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ABSTRACT

Modern monaural voice and accompaniment separation systems
usually consist of two main modules: melody extraction and time-
frequency masking. A main distinction between different separation
systems lies in what approaches are used for the two modules. Popu-
lar techniques for melody extraction include hidden Markov models
(HMMs) and non-negative matrix factorization (NMF), and mask-
ing includes hard and soft masking. This paper investigates the flaw
of NMF-based melody extraction, and proposes the combination
of HMM-based melody extraction (equipped with a newly-defined
feature) and NMF-based soft masking. Evaluations on two publicly
available databases show that the proposed system reaches state-of-
the-art performance and outperforms several other combinations.

Index Terms— Monaural sound separation, melody extraction,
soft masking, HMMs, NMF

1. INTRODUCTION

Modern monaural voice and accompaniment separation systems
usually consist of two main modules: melody extraction and time-
frequency masking. Popular techniques for melody extraction in-
clude hidden Markov models (HMMs), non-negative matrix factor-
ization (NMF), and so on. Time-frequency masking decomposes
an audio into time-frequency (T-F) units, then assigns each unit to
the sound sources according to a certain proportion (a “mask”), and
finally resynthesizes each sound source. Masking methods can be
divided into “hard masking”, where the mask consists of only zeros
and ones, and “soft masking”, where the elements in the mask can
range continuously from O to 1.

A main distinction between different separation systems lies in
what approaches are used for the two modules of melody extraction
and masking. The computational auditory scene analysis (CASA)
approach proposed by Wang et al.[1] employs HMM-based melody
extraction and hard masking. In [2], Hsu ef al.combine the melody
extraction algorithm of Dressler [3], which makes use of neither
HMM nor NMEF, and the hard masking of Wang et al., and in [4]
they propose their own HMM-based melody extraction method. (For
simplicity, we shall refer to the two systems of Hsu et al.as the H1
and H2 systems respectively.) Virtanen et al.[5] use the HMM-based
melody extraction of Klapuri [6] and NMF-based soft masking. Dur-
rieu et al.[7] perform melody extraction with NMF, and soft masking
with both NMF and Wiener filtering.

Durrieu’s system presents a promising approach. Regarding the
masking step, it has been shown in [8] that Wiener filtering, which is

This work is supported by National Natural Science Foundation of China
(61075020). The authors would like to thank J.-L. Durrieu for providing his
separation program for evaluation.

978-1-4577-0539-7/11/$26.00 ©2011 IEEE

closely related to the ideal ratio masking, performs consistently bet-
ter than hard masking in terms of signal-to-noise ratio (SNR). How-
ever, the NMF-based melody extraction module tends to estimate the
pitch as one octave higher, and results in octave errors. This unde-
sirable effect is mentioned and ad hoc compensated in [7], but the
underlying problem is unclear.

This paper looks into the reason why the octave errors are pro-
duced, and reveals the flaw of NMF-based melody extraction. Based
on these discoveries, we propose a new monaural voice and accom-
paniment separation system, which combines HMM-based melody
extraction and NMF-based soft masking. Our HMM-based melody
extraction method draws on the H2 system [4] and Klapuri’s work
[6], and is equipped with a newly-defined feature. Evaluations on
two publicly available databases show that our system performs bet-
ter than both the H1 system and Durrieu’s separation system, and
that the HMM-based melody extraction runs significantly faster than
the NMF-based approach.

This paper is organized as follows: In Section 2, we review Dur-
rieu’s algorithm and investigate its flaw. In Section 3, we describe
our new separation system. Evaluation results are provided in Sec-
tion 4, comparing our system with the H1, H2 and Durrieu’s systems.
Finally, the conclusions are made in Section 5.

2. REVIEW OF NMF-BASED MELODY EXTRACTION
AND SOFT MASKING

Here we recapitulate the NMF-based melody extraction and soft
masking initially proposed in [9]. Itis slightly improved by introduc-
ing a smoothing matrix for the vocal track [10], which is included in
our system but will be omitted in the following description.

