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a b s t r a c t 

As intelligent transportation systems are becoming more and more prevalent, the relevance of automatic 

surveillance systems grows larger. While such systems rely heavily on video signals, other types of signals 

can be used as well to monitor the security of passengers. The present article proposes an audio-based 

intelligent system for surveillance in public transportation, investigating the use of some state-of-the-art 

artificial intelligence methods for the automatic detection of screams and shouts. We present test results 

produced on a database of sounds occurring in subway trains in real working conditions, by classifying 

sounds into screams, shouts and other categories using different Neural Network architectures. The rele- 

vance of these architectures in the analysis of audio signals is analyzed. We report encouraging results, 

given the difficulty of the task, especially when a high level of surrounding noise is present. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The proposed study is an attempt to build an intelligent surveil-

ance system capable of automatically detecting abnormal situa-

ions in public transportation environments, such as underground

ubways or metros, based on the analysis of audio signals. Re-

ently, Neural Networks have rose to prominence in most in-

elligent and expert systems, in applications as varied as image

lassification, customer behavior prediction, or medical diagnosis

 Affonso, Rossi, Vieira, & de Leon Ferreira de Carvalho, 2017; Es-

tay, Faris, & Obeid, 2018; Vanneschi, Horn, Castelli, & Popovi ̌c,

018 ). In the literature, intelligent systems for automatic surveil-

ance generally use video signals ( Baran, Rusc, & Fornalski, 2016;

oggia, Petkov, Saggese, Strisciuglio, & Vento, 2016; Hata, Kuwa-

ara, Nozawa, Schwenke, & Vetro, 2005; Orhan Bulan, 2013; Ve-

astin, Boghossian, & Vicencio-Silva, 2006 ), but the use of au-

io can be an interesting complement as it helps circumvent is-

ues inherent to video signals such as vision field obstruction

r lighting changes. In this paper, we focus on a particular con-

ext for surveillance systems; namely, that of public transporta-

ion. While most research in this specific application also use video

ignals ( He, Chen, Jiang, Lu, & Yuan, 2017; Orhan Bulan, 2013;
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elastin et al., 2006 ), we tackle the issue from a different an-

le by using audio signals instead. This approach has been in-

roduced within the framework of public transportation surveil-

ance; in ( Rouas, Louradour, & Ambellouis, 2006 ) to detect screams,

n ( Ganansia et al., 2011 ) to detect and localize shouts and graf-

ti sprays, in ( Zouaoui et al., 2015 ) to detect abnormal sounds,

nd within the framework of general surveillance systems in

 Valenzise, Gerosa, Tagliasacchi, Antonacci, & Sarti, 2007 ) to de-

ect screams and gunshot sounds. The contribution of this pa-

er is mostly experimental and applicative, not methodological. It

hows that using state of the art neural networks can serve the

urpose of audio surveillance in public transportation, and reveals

ome interesting characteristics of those methods, as well as how

 good understanding of them can lead to an improvement in per-

ormances. 

From a more general perspective, the task we address is re-

erred to as acoustic event detection (AED), which is a research

opic of growing interest in the audio signal processing commu-

ity ( Chu, Narayanan, & Kuo, 2009; Crocco, Cristani, Trucco, &

urino, 2016; Dennis, Tran, & Chang, 2013; Diment, Cakir, Heittola,

 Virtanen, 2015; Fernández-Delgado, Cernadas, Barro, & Amorim,

014; McLoughlin, Zhang, Xie, Song, & Xiao, 2015 ). The DCASE

hallenge ( Virtanen et al., 2016 ) attests to the popularity of this

ask, which has many applications ranging from smart houses in-

olving automatic systems for domestic events detection using au-

io and video data streams ( Wang, Lin, Chen, & Tsai, 2014; Wu,

ong, Chen, Zhong, & Xu, 2009 ), to humanoid robotics where an

https://doi.org/10.1016/j.eswa.2018.08.052
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audition model is a prerequisite for natural human-robot inter-

action ( Janvier, Alameda-Pineda, Girin, & Horaud, 2012; Nakadai,

Matsuura, Okuno, & Tsujino, 2004; Noda, Yamaguchi, Nakadai,

Okuno, & Ogata, 2015; Wu et al., 2009 ), including automatic

surveillance applications ( Foggia et al., 2016; Velastin et al., 2006 ).

AED can be thought of as a combination of automatic audio seg-

mentation and audio event classification ( Janvier, Alameda-Pineda,

Girin, & Horaud, 2014 ), hence adding to the classification task

the difficulty of identifying the temporal location of the audio

events ( Phan, Maas, Mazur, & Mertins, 2015 ), as it does not rely

on prior segmentation of the data. Audio event classification tech-

niques in the state of the art are diverse, with many differ-

ent combinations of features and classifiers: Mel-Frequency Cep-

stral Coefficients (MFCCs) classified with Gaussian Mixture Mod-

els (GMMs) ( Pohjalainen, Raitio, & Alku, 2011 ), with Support Vec-

tor Machines (SVMs) ( Huang, Chiew, Li, Kok, & Biswas, 2010;

Lei & Mak, 2014; Wu et al., 2009 ), with Hidden Markov Mod-

els (HMMs) ( Ntalampiras, Potamitis, & Fakotakis, 2009 ); MFCCs

and other spectral features classified with GMMs ( Chu et al.,

2009; Gerosa, Valenzise, Tagliasacchi, Antonacci, & Sarti, 2007 ),

with the k -nearest-neighbors algorithm (kNNs) ( Chu et al., 2009 ),

and more recently with random forests (RFs) ( Phan et al., 2015 );

Gabor features classified with GMMs ( Geiger & Helwani, 2015;

Gerosa et al., 2007 ) and with SVMs ( Wang et al., 2014 ); all-pole

group delay features classified with Deep Neural Networks (DNNs)

( Diment et al., 2015 ); Gammatone-Wavelet features classified with

SVMs ( Valero & AlÃas, 2012 ); spectrogram image features classi-

fied with kNNs ( Dennis et al., 2013 ), SVMs and DNNs ( Diment

et al., 2015; McLoughlin et al., 2015; Wei, Li, Pham, Das, & Qu,

2016 ); MFCCs and deep scattering features classified with RFs and

the k-means algorithm ( Salamon & Bello, 2015 ). However, the use

of Neural Networks is becoming more and more prominent, be it

Deep ( Sharan & Moir, 2017 ), Convolutional ( Hershey et al., 2017;

Lee, Kim, Park, & Nam, 2017 ) or Recurrent Neural Networks (RNNs)

