∼ω′

T=(v1,...,vk)∼V k

∣∣∣∣∣µS(T )−
k∏
i=1

xui,wi

∣∣∣∣∣ (by density of ω′′)

≤ 1

∆nk
E

S∼ω′
2
√
C(xS) (by (3))

≤ 2

∆nk

√
E

S∼ω′
C(xS) ≤ n−k · 2

√
κ

∆
. (by κ-independence)
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4.2.2 From relaxation H to an integral solution

At a first look, H is very close to the k-AP problem itself. However, we cannot
independently sample π(v) from each xv in H to get a solution to k-AP, since
there is chance that π(v) = π(v′), rendering π not a permutation. Indeed, we show
in Section 9 that for some k-AP instance I, there is a gap between valH(I) and
val(I). However, our following lemma shows that this gap cannot be very big for
k-AP instances I = (V, ω) when ω is ∆-dense. The proof is given later in Section 6.

Lemma 11 Let I = (V, ω) be a k-AP instance such that ω is ∆-dense. Given a so-

lution x to relaxation H, let valH(I,x) be the value of the solution. There is a ran-

domized polynomial-time algorithm to compute a permutation π such that val(I, π) ≥
valH(I,x)− 7k2 logn

∆
√
n

.

In Section 7, we prove the following variant of Lemma 11.

Lemma 12 Let I = (V, ω) be a k-AP instance such that ω(u1, . . . , uk, w1, . . . , wk) =
ω′(u1, . . . , uk) ·ω′′(w1, . . . , wk), where ω′ is ∆′-locally dense and ω′′ is ∆-dense. Given

a solution x to the relaxation H, let valH(I,x) be the value of the solution. There

is a randomized polynomial-time algorithm to compute a permutation π such that

val(I, π) ≥ valH(I,x)− 7k2 logn
∆∆′

√
n

.

4.2.3 The rounding lemmas

Combining Lemma 9 and Lemma 11, and Lemma 10 and Lemma 12, we get the
following main rounding lemmas for this subsection.

Lemma 13 Let I = (V, ω) be a k-AP instance such that ω is ∆-dense. Let µ be a

κ-independent solution (with respect to the uniform distribution rather than ω) to the

k-round Sherali-Adams LP relaxation for I. There is a polynomial-time algorithm, on

input µ, to find a permutation π such that val(I, π) ≥ valLP(I,µ)− 2
√
κ

∆ − 7k2 logn
∆
√
n

.

Lemma 14 Let I = (V, ω) be a k-AP instance such that ω(u1, . . . , uk, w1, . . . , wk) =
ω′(u1, . . . , uk) · ω′′(w1, . . . , wk) where ω′ is ∆′-locally dense and ω′′ is ∆-dense. Let µ

be a κ-independent solution to the k-round Sherali-Adams LP relaxation of I. There

is a randomized polynomial-time algorithm, on input µ, to find a permutation π such

that val(I, π) ≥ valLP(I,µ)− 2
√
κ

∆ − 7k2 logn
∆∆′

√
n

.

5 Putting things together

The following theorem gives PTASs for dense and locally dense Max-CSP.

Theorem 5 Let I = (V, ω, P ) be a k-CSP instance over finite domain D such that

ω is ∆-dense or ∆-locally dense. For any ε > 0, let ` = 9k24k log |D|
ε2∆ . The additive

integrality gaps of the (` + k)-round Sherali-Adams LP relaxation is at most ε; and

there is a randomized rounding algorithm producing a solution whose value is at least

opt(I)− ε, in expected nO(`) time.
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Proof Let µ be a solution to the (`+ k)-round Sherali Adams LP relaxation. Let
the random variable (µ|xU ) be the solution after conditioning on the variables in
U . By Corollary 1 and Corollary 2, we know that there exists t ≤ ` such that

E
U∼V t

√
E
S∼ω

Cµ(xS |xU ) ≤
√

E
U∼V t

E
S∼ω

Cµ(xS |xU ) ≤

√
k24k log |D|

∆`
=
ε

3
.

Together with Lemma 5, we have

E
U∼V t

(
valLP(I,µ|xU )− 3

√
E
S∼ω

Cµ(xS |xU )

)
≥ valLP(I,µ)− ε.

We enumerate all the possible ways of conditioning, and find out a solution µ′

to the (k + ` − t)-round Sherali-Adams LP relaxation such that valLP(I,µ′) −
3
√

ES∼ω Cµ′(xS) ≥ valLP(I,µ)−ε. Since µ′ is always a ES∼ω Cµ′(xS)-independent
solution, by Lemma 8, given µ′, we can find an assignment with value at least
valLP(I,µ)− ε in randomized polynomial time.