The monaural signal z(7) is considered to be a mixture of the
voice v(7) and the accompaniment m(7). Its short-time Fourier
transform spectrogram is denoted as a matrix X . Each element X s,
at frequency bin f and frame ¢ is assumed to obey a circular complex
Gaussian distribution with zero mean and variance D ¢:

1 | X5e|®
pXlDs) = oo (<) m
The variances of each element form a matrix D, which is called the
power spectrogram of x (7).
Assuming that the voice and the accompaniment are indepen-
dent, and further applying NMF, we can decompose the power spec-
trogram of the mixed signal D as follows:

D = (BrAr). % (BkAk)+ (BuAwm) 2)
—————
Dy Dy

Here “.*” denotes element-wise multiplication. The three parenthe-
ses on the right hand side stand for the power spectrograms of the
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Fig. 1. The B r matrix used in the proposed system

voice glottal excitation (with subscript F), the vocal tract response
(with subscript K), and the accompaniment (with subscript M), re-
spectively. In each parenthesis, the columns of the B matrix can be
regarded as power spectrum bases, while the A matrix can be treated
as linear combination coefficients of the bases.

The matrix of glottal excitation power spectrum bases, Br, is
fixed and generated from the KLGLOTTS88 model [11]. Its columns
contain the power spectra of the glottal excitations at different fO’s
of interest. These f0’s are chosen to be equally spaced on the midi
number scale. The relationship between the midi number n and the
frequency f (in Hertz) is:

n(f) = 69+ 12log, (f/440) 3

f(n) = 440 x 2(n—69/12 )
Fig. 1 shows the B r matrix used in our system. We choose the midi
numbers from 38.5 to 74.5 with a step of 0.1.

2.1. NMF-based melody extraction

First, the five unknown matrices © = {Ap, Bx, Ax,Bn, An}
are estimated by maximizing the likelihood of the observed spectro-
gram X:

1 X2
LX|D) =[] p(Xse| Dse) = [ 15— exp (_|DA) 5)
fit fit ft It

We apply the multiplicative updating rules [9] to solve the max-
imization. The unknown parameters © are initialized with random
non-negative values, and 50 iterations are used in our system.

The matrix A r resulting from the iterations is informative about
the melody, since each element of it can be viewed as the intensity of
a candidate fO at a given frame. Durrieu normalizes the columns of
A, takes its elements as weights for the candidate f0’s, and extracts
the melody by running a Viterbi decoding on this matrix [9].

2.2. NMF-based soft masking

The iteration procedure above also gives estimates of the power spec-
trograms of the voice and accompaniment, which can be used to
calculate the soft masks. However, after extracting the melody, we
can obtain a more accurate estimate by constraining A i to represent
only the extracted melody. We run a second pass of the iteration pro-
cedure, with the elements in A that are far (e.g. > 0.2 semitones)
from the melody line initialized with zeros. Because the updating
rules are multiplicative, these zero elements will remain zeros. The
soft masks are then calculated from the new estimates of the power
spectrograms of the voice and accompaniment by Wiener filtering:

Xv =Dvy./(Dyv + D). x X “/” denotes ©)
XM = D]u./(Dv + D]u), * X element-wise div.

Reversing X v and X 5 back into the time domain using the
overlap-add method gives the separated voice and accompaniment.
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Fig. 2. The original A, compensated A% and the estimated pitch
contours over a 388-frame audio

2.3. Flaw of NMF-based melody extraction

As mentioned in [7], the NMF-based melody extraction method
tends to estimate the pitch as one octave higher. We re-implement
this algorithm and run it on the MIR-1K database [2].