( Wang & Metze, 2017 ). The task defined in this study is to detect

violent events in the subway via automatic detection of screams

and shouts emitted by the people involved in the events. Such

events span different cases, such as people in physical difficulty,

people quarreling, panic situations, calls for help, etc. Shouts and

screams are here defined as loud vocal sounds with and with-

out explicit semantic content, respectively. Since it turns out that

scream occurrences are outnumbered by shout occurrences in our

database, in the following we employ the general term “shout”

to characterize the overall set of abnormally loud sounds gener-

ated by people subject to or witnesses of violent events. Although

such alert signals are quite specific, this task remains challeng-

ing since there generally exists a large variability between differ-

ent realizations of screams and shouts, depending on the caus-

ing events, a large variability of “speakers”, number of persons in-

volved, their emotional state, etc. The first specific aspect of the

present work is the rarity of the data: in order to design a real-

istic AED system, a dedicated database was recorded, consisting

of real signals recorded in the Paris subway (called ’Metropoli-

tain’, or simply Metro). A whole Metro train was booked for the

recording sessions, thanks to the Paris public transportation au-

thority (the RATP) being a partner of the research project which

frames this study. Abnormal situations were enacted by actors, in-

cluding many extra participants representing the crowd of passen-

gers. As a consequence all recordings used in the present study are

real and not derived from synthetic signals or simulated acoustic

mixes, and the size of the corpus cannot match that of handcrafted

synthetic data such as in ( Lafay, Lagrange, Rossignol, Benetos, &

Roebel, 2016 ) and ( Wang & Metze, 2017 ). The second specific as-

pect concerns the characteristics of this environment which is very

noisy and variable. It contains many objects that can act as sound

sources and filters, shaping the acoustic scene; noise from the ve-
icle itself (e.g., motor noise, boogie-rails frictions), noise com-

ng from the surrounding environment (e.g., railway traffic, station

oise, loud-speaker announcements), and noise produced by pas-

engers. Within such an environment, the choice of target classes

sed to define the acoustic landscape is crucial, especially within

he framework of audio event detection. The classification tech-

iques used here are different architectures of neural networks ap-

lied on acoustic MFCC features, namely (feedforward) deep neural

etworks (DNNs), convolutional neural networks (CNNs) and re-

urrent neural networks (RNNs; in particular we used Long Short

erm Memory (LSTM) cells). We set the main task as a 3-way clas-

ification task, with target classes defined as shouts (comprising

houts and screams), conversational speech and background noise.

esides this main task, we created another set of 14 classes (by

ividing each of the previous 3 classes into 5 smaller sub-classes)

n which we performed a 14-way classification. We report results

f an extensive benchmark made using the 3 types of neural net-

orks, for both the 3-class problem and the 14-class problem. The

emaining of this paper is organized as follows: Section 2.1 gives

 detailed description of the database used for the experiments.

ection 3 presents the methodological background of neural net-

orks. Section 4 presents the parameters and settings of the exper-

ments we carried out, while Section 5 reports the results. Finally,

ection 6 draws some conclusions and perspectives. 

. Database and analysis of environment impact 

As stated in the introduction, the present task is to detect dan-

erous situations occurring in the metro by analyzing the audio

nvironment. In an effort to account for the likelihood that the sit-

ation exhibits a potentially dangerous/violent aspect, we devised

he following three classes; 

• Shouts (includes screams and all overlapping background

sound), 
• Speech (includes all overlapping background sound), 
• Background sounds (all sounds not pertaining to the previous

two classes; no speech nor shout sounds are assumed to be

present). 

Additionally we define some more classes to describe the

coustic environment related to the metro’s trajectory during its

ourse: 

• Stand-by (acoustic scene when the train is idle, in the station),
• Compressor (noise from compressor, very specific), 
• Departure (acoustic scene during departure, when speed in-

creases from zero to full-speed), 
• Cruise (acoustic scene during the period of time when the train

is at full speed), 
• Arrival (acoustic scene during arrival in station, when speed

decreases to zero). 

Those classes will be used in order to help classify the main

hree classes. 

.1. Data acquisition 

Within the framework of research project DéGIV ( Zouaoui et al.,

015 ), a subway train from the automatic line 14 of the Paris

etropolitain was reserved for the recording sessions. An Omni-

irectional microphone (C224 6v cell from ELNO brand) was placed

n the ceiling of the metro car, and a low-latency JACK server au-

io interface, made specifically for this project, was used to record

he signal, producing 16-bits/48-kHz PCM signals. Several sessions

ook place between 10 am and 4 pm while the train was running

ts usual course, among other trains from the same subway line,

unning between different stations and stopping at all of them.
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Fig. 1. Graphical representation of one metro car, where the microphones are represented by the two dots to the left of the red square. The red zone is the near-zone and 

the blue zone is the far-zone. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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or security matters, the train did not allow regular passengers

n, and three sets of actors played several pre-defined alert sce-

arios displaying a situation of security matter (robbery, assault,

ght, person falling, etc). Numerous extras were present to simu-

ate regular passengers. For data recording, two microphones were

laced on the ceiling about 10 cm from one another (along with a

ideo camera, although the latter was not used in this study). Dif-

erent settings were defined, in which each scenario was played;

wo different zones, depending on the distance with the micro-

hones, as shown in Fig. 1 1 : close-distance ( ∼ 1 m to 2.5 m) in

ed and far-distance ( ∼ 3 m to 4.5 m) in blue; two crowd den-

ities: heavy density (between 12 and 17 people involved in the

cene) and low density (between 5 and 7 people). Every alert sce-

ario was repeated for all possible combinations of settings. Vio-

ent scenes were played and captured while the train was either

ccelerating, moving at stationary high speed, or braking, but not

hen it was stopped at a station for security reasons. For the same

easons the doors never opened at the stations to make sure no

egular passengers would get on the train. To compensate, violent

cenes and sequences of doors opening and closing were also cap-

ured while the train was in the workshop. Additionally a large

mount of sequences of chatter among passengers was captured.

inally, our database contains all the noises induced by the train

ctivity (doors opening and closing, brake compressors draining air,

oors closing signal, etc.). We believe these data convey a realistic

iversity of signal occurrences for the considered application (dif-

erent scenarios, different source-to-microphone positions, differ-

nt noises, etc.). A preliminary study using this database has been

resented in ( Laffitte, Sodoyer, Tatkeu, & Girin, 2016 ). 

.2. A short analysis of data variability 

It is important to note that in this transport environment,

peech or shout signals can contain a huge amount of noise, mak-

ng the distinction between speech, shouts and background noise

ften very difficult. In this subsection, we illustrate this notable

haracteristic of our database. Fig. 2 displays the spectrograms

f segments of speech ( Fig. 2 -(a,b)) and shout ( Fig. 2 -(c,d)), in

 situation where the train is idle (stopped at the station, in a

tatic/immobile state) ( Fig. 2 -(a,c)) and in a situation where the

rain is at full speed ( Fig. 2 -(b,d)). By comparing Fig. 2 (a) and

ig. 2 (b), we can see that full speed implies a much higher level

f noise than idle, and consequently the speech signal is much

everely masked at full-speed. Because shouts have more energy

han speech, the full speed has a lower impact on shouts, as seen

y comparing Fig. 2 (c) and Fig. 2 (d). Still, in Fig. 2 (d), the shout

ignal is somewhat “blurred” by the full-speed noise. 