Now we prove that there is a quasi-polynomial-time approximation scheme for
dense Max-AP.

Theorem 6 Let I = (V, ω) be a k-AP instance such that ω is ∆-dense. For any ε > 0,

let ` = 4k4k log |D|
ε2∆2 . The additive integrality gaps of the (` + k)-round Sherali-Adams

LP relaxation is at most ε + 7k2 logn
∆
√
n

; and there is a randomized rounding algorithm

producing a solution whose value is at least opt(I) − ε − 7k2 logn
∆
√
n

, in expected nO(`)

time.

Proof Let µ be a solution to the (` + k)-round Sherali Adams LP relaxation. By
Lemma 6, we know that there exists t ≤ ` such that

E
U∼V t

√
E

S∼V k
Cµ(xS |xU ) ≤

√
E

U∼V t
E

S∼V k
Cµ(xS |xU ) ≤

√
k4k log n

`
=
ε∆

2
.

Together with Lemma 5, we have

E
U∼V t

(
valLP(I,µ|xU )− 2

∆

√
E

S∼V k
Cµ(xS |xU )

)
≥ valLP(I,µ)− ε.

We enumerate all the possible ways of conditioning, and find out a solution µ′

to the (k + ` − t)-round Sherali-Adams LP relaxation such that valLP(I,µ′) −
2
√
ES∼V kCµ′(xS) ≥ valLP(I,µ) − ε. By Lemma 13, given µ′, we can find a per-

mutation with value at least valLP(I,µ)− ε− 7k2 logn
∆
√
n

.

Using Corollary 2 and Lemma 14 instead of Lemma 6 and Lemma 13, the same
argument shows that there is a quasi-polynomial-time approximation scheme for
locally dense Max-AP.

Theorem 7 Let I = (V, ω) be a k-AP instance such that ω(u1, . . . , uk, w1, . . . , wk) =
ω′(u1, . . . , uk) · ω′′(w1, . . . , wk) where ω′ is ∆′-locally dense and ω′′ is ∆-dense. For

any ε > 0, let ` = 4k24k log |D|
ε2∆′∆2 . The additive integrality gaps of the (` + k)-round

Sherali-Adams LP relaxation is at most ε+ 7k2 logn
∆∆′

√
n

; and there is a randomized rounding

algorithm producing a solution whose value is at least opt(I)−ε− 7k2 logn
∆∆′

√
n

, in expected

nO(`) time.
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6 Proof of Lemma 11

Observe that a solution x to the relaxation H corresponds to a doubly stochastic
matrix. Now let us decompose x into a distribution of permutations D = {π :
V → V } such that for any u,w ∈ V , we have Prπ∼D [π(u) = w] = xu,w . Let
valH(I,D) = valH(I,x) be the value of relaxation H on x for instance I. Our goal
is to “merge” the permutations in D into one permutation while not losing much
in the objective value. The following lemma proves this for the special case when
D is supported on only two permutations.

Lemma 15 Let D be the distribution over π1 and π2 such that π1 is chosen with

probability p and π2 is chosen with probability (1 − p). There exists a distribution D′
over permutations such that for any k ≥ 2 and any k-AP instance I = (V, ω) such that

ω is ∆-dense , we have

E
π∼D′

[val(I, π)] ≥ valH(I,D)− 2k2

∆
√
n
.

Moreover, D′ can be sampled in polynomial time.

Proof Let us assume w.l.o.g. that V = [n], π1 = id (i.e. π1(i) = i for all i ∈ [n]).
For any set A = {ai : a1 < a2 < · · · < a|A| = n} ⊆ [n], let us define πA be the
permutation over [n] so that πA(i) = at−1 + 1 if i = at for some t ∈ [|A|] and
πA(i) = i+ 1 otherwise (assuming a0 = 0). We can also assume w.l.o.g. that there
exists A ⊆ [n] such that π2 = πA. See Figure 1. We can add at most

√
n elements

into A to get A′ ⊆ [n] such that there is no set of
√
n consecutive integers that

does not intersect A′. It is easy to show that πA and πA′ differ at most 2
√
n places.