First, as a basic test, we take the elements of (column-normalized)
A directly as the weights for Viterbi decoding. We find that these
octave errors happen to middle-pitched melodies, and the algorithm
performs even worse for low-pitched melodies, giving wrong high-
pitched estimates (see the extracted pitch contour using the original
Ar in Fig. 2¢). The reason for such poor performance lies in the
matrix A r produced by the first pass of iterations. One may expect
that the amplitudes in each column of A r to concentrate around the
desired pitch, but we find that the amplitudes at higher frequencies in
A are much larger than those at lower frequencies (see Fig. 2a). It
is this imbalance of the values in A ¢ that makes Durrieu’s algorithm
unable to extract low-pitched and middle-pitched melodies.

We have identified two causes of the imbalance problem. First,
note that the f0’s of interest are chosen to be equally spaced on the
midi number scale, so they are more crowded at lower frequencies
on the Hertz scale. Thus, there are more power spectrum bases (i.e.
columns) at lower frequencies in the B r matrix to divide the power
of each frame (see Fig. 1a), forcing the coefficients of the bases for
lower frequencies to become smaller. Second, note that a power
spectrum basis at a lower frequency in B r (say, Fig. 1b) contains
more harmonics and therefore more power than a basis at a higher
frequency (say, Fig. 1¢). This further reduces the values of the coef-
ficients for lower frequencies in Ar.

This imbalance problem underlying the NMF-based melody ex-
traction is not well understood in [7]. An ad hoc compensation to
A is proposed in [7] to circumvent octave errors, using modified
weights for Viterbi decoding:

(A% nt = (Ap)nt + 0.5(Ap)nti12,e (@)

where n is the midi number and ¢ is the frame number. That is, each
element in A  is compensated by adding the value at the same frame
from one octave higher.

Considering the above two causes, we try to apply correspond-
ing compensations to A r, introducing another modified weight at
midi number n and frame ¢:

(AF)nt = (AF)n - ﬁ : Z(BF)i,n ®)



Here ﬁ is the reciprocal of the first derivative of Eq. (4). It rep-

resents the number of midi numbers in a unit frequency interval and
describes the “crowdedness” of power spectrum bases at midi num-
ber n. The term ), (Br)i,n is the total power of the power spec-
trum basis for midi number n.

The use of A% slightly alleviates the imbalance problem
(Fig. 2b), but still yields a considerable number of octave errors
as shown in Fig. 2¢. In conclusion, the imbalance problem makes
the A r matrix not a reliable evidence for Viterbi decoding in melody
extraction.

3. PROPOSED SYSTEM

The above analysis of the flaw of the NMF-based melody extrac-
tion motivates us to propose a new monaural voice and accompani-
ment separation system, which combines HMM-based melody ex-
traction and NMF-based soft masking. Fig. 3 shows the flowchart
of the new system. The melody extraction module is broken down
in two stages: accompaniment / unvoiced / voiced (A/U/V) decision
to identify the segments where the melody exists, and pitch tracking
over the voiced segments. Both these stages are based on HMMs and
to be introduced below. The masking stage uses Durrieu’s algorithm
as described in Section 2.2.

A/U/V decision — Here the acoustic features are 39-dimensional
MFCC features, formed by 12 Mel-frequency cepstral coefficients
(MFCC) and normalized log-energy together with their first and sec-
ond differentials. Cepstral mean normalization is applied for each
clip. The HMM model for A/U/V decision has three states: A, U
and V. The state output distributions are modeled by 32-component
diagonal-covariance Gaussian mixture models (GMMs). The HMM
parameters are estimated from a labeled training database (MIR-1K).