To quantify the difference between the full speed and the idle

onditions in terms of signal energy, we calculated the energy
1 Image from research project DÃ©GIV (Détection et Gestion d’Incidents dans 

ne Voiture ferroviaire) co-funded by”FUI-BPI France” and ”Conseil Général de 

’Essonne”

b  

c  

a  

s

f individual 10ms-frames extracted from typical portions of our

ataset (33.7s in total) and manually labeled (see Section 2.3 ).

ig. 3 (a) displays the histograms of frame energy (in dB) for the

wo conditions (idle and full speed), for frames that contain no

peech or shout signal (thus pure background/vehicle noise). We

an see that the two histograms (therefore the two conditions) are

learly separated, with an average difference of about 60 dB, which

s a large value. Fig. 3 (b) also displays the histograms of frame en-

rgy for the two conditions, but this time for frames containing

houts. We can see that the energy of shouts clearly exceeds the

nergy of the background noise when the train is idle, and that

he amount of additional energy from shouts spreads over a large

ange of values. When the train is at full speed, the (spread of)

dditional energy from shouts is more moderate. There is a sig-

ificant overlap between the energy distributions of the full-speed

oise-only frames and the full-speech noise + shouts frames. For

his kind of frames, we can expect the presence of full-speed noise

o make the classification into the shout category particularly diffi-

ult. For frames above a certain threshold, −20 dB for instance, the

lassification into shouts may be easier. Note that this confirms the

xample spectrogram plot in Fig. 2 (d) where some shout regions

re masked by the full-speed background noise, and some other

egions are more visible. 

.3. Data labeling 

The data were manually cross-labeled by two different audio

xperts (two of the authors). The first expert labeled the entire

ataset and the second expert ran a second pass to validate or

orrect the labeling of the first expert. Our first approach consists

n decomposing the entire dataset in the three main target classes

escribed above. The first class is obviously driven by the targeted

pplication. Recall that, due to the low proportion of scream oc-

urrences, this class contains both screams and shouts. The dis-

inction between speech (+ background sounds) and background

ounds (only) corresponds to the most obvious distinction appear-

ng in the data in the absence of shouts. We believe that the

efinition of those three categories can help the detection meth-

ds in detecting shouts, as opposed to a two-category classifica-

ion (shout (+ background sounds) vs. “everything else”). Indeed,

n the latter case, the mixing of speech with background sounds in

 unique class may disturb the classifier, since the “proximity” be-

ween those two types of signals is questionable compared to the

roximity between speech and shouts. In the following, for sim-

licity, we refer to the shouts (+ screams) / speech / background

ounds classification problem as “the 3-class problem”. 

In light of the characteristics of our dataset exposed in the pre-

ious section, we attempted to better account for the noisiness and

ariability of the physical environment by explicitly classifying the

ackground sounds (i.e. the environment/vehicle sounds) into sub-

lasses, superimposed on shouts and speech. To this aim, based on

n extensive listening of the database, we defined the following 5

ubclasses, illustrated on the spectrogram in Fig. 4 : 
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Fig. 2. Example spectrograms of speech during portion on standby (a) and at high speed (b). Example spectrogram of shouts during portion on standby (c) and at high 

speed (d). 
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Fig. 3. Distribution of short-term (10ms) frame energy when the train is idle vs. when it is at high speed. (a): background noise only; (b): background noise + shouts. 

Fig. 4. Example spectrogram of a recording between two stations of line 14. The red lines show the boundary of the 5 environment-related classes. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 



34 P. Laffitte et al. / Expert Systems With Applications 117 (2019) 29–41 

Table 1 

Duration (in seconds) of the 15 fine classes and the 3 broad classes in the train/validation/test datasets. 

Stand-by Departure Start compressor Cruise Arrival Total 

Background noise 290/36/57 100/28/22 19/4/4 663/115/88 69/11/9 1292/190/194 

Speech 650/68/187 124/8/40 19/3/6 472/57/105 91/24/25 1554/152/356 

Shout 65/1/13 6/0/2 - 228/41/14 7/1/4 358/43/30 
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• Stand-by : This class is defined as all situations where the train

is not moving. When the train is operating on the line, the du-

ration of this class usually stands between 15–20 s. When the

train is parked in the workshop or at the end of the line, the

duration ranges from 2 min (end of the line) to 10 min (work-

shop). 
• Compressor : Specific noise made by the vehicle’s compressors

when about to start moving. Its duration is around 1 s. It is

composed of noise ranging from 20 0 0 Hz to 22050 Hz with di-

minishing energy after 600 ms. 
• Departure : The train engages in the process of starting its en-

gine and moving forward, between the compressor noise and

the moment it enters the tunnel. An energy stain specific to

this event can be observed, beginning around 20 0 0 Hz and pro-

gressing towards 50 0 0 Hz at the end. This sound is very distinct

to the ear. 
• Cruise : Time span between two stations, when the train is in-

side the tunnel. The duration of this portion varies from 40 s

to 90 s, depending on the distance between stations. Its spec-

tral content varies according to the speed. In terms of spectrum

representation, the speed leads to harmonics that can be seen

around 70 0 0 Hz in Fig. 4 . The stages of acceleration and decel-

eration can be identified, with a transition around 26 s. More-

over this event is composed of very energetic noise along the

entire frequency axis, stemming from the mechanical rolling. 
• Arrival : This event occurs between the moment the train

comes out of the tunnel and when it stops. As with the Depar-

ture event, it is easily identifiable upon listening. Its duration

depends mainly on the length of the station. 

In the example shown in Fig. 4 , some additional sounds can be

identified such as; speech signal (between 0 s and 5 s), sound of

crumpled newspaper right underneath the microphones (between

10 s and 16 s), internal and external mechanical noises due to rail-

road switch (between 18 s and 20 s) or due to the joint between

two rails (between 34 s and 36 s). 

Each of the 5 background sound classes are then combined with

the three main (shout/speech-related) classes, to perform classi-

fication on 3 × 5 = 15 composite classes (e.g. speech + cruising,

shouts + compressor, etc). The result of this classification can then

be marginalized over the 5 background sound classes, so as to end

up with a 3-way classification result, over the three main classes.

The goal of this approach is to see if it alleviates the burden of the

classifier, compared to the raw 3-class problem, by reducing the

variability of each class despite a higher number of classes. 

We split our database in three different sets: a training set, a

validation set and a test set. All the results presented further in

this paper were calculated on the test set. The total amount of data

was approximately 3800 seconds, distributed across training, vali-

dation and testing datasets as shown in Table 1 . This table gives

the amount of data in seconds for each sub-class, contained in the

training dataset, the validation dataset, and the test dataset. For

example, data pertaining to sub-class Background noise + Stand-by

is scattered across the three datasets in the following proportion:

290s for training, 36s for validation and 57s for test. Because the

long-term temporal structure of the environment seemed crucial

to us, we did not want to artificially cut any sequences contain-

ing a natural continuity. Thus, our dataset was processed so as to
eep the chronological order of appearance of sounds. As a result,

 precise control over the data distribution for each class across

rain, valid and test dataset was beyond our reach. 

As can be seen in Table 1 that the sub-class “Shout + Start com-

ressor” contains no data at all. This is because the occurrences

rom class “Start compressor” were too short and those from class

Shout” were too sparse to get an overlap between occurrences

rom these two classes. As a result we obtain a total of 14 sub-

lasses. In the following, for simplicity, this second approach is re-

erred to as “the 14-class problem”. Classes “Shout+Departure” and

Shout+Arrival” have respectively 2s and 4s of training occurrences,

hich will obviously limit the complexity of our model. 