Let DA′ be the probability distribution that chooses π1 with probability p and πA′
with probability (1− p). For any k and any k-AP instance I = (V, ω) such that ω
is ∆-dense, we have

valH(I,D)− valH(I,DA′)

=nk E
(U,W )∼ω

(
k∏
i=1

Pr
π∼D

[π(ui) = wi]−
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

)

≤nk E
(U,W )∼ω

1 [∃i ∈ [k] : πA′(ui) 6= πA(ui)] ·
k∏
i=1

Pr
π∼D

[π(ui) = wi]

≤n
k

∆
· E
(U,W )∼V 2k

1 [∃i ∈ [k] : πA′(ui) 6= πA(ui)] ·
k∏
i=1

Pr
π∼D

[π(ui) = wi], (4)

where the last inequality is by the density of ω.
Since

nk E
W∼V k

k∏
i=1

Pr
π∼D

[π(ui) = wi] =
k∏
i=1

∑
wi∼V

Pr
π∼D

[π(ui) = wi] = 1, (5)

we have

(4) ≤ 1

∆
· Pr
U∼V k

[∃i ∈ [k] : πA′(ui) 6= πA(ui)] ≤
2k

∆
√
n
. (6)



Approximation Schemes via Sherali-Adams Hierarchy 17

1 1

2 2

3 3

4 4

5 5

Fig. 1 Permutations π1 and π2 over [5] are shown as mappings from [5] to [5]. Solid arrow
represents π1 and dashed arrows represent π2. For any permutation π1, we can move vertices
in the right side (and relabeling them accordingly) so that the resulting π1 is the identity
permutation. Then for any permutation π2, we can move pairs of vertices (and relabeling
them accordingly) so that π1 remains the identity permutation whereas the cycles formed by
π1 and π2 are drawn disjointly. In such a case, π2 satisfies the condition in the body text.

Now we define the distribution D′. Let us assume that the elements in A′ are
a′1 < a′2 < . . . < a′|A′| = n; let a′0 = 0 for convenience. To draw a permutation

π ∼ D′, we sample |A′| i.i.d. 0/1 bits b1, b2, . . . , b|A′|, each of which has mean p. For

each i, we find out the unique t ∈ [|A′|] so that a′t−1 < i ≤ a′t; let π(i) = π1(i) = i

if bt = 0; let π(i) = πA′(i) otherwise.
For any k and any ∆-dense k-AP instance I = (V, ω), we have

valH(I,DA′)− E
π∼D′

val(I, π)

=nk E
(U,W )∼ω

(
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]− Pr
π∼D′

[∀i ∈ [k] : π(ui) = wi]

)

=nk E
(U,W )∼ω

(
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

−
|A′|∏
t=1

Pr
π∼D′

[∀i ∈ [k], a′t−1 < ui ≤ a′t : π(ui) = wi]


≤nk E

(U,W )∼ω
1
[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
·
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

≤n
k

∆
E

(U,W )∼V 2k
1
[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
·
k∏
i=1

Pr
π∼DA′

[π(ui) = wi] (by density)
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=
1

∆
Pr

U∼V k

[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
(by (5))

≤ 1

∆
·

(
k

2

)
·
∑

t∈[|A′|]

(
a′t − a′t−1

n

)2

≤ 1

∆
·

(
k

2

)
·
∑

t∈[|A′|]

(
a′t − a′t−1

n

)
· 1√

n
≤ k2√

n
.

(7)

The lemma is proved by combining (6) and (7).

Proof (of Lemma 11)

Let D be supported on π1, π2, . . . , πm, each πi is chosen with probability pi. We
can assume that m ≤ n2 by preserving only the n2 permutations with the largest
probabilities and proper normalization, which would cause a loss of at most n−1

in the objective value valH(I,D). Now we show that for any such distribution, we
can find a distribution E that is supported on (m− 1) permutations, such that

valH(I, E) ≥ valH(I,D)− (p1 + p2)
2k2

∆
√
n
. (8)

In other words, since π1 and π2 are arbitrary, we are able to “merge” any two

permutations πi and πj in D by paying a loss of (pi + pj)
2k2

∆
√
n

in the objective

value. We repeatedly merge the two permutations with the smallest probability
mass in the distribution until there is only one permutation left, during this process

we lose at most dlogme 2k2

∆
√
n
≤ 6k2 logn

∆
√
n

in objective value. Together with the n−1

loss at the beginning of the proof, we lose at most 7k2 logn
∆
√
n

for sufficiently large n.

In order to show (8), let us define a distribution Ẽ of distributions of permuta-
tions as follows. Let F to be the distribution of permutations that chooses π1 with
probability p1

p1+p2
and π2 with the remaining probability. Apply Lemma 15 on F to

get F ′. A distribution E from Ẽ is sampled by first sampling a permutation π from
F ′, and returning the distribution that puts probability mass (p1 +p2) on π and pi
on πi for all i : 3 ≤ i ≤ m. For every u,w ∈ V , let γu,w =

∑m
t=3 pt1[πt(u) = w] ≤ 1.