Pitch tracking — Here the acoustic features are ESI features (En-
ergy at Semitones of Interest). They are derived from the fO salience
function, which is a weighted sum of the magnitudes of the har-
monics on the whitened spectrum [6]. Denote by M, ( f) the magni-
tude of the whitened spectrum at frequency f at frame ¢, then the fO
salience function is defined as:

K
_ fot+a
s¢(fo) = kZ:l i id ﬁMt(kfo) )

We set the parameters as: K = 20, o = 27 Hz, 3 = 320 Hz. For
each frame ¢, we calculate the salience function s;(n) for every midi
number n from 38.5 to 74.5 with a step of 0.1. This results in a

total of 361 salience values, which are then used to produce the final
36-dimensional ESI features by integration:

ESLi(n) = Z se(z)w(x —n) (10)

x

where n is a midi number from 39 to 74 with a step of 1, and w(z —
n) is a triangle window that extends fromn — 1 ton + 1.

The HMM for pitch tracking has 36 pitch states, which corre-
spond to the midi numbers from 39 to 74 with a step of 1. The
state output distributions are modeled by 8-component diagonal-
covariance GMMs. Applying the Viterbi decoding gives a coarse
pitch contour that is accurate down to 1 semitone. By finding the
maximizing frequency on the salience map in a 1-semitone range
around the coarse pitch contour n1 (¢) at each frame ¢, we can obtain
the fine pitch contour:

na(t) = s¢(n) (11)

arg max
n1(t)—0.5<n<ny(t)+0.5
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Fig. 3. Flowchart of the proposed system
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Fig. 4. A/U/V decision performance of our system and the H1 sys-

tem (cited from [2]) on the MIR-1K database

4. EVALUATION AND COMPARISON '

4.1. Comparison with the systems of Hsu et al.

The H1 system of Hsu ef al.includes an HMM-based A/U/V decision
front end, but its back end uses hard masking. The A/U/V decision
stage in our system is a re-implementation of the same stage in H1.
The H2 system uses two streams of ESI features. Instead, we use
only one stream of the newly-defined ESI feature.

The HMM training and the evaluation are carried out on the
MIR-1K database with the same setup as in [2]. The database con-
tains 1000 clips (133 minutes) of amateur singing, with A/U/V labels
and f0’s annotated at the frame level. The data is divided into two
subsets of 487 and 513 clips for twofold cross validation.

Evaluation of A/U/V decision — Fig. 4 shows the A/U/V deci-
sion performances of our system and H1 system, in terms of confu-
sion matrix and accuracy (the number of frames that are classified
correctly divided by the total number of frames). It can be seen
that the accuracy of our system is higher than that of the HI sys-
tem. Also, while the H1 system tends to classify A frames as being
V, our result is more balanced. Although the two systems use the
same algorithm, these performance differences may arise from the
implementation details, such as the MFCC feature extraction.

Evaluation of pitch tracking — The performance of pitch track-
ing is measured by the overall accuracy, which is defined as the per-
centage of “correct” frames in all the frames. A frame is called “cor-
rect” if it is a correctly classified non-voiced (A or U) frame, or if it
is a correctly classified voiced frame and the extracted pitch deviates
from the true pitch by less than 1 semitone. An overall accuracy of
71.10% is reported in [4]. Our system achieves an overall accuracy
of 71.57%. This indicates that our newly-defined ESI feature is bet-
ter for pitch tracking than the two types of ESI features used in the
H2 system.

Evaluation of overall separation performance — We use the
signal-to-distortion ratio (SDR) defined in [2] as the criterion for
the separation performance. The SDR, which we call “Hsu’s SDR”
in order to distinguish it from another SDR proposed by Durrieu, is
defined as:

(s,8)°
8112 = (s,8)

Hsu’s SDR = 10log,, STl (12)

'Some separation examples are available at: http://www.ee.
tsinghua.edu.cn/~ouzhijian/maigodemo/index.htm



HI system Our system
Mixing | Ideal  Annot. Extr. | Annot. Extr.
ratio masks  pitch  pitch | pitch  pitch
-5dB 10.62 7.5 -0.5 1034 4.03
0dB 8.36 6.0 0.9 8.70 5.31
5dB 5.82 3.0 0.2 6.53 4.09