Table 1 shows that our dataset suffers from imbalance, i.e. the

ifferent classes have quite a different amount of occurrences (and

hus training, validation and testing data). In particular, we already

entioned that scream occurrences are quite rare. Even screams

 shouts together, i.e. the shout class, is sparse compared to the

peech class and the background noise class. Class imbalance is

 known issue in the machine learning literature ( He & Garcia,

0 09; Japkowicz & Stephen, 20 02 ) and it is not perfectly clear how

o take this problem into account within a discriminative model

ramework such as the DNN framework (as opposed to genera-

ive models where it can be tackled by inserting prior class dis-

ribution in the model). However our situation is a very specific

ase scenario, wherein the classes are naturally imbalanced. In

act, scream/shout occurrences are even more imbalanced (under-

epresented) in real life than in our dataset. We have not had the

hance to conduct experiments to address this problem extensively

n our study, however, we decided to simply create a dataset with

ll available data, thereby displaying a higher proportion of occur-

ences of the rare class than would be found in fully real condi-

ions, because the absolute number of occurrence is already low.

ndeed, the more data the more accurate the model. In short, we

ried to find a trade-off between (limiting the) over-representation

f screams and shouts in our dataset w.r.t. reality, and (limiting)

heir under-representation w.r.t. other classes. 

. Methods 

The machine learning systems used to perform the classification

asks introduced above, as well as their theoretical background, are

resented in this section. 

.1. Artificial neural networks 

.1.1. Generalities 

In the present study we used artificial neural networks (ANNs)

o achieve the classification task. More precisely we used classical

eed-forward deep neural networks (DNNs), convolutional neural

etworks (CNNs), and recurrent neural networks (RNNs) such as

ong Short-Term Memory (LSTM) networks. ANNs have been ex-

ensively studied and used as a powerful tool for regression and

lassification problems, for many applications. Because they are ex-

ensively described in the literature ( Bengio, Lamblin, Popovici, &

arochelle, 2007; Bishop, 1995; Funahashi, 1998; Gish, 1990; Lipp-

ann, 1994; Zhang, 20 0 0 ) and because the contribution of this

aper is mostly experimental and applicative, and not method-

logical, we only give a brief overview of the general principles
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o  
f ANN-based classification, and of the different neural architec-

ures that we have tested. The reader is referred to the above-

entioned references for a detailed description of ANN architec-

ures and methodology. 

In a classification paradigm the output of an ANN is an estimate

 n of the posterior probability p ( c | x n ) of each class c ∈ [1, C ], where

 is the number of classes, given an input data vector x n , where n

s here the time index. The selected class is the most likely, i.e. the

ne with the highest posterior probability. 

ANNs are associated with supervised learning: they are trained

n labeled data because they need some ground-truth information

o learn from so as to adjust their weights accordingly. The train-

ng, i.e. the optimization of the parameter values (layer weights,

ee below) for optimal data discrimination, is done via maximiza-

ion of a likelihood function. The latter encodes the link between

nput and output data (i.e. the associated labels) from the train-

ng dataset. Maximization of this likelihood function is usually

chieved by means of a gradient descent algorithm which sequen-

ially updates the parameters. Again, details on learning (deep)

NNs can be found in ( Bengio et al., 2007; Bishop, 1995; Gish,

990 ). 

.1.2. Deep neural networks 

A classical feed-forward neural network is composed of several

ayers of elementary units (also called cells). Each unit performs a

on-linear transformation on a weighted sum of its inputs, which

re the outputs of the previous layer. The input layer is simply the

nput vector, and the output layer computes the posterior probabil-

ty of each class (one class per output unit), deciding which class

he input belongs to. Intermediary layers between the input and

utput layers are called hidden layers, and when the number of

idden layers is larger than one, an ANN becomes “deep”. In that

ase The units operate in chain, building more complicated trans-

ormations of the input. The idea is that the resulting non linear

unctions can be arbitrarily complex. Conceptually, the units rep-

esent unknown factors which “explain” the data. The more layers,

he more conceptual these factors become, eventually represent-

ng some abstractions of the data that enable the output layer to

iscriminate it more efficiently. 

.1.3. Convolutional neural networks 

CNNs were introduced in ( Fukushima, 1980 ) as a visual pat-

ern recognition technique unaffected by shifts in position. As such,

heir power lies in their ability to consider 2-dimensional data. The

rst layers filters the input, analyzing it across both dimensions .

ach layer consists in a certain number of “plies” or “feature maps”

the term varies in the literature) each corresponding to a filter.

oncretely, each hidden unit in a given convolution ply takes a

mall subset of the previous layer’s output as input, and performs

 linear combination with a weight matrix. Since the weight ma-

rix is the same for all hidden units within a ply, the operation

mounts to performing a convolution. Several such plies are used

o create multiple (hidden) filtered versions of the input. A pooling

ly is generally used after a convolution ply, where a mathematical

ax operation is performed to reduce the dimensionality. ( Abdel-

amid et al., 2014; LeCun & Bengio, 1998 ) present some applica-

ions of CNNs for automatic speech recognition (ASR). 

.1.4. Recurrent neural networks 

RNNs were made to circumvent DNNs’ inherent flaw in pro-

essing sequences. Their general architecture is the same as clas-

ical feed-forward neural network ANN , but they are capable of

onsidering a series of input vectors as a temporal sequence, by

eans of a memory. Two forms of RNN exist: unidirectional (used

n this study) where the flow of information entering the mem-

ry goes forward in time, and bidirectional, (which will not be
iscussed here) where the information travels both ways (forward

nd backward in time). The memory is contained in the hidden

ells, who are able to retain and accumulate passed information

nd subsequently use it when necessary to output classification

ecisions. A more advanced type of cell called Long Short Term

emory (LSTM), introduced in ( Hochreiter & Schmidhuber, 1997 ),

ctually uses a separate container for its memory: the state, de-

oted c n , where all information are accumulated. Three different

perations are performed on that state at each time-step: erase

ieces of information, add some new elements, and output what is

elevant. In order to do this the LSTM cell analyses the current in-

ut x n and the previous output h n −1 ; it filters them through three

ifferent sigmoid gates corresponding to the three operations. Each

ate outputs values between 0 and 1, deciding what to let through

nd how much of it. These outputs are then combined together to

iscard some information, add some new into the memory and re-

ease some which is then used to update the state c n and compute

he current output h n . LSTMs have recently shown excellent per-

ormances in ASR ( Graves, r. Mohamed, & Hinton, 2013; Graves &

chmidhuber, 2005; Miao, 2014 ) and AED ( Parascandolo, Huttunen,

 Virtanen, 2016 ), and become the new state-of-the-art in these

omains and other domains of pattern recognition and mapping. 

.2. Processing temporal sequences with ANNs 

Within the framework of audio event detection, the target

ounds are naturally characterized by the temporal evolution of

heir spectral content. The spectral content on a short duration (a

ew tens of ms) is usually represented by a vector of spectral co-

fficients such as Mel-frequency cepstral coefficients (MFCCs). Suc-

essive vectors are obtained by sliding the analysis window, gener-

lly by a portion of its size, to ensure some overlap between suc-

essive frames. Different realizations of target sounds usually have

 different duration, which implies that the total number of spec-

ral coefficient vectors required to fully represent a given sound

vent also varies, in an unpredictable manner (for instance, a shout

xpressing fear can be quite short or quite long depending on the

peaker). 