We have

E
E∼Ẽ

valH(I, E) = E
E∼Ẽ

E
(U,W )∼ω

k∏
i=1

Pr
π∼E

[π(ui) = wi]

= E
π∼F ′

E
(U,W )∼ω

k∏
i=1

((p1 + p2)1[π(ui) = wi] + γui,wi)

=
∑
Q⊆[k]

E
(U,W )∼ω

 E
π∼F ′

∏
i∈Q

(p1 + p2)1[π(ui) = wi]

∏
i∈Q

γui,wi


=
∑
Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 (p1 + p2)|Q| E
(UQ,WQ)
∼ω|(UQ,WQ)

 E
π∼F ′

∏
i∈Q

1[π(ui) = wi]

 ,

(9)

where UA is the restriction of vector U over coordinates in A, ω(A,B) is the marginal
distribution of ω over A in the first k coordinates and B in the last k coordinates,
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and ω|(UA,WB) is the distribution ω conditioned on that coordinates in A are as-
signed U and coordinates in B are assigned W . Let IUQ,WQ

be the |Q|-AP instance(
V, ω|(UQ,WQ)

)
. We know that ω|(UQ,WQ) is ∆ · n2|Q| · ω(Q,Q)(UQ,WQ)-dense.

Therefore for every Q 6= ∅, by Lemma 15, we have

E
(UQ,WQ)
∼ω|(UQ,WQ)

 E
π∼F ′

∏
i∈Q

1[π(ui) = wi]

 = E
π∼F ′

val(IUQ,WQ
, π)

≥valH(IUQ,WQ
,F)− 2k2n−2|Q|

∆ω(Q,Q)(UQ,WQ)
√
n

= E
(UQ,WQ)
∼ω|(UQ,WQ)

∏
i∈Q

(
p11[π1(ui) = wi] + p21[π2(ui) = wi]

p1 + p2

)
− 2k2n−2|Q|

∆ω(Q,Q)(UQ,WQ)
√
n
.

Therefore we have

(9) ≥
∑
Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 E
(UQ,WQ)
∼ω|(UQ,WQ)

∏
i∈Q

(p11[π1(ui) = wi] + p21[π2(ui) = wi])

−
∑

∅6=Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 (p1 + p2)|Q| · 2k2n−2|Q|

∆ω(Q,Q)(UQ,WQ)
√
n

= E
(U,W )∼ω

(
m∑
t=1

pt1[πt(ui) = wi]

)

−
∑

∅6=Q⊆[k]

E
(UQ,WQ)

∼V Q×Q

∏
i∈Q

γui,wi

 (p1 + p2)|Q| · 2k2

∆
√
n

≥valH(I,D)− (p1 + p2)
2k2

∆
√
n
.

In all, we have proved that EE∼Ẽ valH(I, E) ≥ valH(I,D) − (p1 + p2) 2k2

∆
√
n

. Since

Ẽ can be sampled in polynomial time, there is a randomized polynomial-time
algorithm to find out a E satisfying (8).

7 Proof of Lemma 12

We say a distribution ω′ over V k is ∆′-well spread if for every i, j ∈ [k] such that
i 6= j, and for every disjoint partition V = V1 ∪ V2 ∪ · · · ∪ Vt, we have

∆′ · Pr
(u1,...,uk)∼ω′

[∃t′ ∈ [t] : ui ∈ Vt′ and uj ∈ Vt′ ] ≤
maxt′∈[t] |Vt′ |

n
.

Claim A ∆′-locally dense distribution ω′ is (∆′/k)-well spread.
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Proof W.l.o.g. we assume that i = 1 and j = 2. For every Z ⊆ V , we have

Pr
(u1,...,uk)∼ω′

[∃t′ ∈ [t] : ui ∈ Vt′ and uj ∈ Vt′ ]

=
∑
t′∈[t]

∑
u1,u2∈Vt′
u3,...,uk∈V

ω′(u1, . . . , uk) ≤
∑
t′∈[t]

∑
u1,u2∈Vt′
u3,...,uk∈V

∑k
i=1 di(ui)

∆′nk−1

=
∑
t′∈[t]

( ∑
u2∈Vt′

u3,...,uk∈V

∑
u1∈Vt′

d1(u1)

∆′nk−1
+

∑
u1∈Vt′

u3,...,uk∈V

∑
u2∈Vt′

d2(u2)

∆′nk−1

+
k∑
i=3

∑
u1,u2∈Vt′

u3,...,ui−1,ui+1,...,uk∈V

∑
ui∈V di(ui)

∆′nk−1

)

≤2 ·
maxt′∈[t] |Vt′ |

∆′n
+ (k − 2) ·

∆′maxt′∈[t] |Vt′ |2

n2
≤
kmaxt′∈[t] |Vt′ |

∆′n
.