Table 1. Comparison of Hsu’s SDR gains (in dB) on the MIR-1K
database for the H1 system (cited from [2]) and our system

Original Durrieu Our system

Clip Voice  Acc. | Voice Acc. | Voice Acc.
Bearlin -5.37 537 6.2 116 | 344 876
Tamy 051 -051 | 115 11.0 | 417  3.66
Bent 0.01  -0.01 5.5 5.6 8.46  8.45
Chevalier | -6.79  6.79 1.5 8.3 272 9.50
Love 028 -0.28 8.6 8.4 5.17  4.89
Matter -4.72 472 8.0 127 | 452 9.24

Table 2. Comparison of Durrieu’s SDRs (in dB) for voice and ac-
companiment on Durrieu’s database for Durrieu’s system using com-
pensated A’ (cited from Durrieu’s website) and our system

where s and § denotes the original and estimated signal respectively.
The difference of the SDR before and after the separation is called
the SDR gain.

We compare our system and the H1 system on the MIR-1K
database at different mixing ratios of the voice and the accompani-
ment: -5 dB, 0 dB and 5 dB. Since the database provides annotated
pitch contours, we run our system twice, using annotated and ex-
tracted pitch contours respectively. For the H1 system which uses
hard masking, we also cite its SDR gains with ideal binary masks.
The results are shown in Table 1. It can be seen that our system
outperforms the H1 system for both cases of using annotated and ex-
tracted pitch contours. It is remarkable that the performance of our
system using the annotated pitch contours comes close to or even
exceeds the H1 system using ideal binary masks. This shows the
advantage of NMF-based soft masking over hard masking.

4.2. Comparison with Durrieu’s system

First, we compare the separation performance of our system with
Durrieu’s on the audio clips available on Durrieu’s website?, using
the same definition of SDR as Durrieu [7]:

2

Durrieu’s SDR = 10log; % (13)
The HMMs used in our system here are trained on all the 1000 clips
from the MIR-1K database. The SDR results are given in Table 2.
Our system performs better for some clips, while Durrieu’s system is
better for others. This indicates that our HMM-based melody extrac-
tion achieves comparable performance with Durrieu’s NMF-based
melody extraction on Durrieu’s database.

Next, we run Durrieu’s algorithm on the MIR-1K database using
the compensated A% matrix. Considering that A/U/V decision is not
carefully applied in Durrieu’s algorithm, we compare the raw pitch
accuracy (i.e. the accuracy counted on annotated voiced frames).
Our system achieves a much better accuracy of 68.87% than Dur-
rieu’s 52.76%. It can also be seen from the error histograms (Fig. 5)

’http://perso.telecom-paristech.fr/~-durrieu/en/
icassp09/
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Fig. 5. Melody extraction error histograms of our system and Dur-
rieu’s system using compensated A’

that while our melody extractor makes only a few balanced upper-
octave and lower-octave errors, Durrieu’s melody extractor makes a
large number of various higher-pitch errors, especially upper-octave
errors. This indicates that the good performance of NMF-based
melody extraction obtained on the few clips on Durrieu’s website
cannot easily generalize to other databases, due to the imbalance
problem inherent in the A p matrix.

A final remark is that our HMM-based melody extraction
achieves a significant speedup over Durrieu’s NMF-based melody
extraction. Our HMM-based melody extraction, which involves no
iterative computation, runs 6 ~ 7 times faster than Durrieu’s.

5. CONCLUSION

In this paper, we propose a new monaural voice and accompaniment
separation system, which combines HMM-based melody extraction
(equipped with a newly-defined ESI feature) and NMF-based soft
masking. The HMM-based melody extraction avoids the imbalance
problem inherent in the NMF-based melody extraction, and runs sig-
nificantly faster. Also, NMF-based soft masking gives superior per-
formances over hard masking. Evaluations on two publicly available
databases show that the proposed system reaches state-of-the-art per-
formance and outperforms several other combinations.
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