Unfortunately, in their “default configuration”, DNNs only take

xed-size inputs and consider each successive input vector x n inde-

endent from one another, failing to capture the sound’s temporal

tructure. To remedy this, it is common to feed a DNN with a su-

ervector obtained by concatenating K consecutive vectors of spec-

ral parameters. For example, if some delay is tolerated, at time

 (at the frame sampling level), the DNN can be fed with a su-

ervector encompassing all input vectors from frame n − K/ 2 to

 + K/ 2 − 1 . Such DNNs are sometimes called “contextual” DNNs.

ne advantage is that they can learn the temporal structure of

ounds on the scale of K successive frames, but are limited to that

ength. Yet, K successive frames may very well represent only a

ortion of a (long) sound, and conversely may also be longer than

 given sound and include several sounds that we want to dis-

riminate (which happens when the block of K frames overlaps the

oundary between two sounds. This situation is detailed below). 

As for CNNs, they consider 2D inputs (i.e. images). Therefore

he temporal dimension can be taken into account in a simple

anner by feeding the CNNs with (portions of) 2D spectrograms

ormed with K consecutive vectors. The convolution operation then

llows an efficient joint exploitation of the spectral correlations in

oth time and frequency dimensions. However, the problem re-

ains of fixed-sized processed blocks that contrast with variable-

ize sounds. 

The intrinsic capacity of RNNs to process sequences of in-

ut vectors makes them perfectly suitable for audio sequences.

heir main advantage over DNNs and CNNs is the use of a mem-

ry linking consecutive inputs together over a possibly very long
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Table 2 

Data-to-parameter ratios for different window 

sizes and DNN architectures. 

number of frames K 10 20 50 

1 ∗128 473 228 79 

2 ∗128 349 - 74 

1 ∗512 115 57 20 

Table 3 

Data-to-parameter ratios for different numbers of 

context frames. 

1 ∗128 1 ∗256 1 ∗512 2 ∗128 

RNN/LSTM 152 34 9 48 

c  

(  

i  

t  

t  

t  

c  

t  

(  

o

4

 

3  

F  

c  

g

 

w  

D  

 

 

d  

r  

e

 

n  

i

 

R  

p

2 As seen in Table 2 the DPR did not allow us to test more complex networks 

architecture, to avoid training data over-fitting, which is why our deepest network 

only had 2 hidden layers. 
temporal horizon, set automatically. This memory allows the net-

work to capture the time structure of the audio patterns without

the constraint of an arbitrary, fixed-size segmentation, even when

the RNNs is fed one vector/frame at a time. 

In the present study we use the “contextual” configuration for

DNNs and CNNs, i.e. we process blocks of K consecutive input vec-

tors. In the literature, in such a configuration the classification task

is often performed and evaluated offline with pre-segmented au-

dio patterns. This means that at training and testing time, only

sequences with K vectors belonging to the same sound are con-

sidered. However, in the present framework of alert signals detec-

tion, we have to perform an online analysis on an incoming “con-

tinuous” audio stream. The sound patterns that we must detect

are thus no longer pre-segmented. In this case, concatenating the

K “current” consecutive input frames (for instance the current in-

put frame and the K − 1 past frames) does not necessarily match

the onset and offset of the sound pattern. In the neighborhood of

class boundaries (when we go from one type of sound to another),

a supervector can contain vectors from the first sound concate-

nated with vectors from the second sound. This naturally brings

some ambiguity in the classification process (test time) and/or

the estimation of the models (training time). In order to evaluate

the influence of this problem in the classifier’s performances we

considered two configurations: pre-segmented data and stream-

ing data. In the latter, the supervector is formed by concatenat-

ing consecutive input frames regardless of their labels. The label

of a supervector containing segments pertaining to two different

classes is chosen by taking the class with the highest number of

frames within that supervector. More precisely, the results pre-

sented in this paper were obtained in 3 different configurations:

i) using pre-segmented data for both training and testing, ii) us-

ing pre-segmented data for training and streaming data for test-

ing, and iii) using streaming data for both training and testing.

Pre-segmentation was done manually. Configuration i is unrealistic

in a practical application (in the absence of automatic robust pre-

segmentation which is a problem on its own). We used it mainly

as a baseline for the other two configurations. Configurations ii and

iii are realistic since online processing on unsegmented data is re-

quired only at test time. Concretely, tests in Configuration iii will

indicate if including information about the surrounding sounds at

training time is a good thing for the classification system. 

3.3. Post-processing for final decision 

For DNNs and CNNs, the block of K consecutive vectors slides

by K /2 to proceed to the next detection. Therefore, an estimate of

the input target class is provided every K /2 frames, hence at every

frame index n = pK/ 2 . With RNN, the estimation is made for every

input frame x n , hence at every frame index n = 1 to N . 

To further improve the results, we tested two different post-

processing algorithms: 

• A smoothing algorithm that prevents a decision at time n from

diverging if the two directly adjacent decision, n − 1 and n + 1

are the same. In that case, decision at time n is forced to be

the same that at time n − 1 and n + 1 . 
• A majority voting algorithm that looks at N maj.vot . consecutive

output decisions, and finally outputs the class with most occur-

rences for the whole set of N maj.vot . consecutive decisions. 

4. Experimental set-up 

4.1. Feature extraction 

The signal extracted from the microphones was 16 bits PCM

samples at 48-kHz. For DNNs and RNNs, the audio feature vec-

tors consisted of 40 Mel-frequency cepstral coefficients (MFCCs)
alculated every T i = 10 ms, over a T w 

= 20 ms time window

hence a 10-ms overlap), from the 48-kHz audio recordings, us-

ng the SoX software tool ( SoX, 2015 ). Each audio sequence was

hus turned into a series of such audio feature vectors. According

o the aforementioned parameters, 1s of audio produced 100 fea-

ure vectors, which were then concatenated (in the DNN and CNN

ase) to form input examples. For CNNs, 40 Mel-frequency spec-

ral coefficients (MFSCs) instead of MFCCs were used as defined in

 Abdel-Hamid et al., 2014 ), in order to keep the locality property

f the spectrum. 

.2. Configurations 

As seen in Section 2.3 , we tested two strategies to classify the

 main target classes (Shouts, Speech and Background sounds):

irst we considered them without any information about the (vehi-

le) environment, and second we combined them with the 5 back-

round sound classes, resulting in 15 composite classes. 

In the 3-class case, we tested all three types of considered net-

orks: DNNs, CNNs and RNNs, using classical sigmoid units. For

NNs, the following parameter settings were tested and compared:

• Number of hidden layers: 1 or 2, 
• Number of units per layer: 128, 256 and 512, 
• Number K of consecutive frames used to form the input super-

vector: 10, 20 and 50 frames. 

The corresponding ratios between number of scalar training

ata and number of network parameters (called data-to-parameter

atios; DPRs) are given in Table 2 . 2 For CNNs, the following param-

ter values were tested: 

• Number of convolution plies in each CNN layer: 150, 100, 
• Size of CNN convolution filters: 5 × 5, 5 × 10, 8 × 10, 8 × 10, 
• Number of hidden (convolution) layers: 1 and 2, 
• Size of the top NN layer: 1 × 128, 1 × 512, 2 × 128. 