We will prove a slightly stronger statement than that of Lemma 12, in the sense
that we prove the lemma for every ω such that ω = ω′ · ω′′ where ω′ is ∆′-well
spread and ω′′ is ∆-dense.

The proof goes along the lines of the proof of Lemma 11. We decompose x

into a distribution of permutations D = {π : V → V } such that for any u,w ∈ V ,
we have Prπ∼D [π(u) = w] = xu,w. We first prove following lemma, which is an
analogy of Lemma 15.

Lemma 16 Let D be the distribution over π1 and π2 such that π1 is chosen with

probability p and π2 is chosen with probability (1 − p). There exists a distribution D′
over permutations and a distribution V over the disjoint partitions {(V1 ∪ · · · ∪ Vt)}
where each Vi has at most 2

√
n elements, such that for any k ≥ 2 and any k-AP

instance I = (V, ω) such that ω = ω′ · ω′′ where ω′′ is ∆-dense, we have

E
π∼D′

[val(I, π)] ≥ valH(I,D)− 2k

∆
√
n

− 1

∆

∑
1≤i<j≤k

E
(V1∪...∪Vt)∼V

∑
t′∈[t]

Pr
(u1,...,uk)∼ω′

[ui ∈ Vt′ and uj ∈ Vt′ ].

Moreover, D′ can be sampled in polynomial time.

Proof Let us assume w.l.o.g. that V = [n], π1 = id (i.e. π1(i) = i for all i ∈ [n]).
For any set A = {ai : a1 < a2 < · · · < a|A| = n} ⊆ [n], let us define πA be the
permutation over [n] so that πA(i) = at−1 + 1 if i = at for some t ∈ [|A|] and
πA(i) = i+ 1 otherwise (assuming a0 = 0). We can also assume w.l.o.g. that there
exists A ⊆ [n] such that π2 = πA.

Now we define the random set variable A′ : A ⊆ A ⊆ V as follows. We start
from A′ = A, and for each i ∈ [

√
n], we uniformly sample an element a from

((i − 1)
√
n, i
√
n] and let A′ ← A′ ∪ {a}. In this way, we know that there is no set

of 2
√
n consecutive integers that does not intersect A′. It is easy to show that for

every v ∈ V , PrA′ [πA(v) 6= πA′(v)] ≤ 2√
n

.
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Let DA′ be the probability distribution that chooses π1 with probability p and
πA′ with probability (1−p). For any k and any k-AP instance I = (V, ω) such that
ω is ∆-dense, we have

valH(I,D)− E
A′

valH(I,DA′)

=nk E
(U,W )∼ω

(
k∏
i=1

Pr
π∼D

[π(ui) = wi]−
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

)

≤nk E
U∼ω′,W∼ω′′

E
A′

1 [∃i ∈ [k] : πA′(ui) 6= πA(ui)] ·
k∏
i=1

Pr
π∼D

[π(ui) = wi]

≤n
k

∆
· E
U∼ω′

E
A′

1 [∃i ∈ [k] : πA′(ui) 6= πA(ui)] · E
W∼V k

k∏
i=1

Pr
π∼D

[π(ui) = wi], (10)

where the last inequality is by the density of ω′′. By (5), we have

(10) ≤ 1

∆
· E
U∼ω′

Pr
A′

[∃i ∈ [k] : πA′(ui) 6= πA(ui)] ≤
2k

∆
√
n
. (11)

For every A′ ⊆ [n], we define the distribution D′A′ . Let us assume that the
elements in A′ are a′1 < a′2 < . . . < a′|A′| = n; let a′0 = 0 for convenience. To draw a

permutation π ∼ D′A′ , we sample |A′| i.i.d. 0/1 bits b1, b2, . . . , b|A′|, each of which

has mean p. For each i, we find out the unique t ∈ [|A′|] so that a′t−1 < i ≤ a′t; let
π(i) = π1(i) = i if bt = 0; let π(i) = πA′(i) otherwise.

Now we define the distribution D′. To draw a permutation π ∼ D′, we first
sample a random set A′, and then draw a permutation from D′A′ .