Due to a high number of tested configurations for CNNs, we do

ot report DPRs for all of them. We will give the DPRs correspond-

ng to the selected results in Section 5 . 

For RNNs, we tried the following configurations: 

• Number of hidden layers: 1 or 2, 
• Number of units per layer: 128, 256 and 512, 

The corresponding DPRs are given in Table 3 . Here again, the

NN’s complexity is limited by the DPR to avoid the over-fitting

roblem. 
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Table 4 

Confusion matrix of a DNN with 1 layer of 128 on 

pre-segmented events after smoothing. 

1 2 3 Total 

1: Shout 78.8 17 4.2 

2: Speech 28.6 69.9 1.5 74.9 

3: Background 1 14.6 84.4 

Table 5 

Confusion matrix of a CNN with 1 layer of 128 

units, on pre-segmented segments of 50 frames. 

1 2 3 Total 

1: Shout 79.6 18.4 2.04 

2: Speech 24.4 75 0.63 77.7 

3: Background 0.6 16.6 82.8 
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For each network type, we compared the results obtained for

ll proposed configurations, and we selected the best perform-

ng configuration, whose results will be presented in Section 5 . In

hose preliminary tests, the 2 post-processing methods mentioned

n Section 3.3 were tested and compared with the results obtained

ithout any post-processing. We also compared the use of pre-

egmented data and the use of streaming data, for both training

nd testing, in line with the discussion in Section 3.2 . Altogether,

e ran a large amount of experiments, corresponding to the pa-

ameter settings above. For clarity, in Section 5 , we present only

he best results obtained in the main configurations (e.g. for each

ype of ANN). Along the same lines, for the 14-class problem, we

nly tested one architecture, corresponding to the best results ob-

ained in the 3-class case. This case is detailed in Section 5.3 . 

.3. Training algorithms settings 

All tested DNNs were trained using the momentum method of

he Stochastic Gradient Descent introduced by ( Rumelhart, Hinton,

 Williams, 1986 ), applied on batches of size 128 input frames

ith a momentum of 0.5, without cost regularization and without

ropout (preliminary tests showed that no performance improve-

ent was obtained with cost regularization and dropout). Cross-

ntropy was used as the cost function. The learning rate was set

o 0.1 for the first 100 epochs, then decaying by a factor of 0.9 if

he error delta was less than 0.1, and the process was completely

topped when the error delta fell below 0.01. 

For CNNs, cross-entropy was also used as the cost function

ith square-norm regularization of 0.001. Weight optimization was

one via Stochastic Gradient Descent on batches of 128 input ma-

rices. The stopping criterion was the same as with DNNs. 

RNNs used LSTM units and were trained on a minimum of

0 epochs and up to 100 epochs, with a fixed learning rate of

.05. Two stopping criteria were used; pike in the validation er-

or of more than 5% or in the training error of more than 3%.

ross-entropy was used as the cost function, with both norm-one

nd square-norm regularization of 0.001. No momentum was used

n the gradient descent, and batches were composed of ten 500

rames-long sequences. 

Finally, note that no pre-training (e.g. on conventional audio

ata) was used in this study for all networks. In other words,

ll our ANNs were trained from scratch on the presented Metro

atabase. 

. Experimental results 

.1. Metrics 

The results are reported in the form of confusion matrix, where

ntry e i,j is the percentage of occurrences from class i classified

s class j . The highest numbers in each line of the confusion ma-

rix are displayed in bold, representing the largest proportion of

ata from class i and showing how it was classified. For the 15-

ay classification we provide either the “raw” 14-class confusion

atrix, or the corresponding 3-class matrix averaged over the 5

ackground classes, or both. To take into account class imbalance

n the averaging process, we weigh the classification score for the

omposite classes by the actual proportion they represent within

he main classes, as provided by Table 1 . Formally, let N i ( k ) denote

he total number of tested data frames of shout/speech-related

lass i in background sound class k . Let e i ( k ), j ( l ) denote the percent-

ge of occurrences of shout/speech-related class i in background

ound class k classified as shout/speech-related class j in back-

round sound class l . Then, the entries of the average 3-class con-
usion matrix are given by: 

ˆ 
 i, j = 

∑ 

k 

∑ 

l N i (k ) e i (k ) , j(l) 
∑ 

k N i (k ) 

. (1) 

.2. Results for the 3-class problem 

Before commenting the scores presented in the different tables,

t is important to mention that these represent classification re-

ults over one single experiment and should not be considered as

verages. On the other hand, in order to attest to the meaningful-

ess of the scores, we made sure that the variance between multi-

le experiments did not exceed a few percent. 

In this section, we present the results obtained for the 3-class

roblem. First, we present the best results obtained with DNN ar-

hitectures, reported in Table 4 . The DNN architecture that pro-

ided those results is composed of 1 hidden layer of 128 units. It

as trained and tested on pre-segmented data, with blocks of K =
0 frames. The smoothing algorithm was applied to improve the

esults. We can see in Table 4 that the correct classification scores

re 78.8%, 69.9% and 84.4%, for the shout class, the speech class

nd the background sound class respectively, with a total accuracy

f 74.9%. These numbers are quite satisfactory given the difficulty

f the task due mainly to the variability and noisiness of the sig-

als (see Section 2.2 ). The main confusions come from speech clas-

ified as background sound (28.6%) and vice-versa (14.6%), which

an be explained by the large amount of noise present in a lot of

peech sequences, and shouts (or screams) recognized as speech

17%), which was somehow expected given that the boundary be-

ween loud speech and moderate shouts can be difficult to de-

ne sometimes, even for human listeners. Interestingly, shouts are

retty rarely confused with background sound (4.2%) and the re-

iprocal result is even better (only 1%). This may indicate that the

NN is able to capture the specificity of shout/scream sounds. Yet,

t is interesting to note that those results were obtained with a

ingle-layer DNN, i.e. adding a second layer with as many units as

he first layer did not improve the results, even though the DPR re-

ains acceptable (see Table 2 ), which gives an idea of the inherent

ifficulty of discriminating the considered data. 

As for CNNs, the best results, presented in Table 5 , were ob-

ained with the following architecture: 150 plies using 2D filters of

ize 8 × 10, with a layer of 128 hidden units on top of it. It was

rained and tested on pre-segmented matrices of K = 50 consec-

tive frames of MFSCs, and the corresponding DPR was 15. Over-

ll, the performance is a little better than that of the best DNN

ith an improvement in total accuracy of 2.8%: the shout score

s slightly better (79.6% vs 78.8%), whereas the background sound

core is slightly below (82.8% vs 84.4%). However, the speech score

as significantly improved (75% vs 69.9%). 
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Table 6 

Confusion matrix of an RNN with 1 layer of 256 

LSTM units on pre-segmented data. 

config i 

1 2 3 Total 

1: Shout 78.1 15.9 5.98 

2: Speech 16.2 82 1.73 82.1 

3: Background 0.11 16.8 83.1 

Table 7 

Confusion matrices of an RNN with 1 layer of 256 trained on pre- 

segmented or streaming data, and tested with streaming data. 

training data: pre-segmented (config ii) streaming (config iii) 

1 2 3 1 2 3 

1: Shout 69.1 26.7 4.21 67.7 24.9 7.4 

2: Speech 1.04 86.5 12.5 0.6 85.8 13.5 

3: Background 1.72 27.7 70.6 0.4 18.0 81.5 

Total 80.5 83.4 
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Finally, the best results obtained with RNNs are presented in

Table 6 , with a network composed of one layer of 256 LSTM units.