For any k and any k-AP instance I = (V, ω) such that ω = ω′ · ω′′ where ω′′ is
∆-dense, we have

E
A′

valH(I,DA′)− E
π∼D′

val(I, π)

=nk E
(U,W )∼ω

E
A′

(
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]− Pr
π∼D′

A′
[∀i ∈ [k] : π(ui) = wi]

)

=nk E
(U,W )∼ω

E
A′

(
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

−
|A′|∏
t=1

Pr
π∼D′

A′
[∀i ∈ [k], a′t−1 < ui ≤ a′t : π(ui) = wi]


≤nk E

(U,W )∼ω
E
A′

1
[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
·
k∏
i=1

Pr
π∼DA′

[π(ui) = wi]

≤n
k

∆
E

U∼ω′
E
A′

1
[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
· E
W∼V k

k∏
i=1

Pr
π∼DA′

[π(ui) = wi] (by density)
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≤ 1

∆
E

U∼ω′
E
A′

1
[
∃t ∈ [|A′|] : ∃ more than one i s.t. a′t−1 < ui ≤ a′t

]
(by (5))

≤ 1

∆

∑
1≤i<j≤k

E
A′

∑
t∈[|A′|]

Pr
(u1,...,uk)∼ω′

[a′t−1 < ui, uj ≤ a′t]. (12)

The lemma is proved by combining (11) and (12).

Now we are ready to prove Lemma 12.

Proof (of Lemma 12) Let D be supported on π1, π2, . . . , πm, each πi is chosen with
probability pi. We can assume that m ≤ n2 by preserving only the n2 permutations
with the largest probabilities and proper normalization, which would cause a loss
of at most n−1 in the objective value valH(I,D). Now we show that for any such
distribution, we can find a distribution E that is supported on (m−1) permutations,
such that

valH(I, E) ≥ valH(I,D)− (p1 + p2)
2k2

∆∆′
√
n
. (13)

In other words, since π1 and π2 are arbitrary, we are able to “merge” any two

permutations πi and πj in D by paying a loss of (pi + pj)
2k2

∆∆′
√
n

in the objective

value. We repeatedly merge the two permutations with the smallest probability
mass in the distribution until there is only one permutation left, during this process

we lose at most dlogme 2k2

∆
√
n
≤ 6k2 logn

∆∆′
√
n

in objective value. Together with the n−1

loss at the beginning of the proof, we lose at most 7k2 logn
∆∆′

√
n

for sufficiently large n.

In order to show (13), let us define a distribution Ẽ of distributions of permuta-
tions as follows. Let F to be the distribution of permutations that chooses π1 with
probability p1

p1+p2
and π2 with the remaining probability. Apply Lemma 16 on F to

get F ′. A distribution E from Ẽ is sampled by first sampling a permutation π from
F ′, and returning the distribution that puts probability mass (p1 +p2) on π and pi
on πi for all i : 3 ≤ i ≤ m. For every u,w ∈ V , let γu,w =

∑m
t=3 pt1[πt(u) = w] ≤ 1.

We have

E
E∼Ẽ

valH(I, E) = E
E∼Ẽ

E
(U,W )∼ω

k∏
i=1

Pr
π∼E

[π(ui) = wi]

= E
π∼F ′

E
(U,W )∼ω

k∏
i=1

((p1 + p2)1[π(ui) = wi] + γui,wi)

=
∑
Q⊆[k]

E
(U,W )∼ω

 E
π∼F ′

∏
i∈Q

(p1 + p2)1[π(ui) = wi]

∏
i∈Q

γui,wi


=
∑
Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 (p1 + p2)|Q| E
(UQ,WQ)
∼ω|(UQ,WQ)

 E
π∼F ′

∏
i∈Q

1[π(ui) = wi]

 ,

(14)

where UA is the restriction of vector U over coordinates in A, ω′′A is the marginal
distribution of ω′′ over the coordinates in A, and ω(A,B) is the marginal distribution
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of ω over A in the first k coordinates and B in the last k coordinates. Let IUQ,WQ

be the |Q|-AP instance
(
V, ω|(UQ,WQ)

)
. We know that ω|(UQ,WQ) = (ω′|UQ) ·

(ω′′|WQ), and ω′′|WQ is ∆ · n|Q| · ω′′
Q

(WQ)-dense. Therefore for every Q 6= ∅, by

Lemma 16, we have

E
(UQ,WQ)
∼ω|(UQ,WQ)

 E
π∼F ′

∏
i∈Q

1[π(ui) = wi]

 = E
π∼F ′

val(IUQ,WQ
, π)

≥valH(IUQ,WQ
,F)− 2kn−|Q|

∆ω′′
Q

(WQ)
√
n

− n−|Q|

∆ω′′
Q

(WQ)

∑
i,j∈Q
i 6=j

E
(V1∪...∪Vt)∼V

∑
t′∈[t]

Pr
UQ∼ω′|UQ

[ui ∈ Vt′ and uj ∈ Vt′ ]

= E
(UQ,WQ)
∼ω|(UQ,WQ)

∏
i∈Q

(
p11[π1(ui) = wi] + p21[π2(ui) = wi]

p1 + p2

)
− 2kn−|Q|

∆ω′′
Q

(WQ)
√
n

− n−|Q|

∆ω′′
Q

(WQ)

∑
i,j∈Q
i 6=j

E
(V1∪...∪Vt)∼V

∑
t′∈[t]

Pr
UQ∼ω′|UQ

[ui ∈ Vt′ and uj ∈ Vt′ ].