Those results were obtained with pre-segmented training data and

test data, and with no post-processing. The overall accuracy signif-

icantly improved, now reaching over 82%. The score for the back-

ground sound class (83.1%) is in-between the scores of the best

DNN and CNN. However, the scores for shouts and for speech vary

differently: the shout score (78.1%) is slightly below those of the

best DNN and CNN, but this mild decrease is largely compensated

for by a better score for the speech class (82%), with much less

confusions with the background sound class (16.2%) compared to

DNN and CNN (respectively 28.6% and 24.4%). Overall, the RNN

provides the best performances when averaged across the three

classes. 

All those results were obtained in Configuration i (i.e. with pre-

segmented training data and pre-segmented testing data), how-

ever, as mentioned in Section 3.2 , this configuration is hardly real-

istic. To remedy this we now assess the performances of the clas-

sifiers in two other, more realistic, configurations: using stream-

ing data for testing and pre-segmented data (Configuration ii) or

streaming data (Configuration iii) for training. The results are pre-

sented for these two new configurations using the best architec-

ture (one layer of 256 LSTM units) in Table 7 . As expected, the

overall performance decreases compared with Configuration i, from

82.1% to 80.5%. In Configuration ii the scores drop significantly for

the background sound class (70.6% vs 83.1%) and the shout class

(69.1% vs 78.1%). Surprisingly, the score for speech increases from

82% to 86.5%. In Configuration iii however, the overall performance

is slightly better with an improvement from 82.1% to 83.4% in to-

tal accuracy. The drop for the background sound class is a lot less

obvious than with Configuration ii. (81.5% vs 70.6%), but a little

more important for the shout class (67.7% vs 69.1%). Conversely,

the score for the speech class is also higher than in Configuration i

(85.8% vs 82%). Altogether, those latter results are mitigated: They

show a decrease of the score for the main target class of our task

(the Shout class), but they also show some robustness of the two

other classes when tackling the tricky case of streaming data, leav-

ing room for hope for future improvement of the system. 

5.3. Results for the 14-class problem 

This section presents the results for the classification of com-

posite classes. Again, based on our previous results, those results

are given for a RNN with 1 layer of 256 LSTM units. The re-

sults with the RNN being trained and tested with pre-segmented

data (Configuration i) are given in Table 8 . The results for pre-
egmented training data and streaming test data (Configuration ii)

re presented in Table 9 . 

The main takeaway from Table 8 is that 7 sub-classes

ut of 14 get an accuracy rate over 80%, and 3 get an ac-

uracy rate over 59%. The sub-classes which are not recog-

ized correctly (less than 50% of accuracy) are “Shout+Stand-

y” which is misclassified into “Shout+Cruise” 57.4% of the time,

Shout+Arrival” which is misclassified into “Shout+Cruise” 47.3%

f the time, “Speech+Compressor” which gets misclassified into

Background+Compressor” and “Speech+Arrival” which gets mis-

lassified into “Background+Arrival” 34.9% of the time. In the first

wo cases, this means that the Shout-related subclasses produce

rrors in other Shout-related classes, resulting in a correct classifi-

ation of the Shout occurrences. However in the other two cases,

t appears the environment overshadowed the Speech content of

he sound and the Speech occurrences were misclassified as Back-

round. 

The averaged results (averaged across background sound

lasses, see Section 5.1 ) are shown in Table 10 (left) for Configu-

ation i, and in Table 10 (right) for Configuration ii. They show that

n Configuration i, splitting the environment into several subclasses

as beneficial in terms of classification accuracy, both on average

with an increase in total accuracy from 80.5% to 83%) but also for

wo classes out of three (shout and background), while the nega-

ive impact on the third class (speech) was limited to an accuracy

ecrease of 1.5%. However, in Configuration ii, directly address-

ng the 3-class problem seemed to be significantly more efficient,

ince the scores for all classes in Table 10 (right) are lower than

n Table 7 (left), with a decrease in total accuracy from 83.4% to

4.24%. This can be explained by the fact that our double-labeling

cheme (into 15 classes) resulted in a finer partition of the audio

ataset and therefore in smaller individual events. Thus, when the

est dataset was processed in streaming mode, the number of re-

ulting segments comprising cross-event boundaries turned out to

e significantly higher than with the 3-class experiment, leading

o more difficulty for the classifier. This speaks to the difficulty of

he streaming mode for AED in general. More efforts will be put in

he future to improve the system in this difficult configuration. 

.4. Limitations 

For security reasons we could not record instances of shouts

hen the train was in a station, which prevented a good collection

f data for classes “Shout+Arrival” and “Shout+Departure” (events

or class “Shout+Stand-by” were recorder in the warehouse. This

esulted in a dataset presenting a high level of imbalance, which

irrors the natural distribution of the classes. Since we are dealing

ith discriminative systems without a prior distribution of classes,

his could be a way for the classifier to deal with the natural im-

alance between the classes considered. However it is true that it

ould be an issue in learning a representation of each class, the

isk being that the model ends up not being able to model under-

epresented classes and ignoring them as a result. It appears to bar

he classifier from modeling classes ”Shout+Arrival” in Table 8 and

able 9 , resulting in an ’empty output class’, where no input ex-

mples were associated to it. For class “Shout+Departure” suggests

hat the classifier did not suffer from this imbalance (85.7% of ac-

uracy on this class). The important thing is that this environment

abeling can improve the performance of the system on the overall

-way classification, when marginalizing the results from the 14-

ay classification over the background classes. Now, it appears this

ssue did not affect results in Configuration i, which improved with

he addition of background environment information, as shown in

able 10 (left), decreasing performance for Configuration ii only in

able 10 (right) when compared to Table 7 . This emphasizes the
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Table 8 

Confusion matrix of an RNN with 1 ∗256 LSTM units on pre-segmented data (i.e Configuration i). 