Therefore we have

(14)

≥
∑
Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 E
(UQ,WQ)
∼ω|(UQ,WQ)

∏
i∈Q

(p11[π1(ui) = wi] + p21[π2(ui) = wi])

−
∑

∅6=Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 (p1 + p2)|Q| · 2kn−|Q|

∆ω′′
Q

(WQ)
√
n

−
∑

∅6=Q⊆[k]

E
(UQ,WQ)
∼ω(Q,Q)

∏
i∈Q

γui,wi

 (p1 + p2)|Q|

· n|Q|

∆ω′′
Q

(WQ)

∑
i,j∈Q
i 6=j

E
(V1∪...∪Vt)
∼V

∑
t′∈[t]

Pr
UQ∼
ω′|UQ

[ui, uj ∈ Vt′ ]

= E
(U,W )∼ω

(
m∑
t=1

pt1[πt(ui) = wi]

)

−
∑

∅6=Q⊆[k]

E
UQ∼ω′

Q

WQ∼V
Q

∏
i∈Q

γui,wi

 (p1 + p2)|Q| · 2k

∆
√
n
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−
∑

∅6=Q⊆[k]

E
U∼ω′

WQ∼V
Q

∏
i∈Q

γui,wi

 (p1 + p2)|Q|
1

∆

∑
i,j∈Q
i6=j

E
(V1∪...∪Vt)∼V

∑
t′∈[t]

1[ui, uj ∈ Vt′ ]

≥valH(I,D)− (p1 + p2)
1

∆

(
2k√
n

+
k2

∆′
√
n

)
≥ valH(I,D)− (p1 + p2)

2k2

∆∆′
√
n
.

(by well-spreadness of ω′ and the maximum size of |Vt|)

In all, we have proved that EE∼Ẽ valH(I, E) ≥ valH(I,D)− (p1 + p2) 2k2

∆∆′
√
n

. Since

Ẽ can be sampled in polynomial time, there is a randomized polynomial-time
algorithm to find out a E satisfying (13).

8 Bisection Max-k-CSP

In this section, we consider the bisection Max-CSP as a notable example of Max-CSP

with globally cardinality constraints.

We start with definitions. Fix a finite domain D and a k-CSP instance I over D.
A global cardinality constraint is a linear constraint on the numbers of variables
that are assigned to the values in D. For simplicity and illustration purpose, here
we only consider the bisection constraint – i.e., assuming D = {0, 1}, the number
of variables that take value 1 is exactly n/2 (for even integers n). For a bisection
k-CSP instance I = (V, ω, P ), we define its optimal value to be

opt(I) = max
α:|{v∈V :α(v)=1}|=n/2

{val(I, α)},

where the definition of val(I, α) remains the same as in the ordinary k-CSP case.

The `-round Sherali-Adams relaxation for a bisection k-CSP instance I =
(V, ω, P ) (` ≥ k) is written as follows.

maximize E
S∼ω

E
α∼µS

[PS(α)]

subject to Pr
α∼µS

[α|S∩T = β] = Pr
α∼µT

[α|S∩T = β]

∀S, T ⊆ V, |S ∪ T | ≤ `, β ∈ DS∩T∑
v∈V

Pr
α∼µS∪{v}

[α|S = β and α(v) = 1] =
n

2
· µS(β)

∀S ⊆ V, S < `, β ∈ {0, 1}S ,

where the last constraint corresponds to the bisection constraint.

We now turn to how to round κ-independent solutions. The following lemma
is similar to Lemma 8.

Lemma 17 Let I = (V, ω, P ) be a bisection k-CSP instance. Let µ be an κ-independent

solution (with respect to both uniform distribution and ω, 0 ≤ κ ≤ 1) to the k-round

Sherali-Adams LP relaxation. There is a randomized polynomial time algorithm to

find an assignment α : V → {0, 1} such that val(I, α) ≥ valLP(I,µ) − 3kκ1/4 and

|{v ∈ V : α(v) = 1}| = n/2.
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Proof We sample α in the same way as we did in the proof of Lemma 8, and we
see that Eα[val(I, α)] ≥ valLP(I)− 2

√
κ. Also observe that

E
α

∣∣∣∣∣∑
v∈V

α(v)− n

2

∣∣∣∣∣ ≤
√√√√E

α

(∑
v∈V

α(v)− n

2

)2

=

√ ∑
v1,v2∈V

E
α

[α(v1)α(v2)]− n
∑
v∈V

E
α

[α(v)] +
n2

4
=

√ ∑
v1,v2∈V

E
α

[α(v1)α(v2)]− n2

4

≤
√ ∑
v1,v2∈V

Pr
β∼µ{v1,v2}

[β(v1) = β(v2) = 1] +
√
κ− n2

4
= κ1/4,

where the last inequality is because of κ-independence with respect to uniform
distribution, the definition of total correlation, and Lemma 1; the last equality is
because of Sherali-Adams constraints.

In all, we have

E
α

(
val(I, α)− k

∣∣∣∣∣∑
v∈V

α(v)− n

2

∣∣∣∣∣
)
≥ valLP(I,µ)− 2

√
κ− kκ1/4

≥ valLP(I,µ)− 2kκ1/4.

We can sample an α in expected polynomial time so that

E
α

[
val(I, α)−

∣∣∣∣∣∑
v∈V

α(v)− n

2

∣∣∣∣∣
]
≥ valLP(I)− 3kκ1/4.

By greedily rearranging
∣∣Ev∈V [α(v)]− 1

2

∣∣-fraction of the entries in α, we get a

bisection assignment α′ such that val(I, α′) ≥ valLP(I,µ)− 3kκ1/4.

Finally as a counterpart to Theorem 5, we show the following.

Theorem 8 Let I = (V, ω, P ) be a bisection k-CSP instance over domain {0, 1} such

that ω is ∆-dense or ∆-locally dense. For any ε > 0, let ` = 2·34k64k log |D|
ε4∆ . The

additive integrality gaps of the (` + k)-round Sherali-Adams LP relaxation is at most

ε; and there is a randomized rounding algorithm producing a solution whose value is at

least opt(I)− ε, in expected nO(`) time.

Proof Let µ be a solution to the (`+k)-round Sherali Adams LP relaxation. Similar
as in the proof of Theorem 5, Corollary 1 and Corollary 2, we know that there
exists t ≤ ` such that

E
U∼V t

4

√
E

S∼V k
Cµ(xS |xU ) + E

S∼ω
Cµ(xS |xU )

≤ 4

√
E

U∼V t

(
E

S∼V k
Cµ(xS |xU ) + E

S∼ω
Cµ(xS |xU )

)

≤ 4

√
2 · k

24k log |D|
∆`

≤ ε

3k2
.
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Therefore, together with Lemma 5, we have

E
U∼V t

(
valLP(I,µ|xU )− 3k

(
4

√
E

S∼V k
Cµ(xS |xU ) + 4

√
E
S∼ω

Cµ(xS |xU )

))
≥ valLP(I,µ)− ε.

We enumerate all the possible ways of conditioning, and find out a solution µ′ to
the (k + `− t)-round Sherali-Adams LP relaxation such that

valLP(I,µ′)− 3k

(
4

√
E

S∼V k
Cµ′(xS) + 4

√
E
S∼ω

Cµ′(xS)

)
≥ valLP(I,µ)− ε.

Since µ′ is always κ-independent with respect to both uniform distribution and ω

for κ = ES∼V k Cµ′(xS) + ES∼ω Cµ′(xS) , by Lemma 17, given µ′, we can find an
assigment with value at least valLP(I,µ)− ε in randomized polynomial time.

9 A gap instance for relaxation H

In this section, we show a gap instance for the relaxation H. Consider the following
2-AP instance I([5], ω). Let us define ωi,j,p,q = 1

64Ai,jBp,q, where

A =


0 1 1 0 0
1 0 0 0 1
1 0 0 0 1
0 0 0 0 0
0 1 1 0 0

 , and B =


0 1 1 0 0
1 0 1 0 0
1 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 .

If we view A and B as the adjacency matrices of two 5-vertex graphs, val(I, π) is
the number of edges in A that are mapped to an edge in B by π, multiplied by
25
32 . Since A is a 4-cycle with one isolated vertex, and B is a 3-cycle plus an edge,
at most 2 edges in A can be mapped to B. Therefore, opt(I) = 25

16 .
On the other hand, let us consider the following distribution D of permutations,

where D is supported on π1 and π2 with equal probability (1/2). π1 is the identity
permutation; π2(i) = (i mod 5) + 1 for all i ∈ [5]. We have

val(I,D)

=
25

64
·
∑
i,j

∑
p,q

Ai,jBp,q
1

2
(1[π1(i) = p or π2(i) = p]) · 1

2
(1[π1(j) = q or π2(j) = q])

=
225

128
> opt(I).
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