1(1) 1(2) 1(3) 1(4) 1(5) 2(1) 2(2) 2(3) 2(4) 2(5) 3(1) 3(2) 3(3) 3(4) 3(5) 

1(1): Shout + Stand-by 27.8 0 0 57.4 0 6.73 5.73 0.62 0.08 0.31 0.54 0 0.85 0 0 

1(2): Shout + Departure 0 85.7 0 0 0 0 0 0 0 14.3 0 0 0 0 0 

1(3): Shout + Comp. - - - - - - - - - - - - - - - 

1(4): Shout + Cruise 0 0 0 83 0 1.55 0.14 0 6.78 0 0 0.14 0 8.33 0 

1(5): Shout + Arrival 10.1 0.94 0 47.3 0 0.47 0.47 1.41 8.67 9.6 0 0 0 0 21.1 

2(1): Speech + Stand-by 0.62 0.04 0 0.47 0 85.8 1.96 0.16 4.7 0.69 4.36 0.85 0.03 0.13 0.21 

2(2): Speech + Departure 0.89 0.18 0.33 0 0 6.04 59.4 0.51 0.56 0.58 1.07 23.9 0 2.54 3.97 

2(3): Speech + Comp. 0 0 0 0 0 0.49 0 23.6 0 0 2.55 0 73.4 0 0 

2(4): Speech + Cruise 0 0.27 0 1.8 0 3.12 1.35 0 66 0 0.02 3.27 0 23.6 0.55 

2(5): Speech + Arrival 0.23 0 0 0.45 0 4.24 2.43 0 6.14 49.7 1.21 0.11 0 0.57 34.9 

3(1): Background + Stand-by 0 0 0 0 0 10 1.17 0.2 0.85 0 68.5 3.3 0.09 11.3 4.5 

3(2): Background + Departure 0.38 0 0 0 0 1.12 1.3 0.06 0 0.09 2.39 85.2 0 1.51 7.94 

3(3): Background + Comp. 0 0 0 0 0 0.28 0 2.49 0 0 11.9 0 85.3 0 0 

3(4): Background + Cruise 0 0.32 0 0.98 0 0.35 0 0 12.7 0 0.23 2.64 0 82.5 0.37 

3(5): Background + Arrival 0 0 0 0 0 1.62 1.26 0 0 0.45 0.72 0.72 0 0.45 94.8 

Table 9 

Confusion matrix of an RNN with 1 ∗256 LSTM units trained on pre-segmented data and tested on streaming data (i.e Configuration ii). 

1(1) 1(2) 1(3) 1(4) 1(5) 2(1) 2(2) 2(3) 2(4) 2(5) 3(1) 3(2) 3(3) 3(4) 3(5) 

1(1): Shout + Stand-by 9.88 0.27 0 27.2 0 57.3 2.91 0 0.03 0.98 0.3 0 0 0.07 1.02 

1(2): Shout + Departure 0 5.84 0 25.6 0 16.6 15.4 0 1.57 7.3 0 24.6 0 0 3.14 

1(3): Shout + Comp. - - - - - - - - - - - - - - - 

1(4): Shout + Cruise 5.93 0.07 0 68 0 0 0 0 9.12 0.52 0 1.33 0 14.5 0.52 

1(5): Shout + Arrival 6.17 18.2 0 11.6 0 0 5.66 0 0.26 33.2 0 0.51 0 0 24.4 

2(1): Speech + Stand-by 1.65 0.52 0 3.64 0 81.4 0.79 0.04 3.99 1.96 2.89 0.5 0.03 2.42 0.15 

2(2): Speech + Departure 0 0.05 0 0 0 10.3 39.2 2.24 2.69 0.25 1.57 29.6 1.82 6.26 5.91 

2(3): Speech + Comp. 0 0 0 0 0 43.1 0 15.4 0 0 8.95 0 32.6 0 0 

2(4): Speech + Cruise 0 0.09 0 4.61 0 1.09 1.02 0 61.2 0.44 0 0.74 0 30.4 0.36 

2(5): Speech + Arrival 0 0 0 0 0 4.92 0.35 0 19.7 55.5 0.1 0.1 0 4.09 15.2 

3(1): Background + Stand-by 0.43 0 0 0 0 25.7 0.46 0.07 2.39 0.72 60 0.87 0.46 3.91 4.97 

3(2): Background + Departure 0 0 0 0.18 0 1.93 11.3 0.4 0 0.31 12.1 58.6 1.7 4.76 8.75 

3(3): Background + Comp. 0 0 0 0 0 26.7 5.44 0 1.04 0 38.6 0 28.2 0 0 

3(4): Background + Cruise 0 0.1 0 5.06 0 0.29 0.13 0 21.7 0.01 0.01 0.84 0 71.5 0.32 

3(5): Background + Arrival 0 0 0 0 0 0.99 3.85 0 8.92 7.49 1.76 0.33 0 22.2 54.4 

Table 10 

Merged detection results using pre-segmented events and streaming. 

context pre-segmented (config i) streaming (config ii) 

1 2 3 1 2 3 

1: Shout 81.0 12.3 6.7 52.4 35.4 12.2 

2: Speech 1.4 80.5 18.1 4.3 76.5 19.2 

3: Background 0.7 10.8 88.5 2.7 23.6 73.7 

Total 83.0 74.24 
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d  
ifficulty of the real-life streaming conditions, which brings about

ven more issues than the classical pre-segmented tasks. 

Additionally, we would like to point out the fact that this study

as conducted in a single recording context (recording gear, place,

nvironment) and therefore the performance of the final system

ight change if tested in a different context. In such a recog-

ition/detection task, if the training dataset can not exhibit such

ariability then the model needs to be adapted to new conditions.

o do so, it can be re-trained with a new set of data. Several strate-

ies can be used, either re-training the whole model or only part

f it, or leveraging transfer learning methods as suggested in ( Pan

 Yang, 2010 ). 

. Conclusion 

This paper reported the results obtained by applying three dif-

erent types of neural networks (DNNs, CNNs and RNNs) to a spe-

ific task of scream/shout detection in a real, embedded, (and dif-

cult) public transportation environment. The entire database con-

isted in a little over an hour of live sound, recorded inside a sub-

ay train running its usual course on the Paris Metro network. It
as manually labeled with three labels, one of which corresponds

o the target abnormal sounds. 

A classifier was then trained to recognize those labels and

sed to classify an incoming stream, in order to detect abnor-

al situations. Although all models performed virtually equally

ell on the Background class with around 83 − 84 . 5% accuracy,

nd for the Shout class with around 78 − 80% , the Speech class

s what set them apart with accuracy ranging from 70% for DNNs

o 82% for RNN, with CNN performing at 75% (experiments with

re-segmented training and test data). This attests to the tem-

oral structure of speech, and shows that recurrent neural net-

orks are better adapted to recognizing temporally structured

ounds. 

Other results show that explicitly taking into account the differ-

nt categories of background sounds (with a two-level data label-

ng into composite classes) can have a positive impact. However,

his was observed on pre-segmented classification performance. In

he case of streaming test data, the complexity of the simultane-

us “segmentation and classification task” led to more deceiving

esults and a need to further investigate this issue. The influence

f the average length of each sound class (depending on the way

he labeling is made) and the way the neural networks react to

he transition between sounds, especially for LSTMs, also requires

urther investigation. Lastly, although it was not addressed in this

tudy, RNNs have different ways of handling sequences regarding

he memory reset throughout the entire learning process. This is-

ue is currently being investigated and could affect the way RNNs

dentify temporal structure. 

Other steps towards improvement would be to gather more

ata or use some data augmentation technique so as to allow for
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more complexity in the models, as in ( Takahashi, Gygli, Pfister, &

Gool, 2016 ). Transfer Learning in the context of audio events can

also be beneficial as shown in ( Diment & Virtanen, 2017 ). A hier-

archical model might also provide more deftness in dealing with

such a complex environment. Additionally, a more acute descrip-

tion of the environment through more specific labels (mechanical

noises, sounds related to passengers activity, etc.) would help un-

derstand the instantaneous context. 
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